| // Copyright 2014 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| // This file contains the implementation of Go's map type. |
| // |
| // A map is just a hash table. The data is arranged |
| // into an array of buckets. Each bucket contains up to |
| // 8 key/value pairs. The low-order bits of the hash are |
| // used to select a bucket. Each bucket contains a few |
| // high-order bits of each hash to distinguish the entries |
| // within a single bucket. |
| // |
| // If more than 8 keys hash to a bucket, we chain on |
| // extra buckets. |
| // |
| // When the hashtable grows, we allocate a new array |
| // of buckets twice as big. Buckets are incrementally |
| // copied from the old bucket array to the new bucket array. |
| // |
| // Map iterators walk through the array of buckets and |
| // return the keys in walk order (bucket #, then overflow |
| // chain order, then bucket index). To maintain iteration |
| // semantics, we never move keys within their bucket (if |
| // we did, keys might be returned 0 or 2 times). When |
| // growing the table, iterators remain iterating through the |
| // old table and must check the new table if the bucket |
| // they are iterating through has been moved ("evacuated") |
| // to the new table. |
| |
| // Picking loadFactor: too large and we have lots of overflow |
| // buckets, too small and we waste a lot of space. I wrote |
| // a simple program to check some stats for different loads: |
| // (64-bit, 8 byte keys and values) |
| // loadFactor %overflow bytes/entry hitprobe missprobe |
| // 4.00 2.13 20.77 3.00 4.00 |
| // 4.50 4.05 17.30 3.25 4.50 |
| // 5.00 6.85 14.77 3.50 5.00 |
| // 5.50 10.55 12.94 3.75 5.50 |
| // 6.00 15.27 11.67 4.00 6.00 |
| // 6.50 20.90 10.79 4.25 6.50 |
| // 7.00 27.14 10.15 4.50 7.00 |
| // 7.50 34.03 9.73 4.75 7.50 |
| // 8.00 41.10 9.40 5.00 8.00 |
| // |
| // %overflow = percentage of buckets which have an overflow bucket |
| // bytes/entry = overhead bytes used per key/value pair |
| // hitprobe = # of entries to check when looking up a present key |
| // missprobe = # of entries to check when looking up an absent key |
| // |
| // Keep in mind this data is for maximally loaded tables, i.e. just |
| // before the table grows. Typical tables will be somewhat less loaded. |
| |
| import ( |
| "runtime/internal/atomic" |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| const ( |
| // Maximum number of key/value pairs a bucket can hold. |
| bucketCntBits = 3 |
| bucketCnt = 1 << bucketCntBits |
| |
| // Maximum average load of a bucket that triggers growth is 6.5. |
| // Represent as loadFactorNum/loadFactDen, to allow integer math. |
| loadFactorNum = 13 |
| loadFactorDen = 2 |
| |
| // Maximum key or value size to keep inline (instead of mallocing per element). |
| // Must fit in a uint8. |
| // Fast versions cannot handle big values - the cutoff size for |
| // fast versions in cmd/compile/internal/gc/walk.go must be at most this value. |
| maxKeySize = 128 |
| maxValueSize = 128 |
| |
| // data offset should be the size of the bmap struct, but needs to be |
| // aligned correctly. For amd64p32 this means 64-bit alignment |
| // even though pointers are 32 bit. |
| dataOffset = unsafe.Offsetof(struct { |
| b bmap |
| v int64 |
| }{}.v) |
| |
| // Possible tophash values. We reserve a few possibilities for special marks. |
| // Each bucket (including its overflow buckets, if any) will have either all or none of its |
| // entries in the evacuated* states (except during the evacuate() method, which only happens |
| // during map writes and thus no one else can observe the map during that time). |
| empty = 0 // cell is empty |
| evacuatedEmpty = 1 // cell is empty, bucket is evacuated. |
| evacuatedX = 2 // key/value is valid. Entry has been evacuated to first half of larger table. |
| evacuatedY = 3 // same as above, but evacuated to second half of larger table. |
| minTopHash = 4 // minimum tophash for a normal filled cell. |
| |
| // flags |
| iterator = 1 // there may be an iterator using buckets |
| oldIterator = 2 // there may be an iterator using oldbuckets |
| hashWriting = 4 // a goroutine is writing to the map |
| sameSizeGrow = 8 // the current map growth is to a new map of the same size |
| |
| // sentinel bucket ID for iterator checks |
| noCheck = 1<<(8*sys.PtrSize) - 1 |
| ) |
| |
| // A header for a Go map. |
| type hmap struct { |
| // Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go. |
| // Make sure this stays in sync with the compiler's definition. |
| count int // # live cells == size of map. Must be first (used by len() builtin) |
| flags uint8 |
| B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items) |
| noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details |
| hash0 uint32 // hash seed |
| |
| buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0. |
| oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing |
| nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated) |
| |
| extra *mapextra // optional fields |
| } |
| |
| // mapextra holds fields that are not present on all maps. |
| type mapextra struct { |
