| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| |
| // The original C code, the long comment, and the constants |
| // below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c |
| // and came with this notice. The go code is a simplified |
| // version of the original C. |
| // |
| // ==================================================== |
| // Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
| // |
| // Permission to use, copy, modify, and distribute this |
| // software is freely granted, provided that this notice |
| // is preserved. |
| // ==================================================== |
| // |
| // |
| // exp(x) |
| // Returns the exponential of x. |
| // |
| // Method |
| // 1. Argument reduction: |
| // Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
| // Given x, find r and integer k such that |
| // |
| // x = k*ln2 + r, |r| <= 0.5*ln2. |
| // |
| // Here r will be represented as r = hi-lo for better |
| // accuracy. |
| // |
| // 2. Approximation of exp(r) by a special rational function on |
| // the interval [0,0.34658]: |
| // Write |
| // R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
| // We use a special Remes algorithm on [0,0.34658] to generate |
| // a polynomial of degree 5 to approximate R. The maximum error |
| // of this polynomial approximation is bounded by 2**-59. In |
| // other words, |
| // R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
| // (where z=r*r, and the values of P1 to P5 are listed below) |
| // and |
| // | 5 | -59 |
| // | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
| // | | |
| // The computation of exp(r) thus becomes |
| // 2*r |
| // exp(r) = 1 + ------- |
| // R - r |
| // r*R1(r) |
| // = 1 + r + ----------- (for better accuracy) |
| // 2 - R1(r) |
| // where |
| // 2 4 10 |
| // R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
| // |
| // 3. Scale back to obtain exp(x): |
| // From step 1, we have |
| // exp(x) = 2^k * exp(r) |
| // |
| // Special cases: |
| // exp(INF) is INF, exp(NaN) is NaN; |
| // exp(-INF) is 0, and |
| // for finite argument, only exp(0)=1 is exact. |
| // |
| // Accuracy: |
| // according to an error analysis, the error is always less than |
| // 1 ulp (unit in the last place). |
| // |
| // Misc. info. |
| // For IEEE double |
| // if x > 7.09782712893383973096e+02 then exp(x) overflow |
| // if x < -7.45133219101941108420e+02 then exp(x) underflow |
| // |
| // Constants: |
| // The hexadecimal values are the intended ones for the following |
| // constants. The decimal values may be used, provided that the |
| // compiler will convert from decimal to binary accurately enough |
| // to produce the hexadecimal values shown. |
| |
| // Exp returns e^x, the base-e exponential of x. |
| // |
| // Special cases are: |
| // Exp(+Inf) = +Inf |
| // Exp(NaN) = NaN |
| // Very large values overflow to -Inf or +Inf. |
| // Very small values underflow to 1. |
| func Exp(x float64) float64 { |
| const ( |
| Ln2Hi = 6.93147180369123816490e-01 |
| Ln2Lo = 1.90821492927058770002e-10 |
| Log2e = 1.44269504088896338700e+00 |
| P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */ |
| P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */ |
| P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */ |
| P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */ |
| P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */ |
| |
| Overflow = 7.09782712893383973096e+02 |
| Underflow = -7.45133219101941108420e+02 |
| NearZero = 1.0 / (1 << 28) // 2^-28 |
| ) |
| |
| // special cases |
| switch { |
| case IsNaN(x) || IsInf(x, 1): |
| return x |
| case IsInf(x, -1): |
| return 0 |
| case x > Overflow: |
| return Inf(1) |
| case x < Underflow: |
| return 0 |
| case -NearZero < x && x < NearZero: |
| return 1 |
| } |
| |
| // reduce; computed as r = hi - lo for extra precision. |
| var k int |
| switch { |
| case x < 0: |
| k = int(Log2e*x - 0.5) |
| case x > 0: |
| k = int(Log2e*x + 0.5) |
| } |
| hi := x - float64(k)*Ln2Hi |
| lo := float64(k) * Ln2Lo |
| r := hi - lo |
| |
| // compute |
| t := r * r |
| c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))) |
| y := 1 - ((lo - (r*c)/(2-c)) - hi) |
| // TODO(rsc): make sure Ldexp can handle boundary k |
| return Ldexp(y, k) |
| } |