| package ssa |
| |
| import "fmt" |
| |
| type indVarFlags uint8 |
| |
| const ( |
| indVarMinExc indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive) |
| indVarMaxInc // maximum value is inclusive (default: exclusive) |
| ) |
| |
| type indVar struct { |
| ind *Value // induction variable |
| inc *Value // increment, a constant |
| nxt *Value // ind+inc variable |
| min *Value // minimum value, inclusive/exclusive depends on flags |
| max *Value // maximum value, inclusive/exclusive depends on flags |
| entry *Block // entry block in the loop. |
| flags indVarFlags |
| // Invariants: for all blocks dominated by entry: |
| // min <= ind < max |
| // min <= nxt <= max |
| } |
| |
| // findIndVar finds induction variables in a function. |
| // |
| // Look for variables and blocks that satisfy the following |
| // |
| // loop: |
| // ind = (Phi min nxt), |
| // if ind < max |
| // then goto enter_loop |
| // else goto exit_loop |
| // |
| // enter_loop: |
| // do something |
| // nxt = inc + ind |
| // goto loop |
| // |
| // exit_loop: |
| // |
| // |
| // TODO: handle 32 bit operations |
| func findIndVar(f *Func) []indVar { |
| var iv []indVar |
| sdom := f.sdom() |
| |
| nextb: |
| for _, b := range f.Blocks { |
| if b.Kind != BlockIf || len(b.Preds) != 2 { |
| continue |
| } |
| |
| var flags indVarFlags |
| var ind, max *Value // induction, and maximum |
| entry := -1 // which successor of b enters the loop |
| |
| // Check thet the control if it either ind </<= max or max >/>= ind. |
| // TODO: Handle 32-bit comparisons. |
| switch b.Control.Op { |
| case OpLeq64: |
| flags |= indVarMaxInc |
| fallthrough |
| case OpLess64: |
| entry = 0 |
| ind, max = b.Control.Args[0], b.Control.Args[1] |
| case OpGeq64: |
| flags |= indVarMaxInc |
| fallthrough |
| case OpGreater64: |
| entry = 0 |
| ind, max = b.Control.Args[1], b.Control.Args[0] |
| default: |
| continue nextb |
| } |
| |
| // See if the arguments are reversed (i < len() <=> len() > i) |
| if max.Op == OpPhi { |
| ind, max = max, ind |
| } |
| |
| // Check that the induction variable is a phi that depends on itself. |
| if ind.Op != OpPhi { |
| continue |
| } |
| |
| // Extract min and nxt knowing that nxt is an addition (e.g. Add64). |
| var min, nxt *Value // minimum, and next value |
| if n := ind.Args[0]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) { |
| min, nxt = ind.Args[1], n |
| } else if n := ind.Args[1]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) { |
| min, nxt = ind.Args[0], n |
| } else { |
| // Not a recognized induction variable. |
| continue |
| } |
| |
| var inc *Value |
| if nxt.Args[0] == ind { // nxt = ind + inc |
| inc = nxt.Args[1] |
| } else if nxt.Args[1] == ind { // nxt = inc + ind |
| inc = nxt.Args[0] |
| } else { |
| panic("unreachable") // one of the cases must be true from the above. |
| } |
| |
| // Expect the increment to be a constant. |
| if inc.Op != OpConst64 { |
| continue |
| } |
| |
| // If the increment is negative, swap min/max and their flags |
| if inc.AuxInt <= 0 { |
| min, max = max, min |
| oldf := flags |
| flags = 0 |
| if oldf&indVarMaxInc == 0 { |
| flags |= indVarMinExc |
| } |
| if oldf&indVarMinExc == 0 { |
| flags |= indVarMaxInc |
| } |
| } |
| |
| // Up to now we extracted the induction variable (ind), |
| // the increment delta (inc), the temporary sum (nxt), |
| // the mininum value (min) and the maximum value (max). |
| // |
| // We also know that ind has the form (Phi min nxt) where |
| // nxt is (Add inc nxt) which means: 1) inc dominates nxt |
| // and 2) there is a loop starting at inc and containing nxt. |
| // |
| // We need to prove that the induction variable is incremented |
| // only when it's smaller than the maximum value. |
| // Two conditions must happen listed below to accept ind |
| // as an induction variable. |
| |
| // First condition: loop entry has a single predecessor, which |
| // is the header block. This implies that b.Succs[entry] is |
| // reached iff ind < max. |
| if len(b.Succs[entry].b.Preds) != 1 { |
| // b.Succs[1-entry] must exit the loop. |
| continue |
| } |
| |
| // Second condition: b.Succs[entry] dominates nxt so that |
| // nxt is computed when inc < max, meaning nxt <= max. |
| if !sdom.isAncestorEq(b.Succs[entry].b, nxt.Block) { |
| // inc+ind can only be reached through the branch that enters the loop. |
| continue |
| } |
| |
| // We can only guarantee that the loops runs within limits of induction variable |
| // if the increment is ±1 or when the limits are constants. |
| if inc.AuxInt != 1 && inc.AuxInt != -1 { |
| ok := false |
| if min.Op == OpConst64 && max.Op == OpConst64 { |
| if max.AuxInt > min.AuxInt && max.AuxInt%inc.AuxInt == min.AuxInt%inc.AuxInt { // handle overflow |
| ok = true |
| } |
| } |
| if !ok { |
| continue |
| } |
| } |
| |
| if f.pass.debug >= 1 { |
| printIndVar(b, ind, min, max, inc.AuxInt, flags) |
| } |
| |
| iv = append(iv, indVar{ |
| ind: ind, |
| inc: inc, |
| nxt: nxt, |
| min: min, |
| max: max, |
| entry: b.Succs[entry].b, |
| flags: flags, |
| }) |
| b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max) |
| } |
| |
| return iv |
| } |
| |
| func dropAdd64(v *Value) (*Value, int64) { |
| if v.Op == OpAdd64 && v.Args[0].Op == OpConst64 { |
| return v.Args[1], v.Args[0].AuxInt |
| } |
| if v.Op == OpAdd64 && v.Args[1].Op == OpConst64 { |
| return v.Args[0], v.Args[1].AuxInt |
| } |
| return v, 0 |
| } |
| |
| func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) { |
| mb1, mb2 := "[", "]" |
| if flags&indVarMinExc != 0 { |
| mb1 = "(" |
| } |
| if flags&indVarMaxInc == 0 { |
| mb2 = ")" |
| } |
| |
| mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt) |
| if !min.isGenericIntConst() { |
| if b.Func.pass.debug >= 2 { |
| mlim1 = fmt.Sprint(min) |
| } else { |
| mlim1 = "?" |
| } |
| } |
| if !max.isGenericIntConst() { |
| if b.Func.pass.debug >= 2 { |
| mlim2 = fmt.Sprint(max) |
| } else { |
| mlim2 = "?" |
| } |
| } |
| extra := "" |
| if b.Func.pass.debug >= 2 { |
| extra = fmt.Sprintf(" (%s)", i) |
| } |
| b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra) |
| } |