| // If both key and value do not contain pointers and are inline, then we mark bucket |
| // type as containing no pointers. This avoids scanning such maps. |
| // However, bmap.overflow is a pointer. In order to keep overflow buckets |
| // alive, we store pointers to all overflow buckets in hmap.overflow and h.map.oldoverflow. |
| // overflow and oldoverflow are only used if key and value do not contain pointers. |
| // overflow contains overflow buckets for hmap.buckets. |
| // oldoverflow contains overflow buckets for hmap.oldbuckets. |
| // The indirection allows to store a pointer to the slice in hiter. |
| overflow *[]*bmap |
| oldoverflow *[]*bmap |
| |
| // nextOverflow holds a pointer to a free overflow bucket. |
| nextOverflow *bmap |
| } |
| |
| // A bucket for a Go map. |
| type bmap struct { |
| // tophash generally contains the top byte of the hash value |
| // for each key in this bucket. If tophash[0] < minTopHash, |
| // tophash[0] is a bucket evacuation state instead. |
| tophash [bucketCnt]uint8 |
| // Followed by bucketCnt keys and then bucketCnt values. |
| // NOTE: packing all the keys together and then all the values together makes the |
| // code a bit more complicated than alternating key/value/key/value/... but it allows |
| // us to eliminate padding which would be needed for, e.g., map[int64]int8. |
| // Followed by an overflow pointer. |
| } |
| |
| // A hash iteration structure. |
| // If you modify hiter, also change cmd/compile/internal/gc/reflect.go to indicate |
| // the layout of this structure. |
| type hiter struct { |
| key unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/internal/gc/range.go). |
| value unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go). |
| t *maptype |
| h *hmap |
| buckets unsafe.Pointer // bucket ptr at hash_iter initialization time |
| bptr *bmap // current bucket |
| overflow *[]*bmap // keeps overflow buckets of hmap.buckets alive |
| oldoverflow *[]*bmap // keeps overflow buckets of hmap.oldbuckets alive |
| startBucket uintptr // bucket iteration started at |
| offset uint8 // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1) |
| wrapped bool // already wrapped around from end of bucket array to beginning |
| B uint8 |
| i uint8 |
| bucket uintptr |
| checkBucket uintptr |
| } |
| |
| // bucketShift returns 1<<b, optimized for code generation. |
| func bucketShift(b uint8) uintptr { |
| if sys.GoarchAmd64|sys.GoarchAmd64p32|sys.Goarch386 != 0 { |
| b &= sys.PtrSize*8 - 1 // help x86 archs remove shift overflow checks |
| } |
| return uintptr(1) << b |
| } |
| |
| // bucketMask returns 1<<b - 1, optimized for code generation. |
| func bucketMask(b uint8) uintptr { |
| return bucketShift(b) - 1 |
| } |
| |
| // tophash calculates the tophash value for hash. |
| func tophash(hash uintptr) uint8 { |
| top := uint8(hash >> (sys.PtrSize*8 - 8)) |
| if top < minTopHash { |
| top += minTopHash |
| } |
| return top |
| } |
| |
| func evacuated(b *bmap) bool { |
| h := b.tophash[0] |
| return h > empty && h < minTopHash |
| } |
| |
| func (b *bmap) overflow(t *maptype) *bmap { |
| return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) |
| } |
| |
| func (b *bmap) setoverflow(t *maptype, ovf *bmap) { |
| *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) = ovf |
| } |
| |
| func (b *bmap) keys() unsafe.Pointer { |
| return add(unsafe.Pointer(b), dataOffset) |
| } |
| |
| // incrnoverflow increments h.noverflow. |
| // noverflow counts the number of overflow buckets. |
| // This is used to trigger same-size map growth. |
| // See also tooManyOverflowBuckets. |
| // To keep hmap small, noverflow is a uint16. |
| // When there are few buckets, noverflow is an exact count. |
| // When there are many buckets, noverflow is an approximate count. |
| func (h *hmap) incrnoverflow() { |
| // We trigger same-size map growth if there are |
| // as many overflow buckets as buckets. |
| // We need to be able to count to 1<<h.B. |
| if h.B < 16 { |
| h.noverflow++ |
| return |
| } |
| // Increment with probability 1/(1<<(h.B-15)). |
| // When we reach 1<<15 - 1, we will have approximately |
| // as many overflow buckets as buckets. |
| mask := uint32(1)<<(h.B-15) - 1 |
| // Example: if h.B == 18, then mask == 7, |
| // and fastrand & 7 == 0 with probability 1/8. |
| if fastrand()&mask == 0 { |
| h.noverflow++ |
| } |
| } |
| |
| func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap { |
| var ovf *bmap |
| if h.extra != nil && h.extra.nextOverflow != nil { |
| // We have preallocated overflow buckets available. |
| // See makeBucketArray for more details. |
| ovf = h.extra.nextOverflow |
| if ovf.overflow(t) == nil { |
| // We're not at the end of the preallocated overflow buckets. Bump the pointer. |
| h.extra.nextOverflow = (*bmap)(add(unsafe.Pointer(ovf), uintptr(t.bucketsize))) |
| } else { |
| // This is the last preallocated overflow bucket. |
| // Reset the overflow pointer on this bucket, |
| // which was set to a non-nil sentinel value. |
| ovf.setoverflow(t, nil) |
| h.extra.nextOverflow = nil |
| } |
| } else { |
| ovf = (*bmap)(newobject(t.bucket)) |
| } |
