| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // This Go implementation is derived in part from the reference | 
 | // ANSI C implementation, which carries the following notice: | 
 | // | 
 | //	rijndael-alg-fst.c | 
 | // | 
 | //	@version 3.0 (December 2000) | 
 | // | 
 | //	Optimised ANSI C code for the Rijndael cipher (now AES) | 
 | // | 
 | //	@author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> | 
 | //	@author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> | 
 | //	@author Paulo Barreto <paulo.barreto@terra.com.br> | 
 | // | 
 | //	This code is hereby placed in the public domain. | 
 | // | 
 | //	THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | 
 | //	OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
 | //	WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | //	ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | 
 | //	LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | //	CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | //	SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
 | //	BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
 | //	WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | 
 | //	OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | 
 | //	EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission | 
 | // for implementation details. | 
 | //	http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf | 
 | //	http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf | 
 |  | 
 | package aes | 
 |  | 
 | // Encrypt one block from src into dst, using the expanded key xk. | 
 | func encryptBlockGo(xk []uint32, dst, src []byte) { | 
 | 	var s0, s1, s2, s3, t0, t1, t2, t3 uint32 | 
 |  | 
 | 	s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]) | 
 | 	s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]) | 
 | 	s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11]) | 
 | 	s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15]) | 
 |  | 
 | 	// First round just XORs input with key. | 
 | 	s0 ^= xk[0] | 
 | 	s1 ^= xk[1] | 
 | 	s2 ^= xk[2] | 
 | 	s3 ^= xk[3] | 
 |  | 
 | 	// Middle rounds shuffle using tables. | 
 | 	// Number of rounds is set by length of expanded key. | 
 | 	nr := len(xk)/4 - 2 // - 2: one above, one more below | 
 | 	k := 4 | 
 | 	for r := 0; r < nr; r++ { | 
 | 		t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)] | 
 | 		t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)] | 
 | 		t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)] | 
 | 		t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)] | 
 | 		k += 4 | 
 | 		s0, s1, s2, s3 = t0, t1, t2, t3 | 
 | 	} | 
 |  | 
 | 	// Last round uses s-box directly and XORs to produce output. | 
 | 	s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff]) | 
 | 	s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff]) | 
 | 	s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff]) | 
 | 	s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff]) | 
 |  | 
 | 	s0 ^= xk[k+0] | 
 | 	s1 ^= xk[k+1] | 
 | 	s2 ^= xk[k+2] | 
 | 	s3 ^= xk[k+3] | 
 |  | 
 | 	dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0) | 
 | 	dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1) | 
 | 	dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2) | 
 | 	dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3) | 
 | } | 
 |  | 
 | // Decrypt one block from src into dst, using the expanded key xk. | 
 | func decryptBlockGo(xk []uint32, dst, src []byte) { | 
 | 	var s0, s1, s2, s3, t0, t1, t2, t3 uint32 | 
 |  | 
 | 	s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]) | 
 | 	s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]) | 
 | 	s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11]) | 
 | 	s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15]) | 
 |  | 
 | 	// First round just XORs input with key. | 
 | 	s0 ^= xk[0] | 
 | 	s1 ^= xk[1] | 
 | 	s2 ^= xk[2] | 
 | 	s3 ^= xk[3] | 
 |  | 
 | 	// Middle rounds shuffle using tables. | 
 | 	// Number of rounds is set by length of expanded key. | 
 | 	nr := len(xk)/4 - 2 // - 2: one above, one more below | 
 | 	k := 4 | 
 | 	for r := 0; r < nr; r++ { | 
 | 		t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)] | 
 | 		t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)] | 
 | 		t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)] | 
 | 		t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)] | 
 | 		k += 4 | 
 | 		s0, s1, s2, s3 = t0, t1, t2, t3 | 
 | 	} | 
 |  | 
 | 	// Last round uses s-box directly and XORs to produce output. | 
 | 	s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff]) | 
 | 	s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff]) | 
 | 	s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff]) | 
 | 	s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff]) | 
 |  | 
 | 	s0 ^= xk[k+0] | 
 | 	s1 ^= xk[k+1] | 
 | 	s2 ^= xk[k+2] | 
 | 	s3 ^= xk[k+3] | 
 |  | 
 | 	dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0) | 
 | 	dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1) | 
 | 	dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2) | 
 | 	dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3) | 
 | } | 
 |  | 
 | // Apply sbox0 to each byte in w. | 
 | func subw(w uint32) uint32 { | 
 | 	return uint32(sbox0[w>>24])<<24 | | 
 | 		uint32(sbox0[w>>16&0xff])<<16 | | 
 | 		uint32(sbox0[w>>8&0xff])<<8 | | 
 | 		uint32(sbox0[w&0xff]) | 
 | } | 
 |  | 
 | // Rotate | 
 | func rotw(w uint32) uint32 { return w<<8 | w>>24 } | 
 |  | 
 | // Key expansion algorithm.  See FIPS-197, Figure 11. | 
 | // Their rcon[i] is our powx[i-1] << 24. | 
 | func expandKeyGo(key []byte, enc, dec []uint32) { | 
 | 	// Encryption key setup. | 
 | 	var i int | 
 | 	nk := len(key) / 4 | 
 | 	for i = 0; i < nk; i++ { | 
 | 		enc[i] = uint32(key[4*i])<<24 | uint32(key[4*i+1])<<16 | uint32(key[4*i+2])<<8 | uint32(key[4*i+3]) | 
 | 	} | 
 | 	for ; i < len(enc); i++ { | 
 | 		t := enc[i-1] | 
 | 		if i%nk == 0 { | 
 | 			t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24) | 
 | 		} else if nk > 6 && i%nk == 4 { | 
 | 			t = subw(t) | 
 | 		} | 
 | 		enc[i] = enc[i-nk] ^ t | 
 | 	} | 
 |  | 
 | 	// Derive decryption key from encryption key. | 
 | 	// Reverse the 4-word round key sets from enc to produce dec. | 
 | 	// All sets but the first and last get the MixColumn transform applied. | 
 | 	if dec == nil { | 
 | 		return | 
 | 	} | 
 | 	n := len(enc) | 
 | 	for i := 0; i < n; i += 4 { | 
 | 		ei := n - i - 4 | 
 | 		for j := 0; j < 4; j++ { | 
 | 			x := enc[ei+j] | 
 | 			if i > 0 && i+4 < n { | 
 | 				x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]] | 
 | 			} | 
 | 			dec[i+j] = x | 
 | 		} | 
 | 	} | 
 | } |