| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // “Abstract” syntax representation. |
| |
| package gc |
| |
| // A Node is a single node in the syntax tree. |
| // Actually the syntax tree is a syntax DAG, because there is only one |
| // node with Op=ONAME for a given instance of a variable x. |
| // The same is true for Op=OTYPE and Op=OLITERAL. |
| type Node struct { |
| // Tree structure. |
| // Generic recursive walks should follow these fields. |
| Left *Node |
| Right *Node |
| Ninit Nodes |
| Nbody Nodes |
| List Nodes |
| Rlist Nodes |
| |
| // most nodes |
| Type *Type |
| Orig *Node // original form, for printing, and tracking copies of ONAMEs |
| |
| // func |
| Func *Func |
| |
| // ONAME |
| Name *Name |
| |
| Sym *Sym // various |
| E interface{} // Opt or Val, see methods below |
| |
| // Various. Usually an offset into a struct. For example, ONAME nodes |
| // that refer to local variables use it to identify their stack frame |
| // position. ODOT, ODOTPTR, and OINDREG use it to indicate offset |
| // relative to their base address. ONAME nodes on the left side of an |
| // OKEY within an OSTRUCTLIT use it to store the named field's offset. |
| // OXCASE and OXFALL use it to validate the use of fallthrough. |
| // Possibly still more uses. If you find any, document them. |
| Xoffset int64 |
| |
| Lineno int32 |
| |
| // OREGISTER, OINDREG |
| Reg int16 |
| |
| Esc uint16 // EscXXX |
| |
| Op Op |
| Ullman uint8 // sethi/ullman number |
| Addable bool // addressable |
| Etype EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN |
| Bounded bool // bounds check unnecessary |
| NonNil bool // guaranteed to be non-nil |
| Class Class // PPARAM, PAUTO, PEXTERN, etc |
| Embedded uint8 // ODCLFIELD embedded type |
| Colas bool // OAS resulting from := |
| Diag uint8 // already printed error about this |
| Noescape bool // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360) |
| Walkdef uint8 // tracks state during typecheckdef; 2 == loop detected |
| Typecheck uint8 // tracks state during typechecking; 2 == loop detected |
| Local bool |
| IsStatic bool // whether this Node will be converted to purely static data |
| Initorder uint8 |
| Used bool // for variable/label declared and not used error |
| Isddd bool // is the argument variadic |
| Implicit bool |
| Addrtaken bool // address taken, even if not moved to heap |
| Assigned bool // is the variable ever assigned to |
| Likely int8 // likeliness of if statement |
| hasVal int8 // +1 for Val, -1 for Opt, 0 for not yet set |
| flags uint8 // TODO: store more bool fields in this flag field |
| } |
| |
| const ( |
| hasBreak = 1 << iota |
| notLiveAtEnd |
| isClosureVar |
| isOutputParamHeapAddr |
| noInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only |
| ) |
| |
| func (n *Node) HasBreak() bool { |
| return n.flags&hasBreak != 0 |
| } |
| func (n *Node) SetHasBreak(b bool) { |
| if b { |
| n.flags |= hasBreak |
| } else { |
| n.flags &^= hasBreak |
| } |
| } |
| func (n *Node) NotLiveAtEnd() bool { |
| return n.flags¬LiveAtEnd != 0 |
| } |
| func (n *Node) SetNotLiveAtEnd(b bool) { |
| if b { |
| n.flags |= notLiveAtEnd |
| } else { |
| n.flags &^= notLiveAtEnd |
| } |
| } |
| func (n *Node) isClosureVar() bool { |
| return n.flags&isClosureVar != 0 |
| } |
| func (n *Node) setIsClosureVar(b bool) { |
| if b { |
| n.flags |= isClosureVar |
| } else { |
| n.flags &^= isClosureVar |
| } |
| } |
| func (n *Node) noInline() bool { |
| return n.flags&noInline != 0 |
| } |
| func (n *Node) setNoInline(b bool) { |
| if b { |
| n.flags |= noInline |
| } else { |
| n.flags &^= noInline |
| } |
| } |
| |
| func (n *Node) IsOutputParamHeapAddr() bool { |
| return n.flags&isOutputParamHeapAddr != 0 |
| } |
| func (n *Node) setIsOutputParamHeapAddr(b bool) { |
| if b { |
| n.flags |= isOutputParamHeapAddr |
| } else { |
| n.flags &^= isOutputParamHeapAddr |
| } |
| } |
| |
| // Val returns the Val for the node. |
| func (n *Node) Val() Val { |
| if n.hasVal != +1 { |
| return Val{} |
| } |
| return Val{n.E} |
| } |
| |
| // SetVal sets the Val for the node, which must not have been used with SetOpt. |
| func (n *Node) SetVal(v Val) { |
| if n.hasVal == -1 { |
| Debug['h'] = 1 |
| Dump("have Opt", n) |