| h.incrnoverflow() |
| if t.bucket.kind&kindNoPointers != 0 { |
| h.createOverflow() |
| *h.extra.overflow = append(*h.extra.overflow, ovf) |
| } |
| b.setoverflow(t, ovf) |
| return ovf |
| } |
| |
| func (h *hmap) createOverflow() { |
| if h.extra == nil { |
| h.extra = new(mapextra) |
| } |
| if h.extra.overflow == nil { |
| h.extra.overflow = new([]*bmap) |
| } |
| } |
| |
| func makemap64(t *maptype, hint int64, h *hmap) *hmap { |
| if int64(int(hint)) != hint { |
| hint = 0 |
| } |
| return makemap(t, int(hint), h) |
| } |
| |
| // makehmap_small implements Go map creation for make(map[k]v) and |
| // make(map[k]v, hint) when hint is known to be at most bucketCnt |
| // at compile time and the map needs to be allocated on the heap. |
| func makemap_small() *hmap { |
| h := new(hmap) |
| h.hash0 = fastrand() |
| return h |
| } |
| |
| // makemap implements Go map creation for make(map[k]v, hint). |
| // If the compiler has determined that the map or the first bucket |
| // can be created on the stack, h and/or bucket may be non-nil. |
| // If h != nil, the map can be created directly in h. |
| // If h.buckets != nil, bucket pointed to can be used as the first bucket. |
| func makemap(t *maptype, hint int, h *hmap) *hmap { |
| if hint < 0 || hint > int(maxSliceCap(t.bucket.size)) { |
| hint = 0 |
| } |
| |
| // initialize Hmap |
| if h == nil { |
| h = new(hmap) |
| } |
| h.hash0 = fastrand() |
| |
| // find size parameter which will hold the requested # of elements |
| B := uint8(0) |
| for overLoadFactor(hint, B) { |
| B++ |
| } |
| h.B = B |
| |
| // allocate initial hash table |
| // if B == 0, the buckets field is allocated lazily later (in mapassign) |
| // If hint is large zeroing this memory could take a while. |
| if h.B != 0 { |
| var nextOverflow *bmap |
| h.buckets, nextOverflow = makeBucketArray(t, h.B, nil) |
| if nextOverflow != nil { |
| h.extra = new(mapextra) |
| h.extra.nextOverflow = nextOverflow |
| } |
| } |
| |
| return h |
| } |
| |
| // makeBucketArray initializes a backing array for map buckets. |
| // 1<<b is the minimum number of buckets to allocate. |
| // dirtyalloc should either be nil or a bucket array previously |
| // allocated by makeBucketArray with the same t and b parameters. |
| // If dirtyalloc is nil a new backing array will be alloced and |
| // otherwise dirtyalloc will be cleared and reused as backing array. |
| func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) { |
| base := bucketShift(b) |
| nbuckets := base |
| // For small b, overflow buckets are unlikely. |
| // Avoid the overhead of the calculation. |
| if b >= 4 { |
| // Add on the estimated number of overflow buckets |
| // required to insert the median number of elements |
| // used with this value of b. |
| nbuckets += bucketShift(b - 4) |
| sz := t.bucket.size * nbuckets |
| up := roundupsize(sz) |
| if up != sz { |
| nbuckets = up / t.bucket.size |
| } |
| } |
| |
| if dirtyalloc == nil { |
| buckets = newarray(t.bucket, int(nbuckets)) |
| } else { |
| // dirtyalloc was previously generated by |
| // the above newarray(t.bucket, int(nbuckets)) |
| // but may not be empty. |
| buckets = dirtyalloc |
| size := t.bucket.size * nbuckets |
| if t.bucket.kind&kindNoPointers == 0 { |
| memclrHasPointers(buckets, size) |
| } else { |
| memclrNoHeapPointers(buckets, size) |
| } |
| } |
| |
| if base != nbuckets { |
| // We preallocated some overflow buckets. |
| // To keep the overhead of tracking these overflow buckets to a minimum, |
| // we use the convention that if a preallocated overflow bucket's overflow |
| // pointer is nil, then there are more available by bumping the pointer. |
| // We need a safe non-nil pointer for the last overflow bucket; just use buckets. |
| nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize))) |
| last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize))) |
| last.setoverflow(t, (*bmap)(buckets)) |
| } |
| return buckets, nextOverflow |
| } |
| |
| // mapaccess1 returns a pointer to h[key]. Never returns nil, instead |
| // it will return a reference to the zero object for the value type if |
| // the key is not in the map. |
| // NOTE: The returned pointer may keep the whole map live, so don't |
| // hold onto it for very long. |
| func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { |
| if raceenabled && h != nil { |
| callerpc := getcallerpc() |
| pc := funcPC(mapaccess1) |
| racereadpc(unsafe.Pointer(h), callerpc, pc) |
| raceReadObjectPC(t.key, key, callerpc, pc) |
| } |
| if msanenabled && h != nil { |
| msanread(key, t.key.size) |
| } |
| if h == nil || h.count == 0 { |
| return unsafe.Pointer(&zeroVal[0]) |
| } |
| if h.flags&hashWriting != 0 { |
| throw("concurrent map read and map write") |
| } |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| m := bucketMask(h.B) |
| b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) |
| if c := h.oldbuckets; c != nil { |
| if !h.sameSizeGrow() { |
| // There used to be half as many buckets; mask down one more power of two. |
| m >>= 1 |
| } |
| oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) |
| if !evacuated(oldb) { |
| b = oldb |
