| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| const ( |
| uvnan = 0x7FF0000000000001 |
| uvinf = 0x7FF0000000000000 |
| uvneginf = 0xFFF0000000000000 |
| mask = 0x7FF |
| shift = 64 - 11 - 1 |
| bias = 1022 |
| ) |
| |
| // Inf returns positive infinity if sign >= 0, negative infinity if sign < 0. |
| func Inf(sign int) float64 { |
| var v uint64 |
| if sign >= 0 { |
| v = uvinf |
| } else { |
| v = uvneginf |
| } |
| return Float64frombits(v) |
| } |
| |
| // NaN returns an IEEE 754 ``not-a-number'' value. |
| func NaN() float64 { return Float64frombits(uvnan) } |
| |
| // IsNaN returns whether f is an IEEE 754 ``not-a-number'' value. |
| func IsNaN(f float64) (is bool) { |
| // IEEE 754 says that only NaNs satisfy f != f. |
| // To avoid the floating-point hardware, could use: |
| // x := Float64bits(f); |
| // return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf |
| return f != f |
| } |
| |
| // IsInf returns whether f is an infinity, according to sign. |
| // If sign > 0, IsInf returns whether f is positive infinity. |
| // If sign < 0, IsInf returns whether f is negative infinity. |
| // If sign == 0, IsInf returns whether f is either infinity. |
| func IsInf(f float64, sign int) bool { |
| // Test for infinity by comparing against maximum float. |
| // To avoid the floating-point hardware, could use: |
| // x := Float64bits(f); |
| // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf; |
| return sign >= 0 && f > MaxFloat64 || sign <= 0 && f < -MaxFloat64 |
| } |
| |
| // Frexp breaks f into a normalized fraction |
| // and an integral power of two. |
| // It returns frac and exp satisfying f == frac × 2<sup>exp</sup>, |
| // with the absolute value of frac in the interval [½, 1). |
| func Frexp(f float64) (frac float64, exp int) { |
| if f == 0 { |
| return |
| } |
| x := Float64bits(f) |
| exp = int((x>>shift)&mask) - bias |
| x &^= mask << shift |
| x |= bias << shift |
| frac = Float64frombits(x) |
| return |
| } |
| |
| // Ldexp is the inverse of Frexp. |
| // It returns frac × 2<sup>exp</sup>. |
| func Ldexp(frac float64, exp int) float64 { |
| x := Float64bits(frac) |
| exp += int(x>>shift) & mask |
| if exp <= 0 { |
| return 0 // underflow |
| } |
| if exp >= mask { // overflow |
| if frac < 0 { |
| return Inf(-1) |
| } |
| return Inf(1) |
| } |
| x &^= mask << shift |
| x |= uint64(exp) << shift |
| return Float64frombits(x) |
| } |
| |
| // Modf returns integer and fractional floating-point numbers |
| // that sum to f. |
| // Integer and frac have the same sign as f. |
| func Modf(f float64) (int float64, frac float64) { |
| if f < 1 { |
| if f < 0 { |
| int, frac = Modf(-f) |
| return -int, -frac |
| } |
| return 0, f |
| } |
| |
| x := Float64bits(f) |
| e := uint(x>>shift)&mask - bias |
| |
| // Keep the top 11+e bits, the integer part; clear the rest. |
| if e < 64-11 { |
| x &^= 1<<(64-11-e) - 1 |
| } |
| int = Float64frombits(x) |
| frac = f - int |
| return |
| } |