| } |
| } |
| top := tophash(hash) |
| for ; b != nil; b = b.overflow(t) { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| if alg.equal(key, k) { |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| return v |
| } |
| } |
| } |
| return unsafe.Pointer(&zeroVal[0]) |
| } |
| |
| func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) { |
| if raceenabled && h != nil { |
| callerpc := getcallerpc() |
| pc := funcPC(mapaccess2) |
| racereadpc(unsafe.Pointer(h), callerpc, pc) |
| raceReadObjectPC(t.key, key, callerpc, pc) |
| } |
| if msanenabled && h != nil { |
| msanread(key, t.key.size) |
| } |
| if h == nil || h.count == 0 { |
| return unsafe.Pointer(&zeroVal[0]), false |
| } |
| if h.flags&hashWriting != 0 { |
| throw("concurrent map read and map write") |
| } |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| m := bucketMask(h.B) |
| b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize))) |
| if c := h.oldbuckets; c != nil { |
| if !h.sameSizeGrow() { |
| // There used to be half as many buckets; mask down one more power of two. |
| m >>= 1 |
| } |
| oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize))) |
| if !evacuated(oldb) { |
| b = oldb |
| } |
| } |
| top := tophash(hash) |
| for ; b != nil; b = b.overflow(t) { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| if alg.equal(key, k) { |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| return v, true |
| } |
| } |
| } |
| return unsafe.Pointer(&zeroVal[0]), false |
| } |
| |
| // returns both key and value. Used by map iterator |
| func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) { |
| if h == nil || h.count == 0 { |
| return nil, nil |
| } |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| m := bucketMask(h.B) |
| b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize))) |
| if c := h.oldbuckets; c != nil { |
| if !h.sameSizeGrow() { |
| // There used to be half as many buckets; mask down one more power of two. |
| m >>= 1 |
| } |
| oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize))) |
| if !evacuated(oldb) { |
| b = oldb |
| } |
| } |
| top := tophash(hash) |
| for ; b != nil; b = b.overflow(t) { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| if alg.equal(key, k) { |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| return k, v |
| } |
| } |
| } |
| return nil, nil |
| } |
| |
| func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer { |
| v := mapaccess1(t, h, key) |
| if v == unsafe.Pointer(&zeroVal[0]) { |
| return zero |
| } |
| return v |
| } |
| |
| func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) { |
| v := mapaccess1(t, h, key) |
| if v == unsafe.Pointer(&zeroVal[0]) { |
| return zero, false |
| } |
| return v, true |
| } |
| |
| // Like mapaccess, but allocates a slot for the key if it is not present in the map. |
| func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { |
| if h == nil { |
| panic(plainError("assignment to entry in nil map")) |
| } |
| if raceenabled { |
| callerpc := getcallerpc() |
| pc := funcPC(mapassign) |
| racewritepc(unsafe.Pointer(h), callerpc, pc) |
| raceReadObjectPC(t.key, key, callerpc, pc) |
| } |
| if msanenabled { |
| msanread(key, t.key.size) |
| } |
| if h.flags&hashWriting != 0 { |
| throw("concurrent map writes") |
| } |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| |
| // Set hashWriting after calling alg.hash, since alg.hash may panic, |
| // in which case we have not actually done a write. |
| h.flags |= hashWriting |
| |
| if h.buckets == nil { |
| h.buckets = newobject(t.bucket) // newarray(t.bucket, 1) |
| } |
| |
| again: |
| bucket := hash & bucketMask(h.B) |
| if h.growing() { |
| growWork(t, h, bucket) |
| } |
| b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) |
| top := tophash(hash) |
| |
| var inserti *uint8 |
| var insertk unsafe.Pointer |
| var val unsafe.Pointer |
| for { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| if b.tophash[i] == empty && inserti == nil { |
| inserti = &b.tophash[i] |
| insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| } |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| if !alg.equal(key, k) { |
| continue |
| } |
| // already have a mapping for key. Update it. |
| if t.needkeyupdate { |
| typedmemmove(t.key, k, key) |
| } |
| val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| goto done |
| } |
| ovf := b.overflow(t) |
| if ovf == nil { |
| break |
| } |
| b = ovf |
| } |
| |
| // Did not find mapping for key. Allocate new cell & add entry. |
| |
| // If we hit the max load factor or we have too many overflow buckets, |
| // and we're not already in the middle of growing, start growing. |
| if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { |
| hashGrow(t, h) |
| goto again // Growing the table invalidates everything, so try again |
| } |
| |
| if inserti == nil { |
| // all current buckets are full, allocate a new one. |
| newb := h.newoverflow(t, b) |
| inserti = &newb.tophash[0] |
| insertk = add(unsafe.Pointer(newb), dataOffset) |
| val = add(insertk, bucketCnt*uintptr(t.keysize)) |
| } |
| |
| // store new key/value at insert position |
| if t.indirectkey { |
| kmem := newobject(t.key) |
| *(*unsafe.Pointer)(insertk) = kmem |
| insertk = kmem |
| } |
| if t.indirectvalue { |
| vmem := newobject(t.elem) |
| *(*unsafe.Pointer)(val) = vmem |
| } |
| typedmemmove(t.key, insertk, key) |
| *inserti = top |
| h.count++ |
| |
| done: |
| if h.flags&hashWriting == 0 { |
| throw("concurrent map writes") |
| } |
| h.flags &^= hashWriting |
| if t.indirectvalue { |
| val = *((*unsafe.Pointer)(val)) |
| } |
| return val |
| } |
| |
| func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) { |
| if raceenabled && h != nil { |
| callerpc := getcallerpc() |
| pc := funcPC(mapdelete) |
| racewritepc(unsafe.Pointer(h), callerpc, pc) |
| raceReadObjectPC(t.key, key, callerpc, pc) |
| } |
| if msanenabled && h != nil { |
| msanread(key, t.key.size) |
| } |
| if h == nil || h.count == 0 { |
| return |
| } |
| if h.flags&hashWriting != 0 { |
| throw("concurrent map writes") |
| } |
| |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| |
| // Set hashWriting after calling alg.hash, since alg.hash may panic, |
| // in which case we have not actually done a write (delete). |
| h.flags |= hashWriting |
| |
| bucket := hash & bucketMask(h.B) |
| if h.growing() { |
| growWork(t, h, bucket) |
| } |
| b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize))) |
| top := tophash(hash) |
| search: |
| for ; b != nil; b = b.overflow(t) { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| k2 := k |
| if t.indirectkey { |
| k2 = *((*unsafe.Pointer)(k2)) |
| } |
| if !alg.equal(key, k2) { |
| continue |
| } |
| // Only clear key if there are pointers in it. |
| if t.indirectkey { |
| *(*unsafe.Pointer)(k) = nil |
| } else if t.key.kind&kindNoPointers == 0 { |
| memclrHasPointers(k, t.key.size) |
| } |
| // Only clear value if there are pointers in it. |
| if t.indirectvalue || t.elem.kind&kindNoPointers == 0 { |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| if t.indirectvalue { |
| *(*unsafe.Pointer)(v) = nil |
| } else { |
| memclrHasPointers(v, t.elem.size) |
| } |
| } |
| b.tophash[i] = empty |
| h.count-- |
| break search |
| } |
| } |
| |
| if h.flags&hashWriting == 0 { |
| throw("concurrent map writes") |
| } |
| h.flags &^= hashWriting |
| } |
| |
| // mapiterinit initializes the hiter struct used for ranging over maps. |
| // The hiter struct pointed to by 'it' is allocated on the stack |
| // by the compilers order pass or on the heap by reflect_mapiterinit. |
| // Both need to have zeroed hiter since the struct contains pointers. |
| func mapiterinit(t *maptype, h *hmap, it *hiter) { |
| if raceenabled && h != nil { |
| callerpc := getcallerpc() |
| racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit)) |
| } |
| |
| if h == nil || h.count == 0 { |
| return |
| } |
| |
| if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 { |
| throw("hash_iter size incorrect") // see cmd/compile/internal/gc/reflect.go |
| } |
| it.t = t |
| it.h = h |
| |
| // grab snapshot of bucket state |
| it.B = h.B |
| it.buckets = h.buckets |
| if t.bucket.kind&kindNoPointers != 0 { |
| // Allocate the current slice and remember pointers to both current and old. |
| // This preserves all relevant overflow buckets alive even if |
| // the table grows and/or overflow buckets are added to the table |
| // while we are iterating. |
| h.createOverflow() |
| it.overflow = h.extra.overflow |
| it.oldoverflow = h.extra.oldoverflow |
| } |
| |
| // decide where to start |
| r := uintptr(fastrand()) |
| if h.B > 31-bucketCntBits { |
| r += uintptr(fastrand()) << 31 |
| } |
| it.startBucket = r & bucketMask(h.B) |
| it.offset = uint8(r >> h.B & (bucketCnt - 1)) |
| |
| // iterator state |
| it.bucket = it.startBucket |
| |
| // Remember we have an iterator. |
| // Can run concurrently with another mapiterinit(). |
| if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator { |
| atomic.Or8(&h.flags, iterator|oldIterator) |
| } |
| |
| mapiternext(it) |
| } |
| |
| func mapiternext(it *hiter) { |
| h := it.h |
| if raceenabled { |
| callerpc := getcallerpc() |
| racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext)) |
| } |
| if h.flags&hashWriting != 0 { |
| throw("concurrent map iteration and map write") |
| } |
| t := it.t |
| bucket := it.bucket |
| b := it.bptr |
| i := it.i |
| checkBucket := it.checkBucket |
| alg := t.key.alg |
| |
| next: |
| if b == nil { |
| if bucket == it.startBucket && it.wrapped { |
| // end of iteration |
| it.key = nil |
| it.value = nil |
| return |
| } |
| if h.growing() && it.B == h.B { |
| // Iterator was started in the middle of a grow, and the grow isn't done yet. |
| // If the bucket we're looking at hasn't been filled in yet (i.e. the old |
| // bucket hasn't been evacuated) then we need to iterate through the old |
| // bucket and only return the ones that will be migrated to this bucket. |
| oldbucket := bucket & it.h.oldbucketmask() |
| b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) |
| if !evacuated(b) { |
| checkBucket = bucket |
| } else { |
| b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize))) |
| checkBucket = noCheck |
| } |
| } else { |
| b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize))) |
| checkBucket = noCheck |
| } |
| bucket++ |
| if bucket == bucketShift(it.B) { |
| bucket = 0 |
| it.wrapped = true |
| } |
| i = 0 |
| } |
| for ; i < bucketCnt; i++ { |
| offi := (i + it.offset) & (bucketCnt - 1) |
| if b.tophash[offi] == empty || b.tophash[offi] == evacuatedEmpty { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize)) |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize)) |
| if checkBucket != noCheck && !h.sameSizeGrow() { |
| // Special case: iterator was started during a grow to a larger size |
| // and the grow is not done yet. We're working on a bucket whose |
| // oldbucket has not been evacuated yet. Or at least, it wasn't |
| // evacuated when we started the bucket. So we're iterating |
| // through the oldbucket, skipping any keys that will go |
| // to the other new bucket (each oldbucket expands to two |
| // buckets during a grow). |
| if t.reflexivekey || alg.equal(k, k) { |
| // If the item in the oldbucket is not destined for |
| // the current new bucket in the iteration, skip it. |
| hash := alg.hash(k, uintptr(h.hash0)) |
| if hash&bucketMask(it.B) != checkBucket { |
| continue |
| } |
| } else { |
| // Hash isn't repeatable if k != k (NaNs). We need a |
| // repeatable and randomish choice of which direction |
| // to send NaNs during evacuation. We'll use the low |
| // bit of tophash to decide which way NaNs go. |
| // NOTE: this case is why we need two evacuate tophash |
| // values, evacuatedX and evacuatedY, that differ in |
| // their low bit. |
| if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) { |
| continue |
| } |
| } |
| } |
| if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) || |
| !(t.reflexivekey || alg.equal(k, k)) { |
| // This is the golden data, we can return it. |
| // OR |
| // key!=key, so the entry can't be deleted or updated, so we can just return it. |
| // That's lucky for us because when key!=key we can't look it up successfully. |
| it.key = k |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| it.value = v |
| } else { |
| // The hash table has grown since the iterator was started. |
| // The golden data for this key is now somewhere else. |
| // Check the current hash table for the data. |
| // This code handles the case where the key |
| // has been deleted, updated, or deleted and reinserted. |
| // NOTE: we need to regrab the key as it has potentially been |
| // updated to an equal() but not identical key (e.g. +0.0 vs -0.0). |
| rk, rv := mapaccessK(t, h, k) |
| if rk == nil { |
| continue // key has been deleted |
| } |
| it.key = rk |
| it.value = rv |
| } |
| it.bucket = bucket |
| if it.bptr != b { // avoid unnecessary write barrier; see issue 14921 |
| it.bptr = b |
| } |
| it.i = i + 1 |
| it.checkBucket = checkBucket |
| return |
| } |
| b = b.overflow(t) |
| i = 0 |
| goto next |
| } |
| |
| // mapclear deletes all keys from a map. |
| func mapclear(t *maptype, h *hmap) { |
| if raceenabled && h != nil { |
| callerpc := getcallerpc() |
| pc := funcPC(mapclear) |
| racewritepc(unsafe.Pointer(h), callerpc, pc) |
| } |
| |
| if h == nil || h.count == 0 { |
| return |
| } |
| |
| if h.flags&hashWriting != 0 { |
| throw("concurrent map writes") |
| } |
| |
| h.flags |= hashWriting |
| |
| h.flags &^= sameSizeGrow |
| h.oldbuckets = nil |
| h.nevacuate = 0 |
| h.noverflow = 0 |
| h.count = 0 |
| |
| // Keep the mapextra allocation but clear any extra information. |
| if h.extra != nil { |
| *h.extra = mapextra{} |
| } |
| |
| // makeBucketArray clears the memory pointed to by h.buckets |
| // and recovers any overflow buckets by generating them |
| // as if h.buckets was newly alloced. |
| _, nextOverflow := makeBucketArray(t, h.B, h.buckets) |
| if nextOverflow != nil { |
| // If overflow buckets are created then h.extra |
| // will have been allocated during initial bucket creation. |
| h.extra.nextOverflow = nextOverflow |
| } |
| |
| if h.flags&hashWriting == 0 { |
| throw("concurrent map writes") |
| } |
| h.flags &^= hashWriting |
| } |
| |
| func hashGrow(t *maptype, h *hmap) { |
| // If we've hit the load factor, get bigger. |
| // Otherwise, there are too many overflow buckets, |
| // so keep the same number of buckets and "grow" laterally. |
| bigger := uint8(1) |
| if !overLoadFactor(h.count+1, h.B) { |
| bigger = 0 |
| h.flags |= sameSizeGrow |
| } |
| oldbuckets := h.buckets |
| newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil) |
| |
| flags := h.flags &^ (iterator | oldIterator) |
| if h.flags&iterator != 0 { |
| flags |= oldIterator |
| } |
| // commit the grow (atomic wrt gc) |
| h.B += bigger |
| h.flags = flags |
| h.oldbuckets = oldbuckets |
| h.buckets = newbuckets |
| h.nevacuate = 0 |
| h.noverflow = 0 |
| |
| if h.extra != nil && h.extra.overflow != nil { |
| // Promote current overflow buckets to the old generation. |
| if h.extra.oldoverflow != nil { |
| throw("oldoverflow is not nil") |
| } |
| h.extra.oldoverflow = h.extra.overflow |
| h.extra.overflow = nil |
| } |
| if nextOverflow != nil { |
| if h.extra == nil { |
| h.extra = new(mapextra) |
| } |
| h.extra.nextOverflow = nextOverflow |
| } |
| |
| // the actual copying of the hash table data is done incrementally |
| // by growWork() and evacuate(). |
| } |
| |
| // overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor. |
| func overLoadFactor(count int, B uint8) bool { |
| return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen) |
| } |
| |
| // tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets. |
| // Note that most of these overflow buckets must be in sparse use; |
| // if use was dense, then we'd have already triggered regular map growth. |
| func tooManyOverflowBuckets(noverflow uint16, B uint8) bool { |
| // If the threshold is too low, we do extraneous work. |
| // If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory. |
| // "too many" means (approximately) as many overflow buckets as regular buckets. |
| // See incrnoverflow for more details. |
| if B > 15 { |
| B = 15 |
| } |
| // The compiler doesn't see here that B < 16; mask B to generate shorter shift code. |
| return noverflow >= uint16(1)<<(B&15) |
| } |
| |
| // growing reports whether h is growing. The growth may be to the same size or bigger. |
| func (h *hmap) growing() bool { |
| return h.oldbuckets != nil |
| } |
| |
| // sameSizeGrow reports whether the current growth is to a map of the same size. |
| func (h *hmap) sameSizeGrow() bool { |
| return h.flags&sameSizeGrow != 0 |
| } |
| |
| // noldbuckets calculates the number of buckets prior to the current map growth. |
| func (h *hmap) noldbuckets() uintptr { |
| oldB := h.B |
| if !h.sameSizeGrow() { |
| oldB-- |
| } |
| return bucketShift(oldB) |
| } |
| |
| // oldbucketmask provides a mask that can be applied to calculate n % noldbuckets(). |
| func (h *hmap) oldbucketmask() uintptr { |
| return h.noldbuckets() - 1 |
| } |
| |
| func growWork(t *maptype, h *hmap, bucket uintptr) { |
| // make sure we evacuate the oldbucket corresponding |
| // to the bucket we're about to use |
| evacuate(t, h, bucket&h.oldbucketmask()) |
| |
| // evacuate one more oldbucket to make progress on growing |
| if h.growing() { |
| evacuate(t, h, h.nevacuate) |
| } |
| } |
| |
| func bucketEvacuated(t *maptype, h *hmap, bucket uintptr) bool { |
| b := (*bmap)(add(h.oldbuckets, bucket*uintptr(t.bucketsize))) |
| return evacuated(b) |
| } |
| |
| // evacDst is an evacuation destination. |
| type evacDst struct { |
| b *bmap // current destination bucket |
| i int // key/val index into b |
| k unsafe.Pointer // pointer to current key storage |
| v unsafe.Pointer // pointer to current value storage |
| } |
| |
| func evacuate(t *maptype, h *hmap, oldbucket uintptr) { |
| b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) |
| newbit := h.noldbuckets() |
| if !evacuated(b) { |
| // TODO: reuse overflow buckets instead of using new ones, if there |
| // is no iterator using the old buckets. (If !oldIterator.) |
| |
| // xy contains the x and y (low and high) evacuation destinations. |
| var xy [2]evacDst |
| x := &xy[0] |
| x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize))) |
| x.k = add(unsafe.Pointer(x.b), dataOffset) |
| x.v = add(x.k, bucketCnt*uintptr(t.keysize)) |
| |
| if !h.sameSizeGrow() { |
| // Only calculate y pointers if we're growing bigger. |
| // Otherwise GC can see bad pointers. |
| y := &xy[1] |
| y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize))) |
| y.k = add(unsafe.Pointer(y.b), dataOffset) |
| y.v = add(y.k, bucketCnt*uintptr(t.keysize)) |
| } |
| |
| for ; b != nil; b = b.overflow(t) { |
| k := add(unsafe.Pointer(b), dataOffset) |
| v := add(k, bucketCnt*uintptr(t.keysize)) |
| for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) { |
| top := b.tophash[i] |
| if top == empty { |
| b.tophash[i] = evacuatedEmpty |
| continue |
| } |
| if top < minTopHash { |
| throw("bad map state") |
| } |
| k2 := k |
| if t.indirectkey { |
| k2 = *((*unsafe.Pointer)(k2)) |
| } |
| var useY uint8 |
| if !h.sameSizeGrow() { |
| // Compute hash to make our evacuation decision (whether we need |
| // to send this key/value to bucket x or bucket y). |
| hash := t.key.alg.hash(k2, uintptr(h.hash0)) |
| if h.flags&iterator != 0 && !t.reflexivekey && !t.key.alg.equal(k2, k2) { |
| // If key != key (NaNs), then the hash could be (and probably |
| // will be) entirely different from the old hash. Moreover, |
| // it isn't reproducible. Reproducibility is required in the |
| // presence of iterators, as our evacuation decision must |
| // match whatever decision the iterator made. |
| // Fortunately, we have the freedom to send these keys either |
| // way. Also, tophash is meaningless for these kinds of keys. |
| // We let the low bit of tophash drive the evacuation decision. |
| // We recompute a new random tophash for the next level so |
| // these keys will get evenly distributed across all buckets |
| // after multiple grows. |
| useY = top & 1 |
| top = tophash(hash) |
| } else { |
| if hash&newbit != 0 { |
| useY = 1 |
| } |
| } |
| } |
| |
| if evacuatedX+1 != evacuatedY { |
| throw("bad evacuatedN") |
| } |
| |
| b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY |
| dst := &xy[useY] // evacuation destination |
| |
| if dst.i == bucketCnt { |
| dst.b = h.newoverflow(t, dst.b) |
| dst.i = 0 |
| dst.k = add(unsafe.Pointer(dst.b), dataOffset) |
| dst.v = add(dst.k, bucketCnt*uintptr(t.keysize)) |
| } |
| dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check |
| if t.indirectkey { |
| *(*unsafe.Pointer)(dst.k) = k2 // copy pointer |
| } else { |
| typedmemmove(t.key, dst.k, k) // copy value |
| } |
| if t.indirectvalue { |
| *(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v) |
| } else { |
| typedmemmove(t.elem, dst.v, v) |
| } |
| dst.i++ |
| // These updates might push these pointers past the end of the |
| // key or value arrays. That's ok, as we have the overflow pointer |
| // at the end of the bucket to protect against pointing past the |
| // end of the bucket. |
| dst.k = add(dst.k, uintptr(t.keysize)) |
| dst.v = add(dst.v, uintptr(t.valuesize)) |
| } |
| } |
| // Unlink the overflow buckets & clear key/value to help GC. |
| if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 { |
| b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)) |
| // Preserve b.tophash because the evacuation |
| // state is maintained there. |
| ptr := add(b, dataOffset) |
| n := uintptr(t.bucketsize) - dataOffset |
| memclrHasPointers(ptr, n) |
| } |
| } |
| |
| if oldbucket == h.nevacuate { |
| advanceEvacuationMark(h, t, newbit) |
| } |
| } |
| |
| func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) { |
| h.nevacuate++ |
| // Experiments suggest that 1024 is overkill by at least an order of magnitude. |
| // Put it in there as a safeguard anyway, to ensure O(1) behavior. |
| stop := h.nevacuate + 1024 |
| if stop > newbit { |
| stop = newbit |
| } |
| for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) { |
| h.nevacuate++ |
| } |
| if h.nevacuate == newbit { // newbit == # of oldbuckets |
| // Growing is all done. Free old main bucket array. |
| h.oldbuckets = nil |
| // Can discard old overflow buckets as well. |
| // If they are still referenced by an iterator, |
| // then the iterator holds a pointers to the slice. |
| if h.extra != nil { |
| h.extra.oldoverflow = nil |
| } |
| h.flags &^= sameSizeGrow |
| } |
| } |
| |
| func ismapkey(t *_type) bool { |
| return t.alg.hash != nil |
| } |
| |
| // Reflect stubs. Called from ../reflect/asm_*.s |
| |
| //go:linkname reflect_makemap reflect.makemap |
| func reflect_makemap(t *maptype, cap int) *hmap { |
| // Check invariants and reflects math. |
| if !ismapkey(t.key) { |
| throw("runtime.reflect_makemap: unsupported map key type") |
| } |
| if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(sys.PtrSize)) || |
| t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) { |
| throw("key size wrong") |
| } |
| if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(sys.PtrSize)) || |
| t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) { |
| throw("value size wrong") |
| } |
| if t.key.align > bucketCnt { |
| throw("key align too big") |
| } |
| if t.elem.align > bucketCnt { |
| throw("value align too big") |
| } |
| if t.key.size%uintptr(t.key.align) != 0 { |
| throw("key size not a multiple of key align") |
| } |
| if t.elem.size%uintptr(t.elem.align) != 0 { |
| throw("value size not a multiple of value align") |
| } |
| if bucketCnt < 8 { |
| throw("bucketsize too small for proper alignment") |
| } |
| if dataOffset%uintptr(t.key.align) != 0 { |
| throw("need padding in bucket (key)") |
| } |
| if dataOffset%uintptr(t.elem.align) != 0 { |
| throw("need padding in bucket (value)") |
| } |
| |
| return makemap(t, cap, nil) |
| } |
| |
| //go:linkname reflect_mapaccess reflect.mapaccess |
| func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { |
| val, ok := mapaccess2(t, h, key) |
| if !ok { |
| // reflect wants nil for a missing element |
| val = nil |
| } |
| return val |
| } |
| |
| //go:linkname reflect_mapassign reflect.mapassign |
| func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) { |
| p := mapassign(t, h, key) |
| typedmemmove(t.elem, p, val) |
| } |
| |
| //go:linkname reflect_mapdelete reflect.mapdelete |
| func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) { |
| mapdelete(t, h, key) |
| } |
| |
| //go:linkname reflect_mapiterinit reflect.mapiterinit |
| func reflect_mapiterinit(t *maptype, h *hmap) *hiter { |
| it := new(hiter) |
| mapiterinit(t, h, it) |
| return it |
| } |
| |
| //go:linkname reflect_mapiternext reflect.mapiternext |
| func reflect_mapiternext(it *hiter) { |
| mapiternext(it) |
| } |
| |
| //go:linkname reflect_mapiterkey reflect.mapiterkey |
| func reflect_mapiterkey(it *hiter) unsafe.Pointer { |
| return it.key |
| } |
| |
| //go:linkname reflect_maplen reflect.maplen |
| func reflect_maplen(h *hmap) int { |
| if h == nil { |
| return 0 |
| } |
| if raceenabled { |
| callerpc := getcallerpc() |
| racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen)) |
| } |
| return h.count |
| } |
| |
| //go:linkname reflect_ismapkey reflect.ismapkey |
| func reflect_ismapkey(t *_type) bool { |
| return ismapkey(t) |
| } |
| |
| const maxZero = 1024 // must match value in cmd/compile/internal/gc/walk.go |
| var zeroVal [maxZero]byte |