| Fatalf("have Opt") |
| } |
| n.hasVal = +1 |
| n.E = v.U |
| } |
| |
| // Opt returns the optimizer data for the node. |
| func (n *Node) Opt() interface{} { |
| if n.hasVal != -1 { |
| return nil |
| } |
| return n.E |
| } |
| |
| // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. |
| // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. |
| func (n *Node) SetOpt(x interface{}) { |
| if x == nil && n.hasVal >= 0 { |
| return |
| } |
| if n.hasVal == +1 { |
| Debug['h'] = 1 |
| Dump("have Val", n) |
| Fatalf("have Val") |
| } |
| n.hasVal = -1 |
| n.E = x |
| } |
| |
| // Name holds Node fields used only by named nodes (ONAME, OPACK, OLABEL, ODCLFIELD, some OLITERAL). |
| type Name struct { |
| Pack *Node // real package for import . names |
| Pkg *Pkg // pkg for OPACK nodes |
| Heapaddr *Node // temp holding heap address of param (could move to Param?) |
| Inlvar *Node // ONAME substitute while inlining (could move to Param?) |
| Defn *Node // initializing assignment |
| Curfn *Node // function for local variables |
| Param *Param // additional fields for ONAME, ODCLFIELD |
| Decldepth int32 // declaration loop depth, increased for every loop or label |
| Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. |
| Iota int32 // value if this name is iota |
| Funcdepth int32 |
| Method bool // OCALLMETH name |
| Readonly bool |
| Captured bool // is the variable captured by a closure |
| Byval bool // is the variable captured by value or by reference |
| Needzero bool // if it contains pointers, needs to be zeroed on function entry |
| Keepalive bool // mark value live across unknown assembly call |
| } |
| |
| type Param struct { |
| Ntype *Node |
| |
| // ONAME PAUTOHEAP |
| Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only) |
| |
| // ONAME PPARAM |
| Field *Field // TFIELD in arg struct |
| |
| // ONAME closure linkage |
| // Consider: |
| // |
| // func f() { |
| // x := 1 // x1 |
| // func() { |
| // use(x) // x2 |
| // func() { |
| // use(x) // x3 |
| // --- parser is here --- |
| // }() |
| // }() |
| // } |
| // |
| // There is an original declaration of x and then a chain of mentions of x |
| // leading into the current function. Each time x is mentioned in a new closure, |
| // we create a variable representing x for use in that specific closure, |
| // since the way you get to x is different in each closure. |
| // |
| // Let's number the specific variables as shown in the code: |
| // x1 is the original x, x2 is when mentioned in the closure, |
| // and x3 is when mentioned in the closure in the closure. |
| // |
| // We keep these linked (assume N > 1): |
| // |
| // - x1.Defn = original declaration statement for x (like most variables) |
| // - x1.Innermost = current innermost closure x (in this case x3), or nil for none |
| // - x1.isClosureVar() = false |
| // |
| // - xN.Defn = x1, N > 1 |
| // - xN.isClosureVar() = true, N > 1 |
| // - x2.Outer = nil |
| // - xN.Outer = x(N-1), N > 2 |
| // |
| // |
| // When we look up x in the symbol table, we always get x1. |
| // Then we can use x1.Innermost (if not nil) to get the x |
| // for the innermost known closure function, |
| // but the first reference in a closure will find either no x1.Innermost |
| // or an x1.Innermost with .Funcdepth < Funcdepth. |
| // In that case, a new xN must be created, linked in with: |
| // |
| // xN.Defn = x1 |
| // xN.Outer = x1.Innermost |
| // x1.Innermost = xN |
| // |
| // When we finish the function, we'll process its closure variables |
| // and find xN and pop it off the list using: |
| // |
| // x1 := xN.Defn |
| // x1.Innermost = xN.Outer |
| // |
| // We leave xN.Innermost set so that we can still get to the original |
| // variable quickly. Not shown here, but once we're |
| // done parsing a function and no longer need xN.Outer for the |
| // lexical x reference links as described above, closurebody |
| // recomputes xN.Outer as the semantic x reference link tree, |
| // even filling in x in intermediate closures that might not |
| // have mentioned it along the way to inner closures that did. |
| // See closurebody for details. |
| // |
| // During the eventual compilation, then, for closure variables we have: |
| // |
| // xN.Defn = original variable |
| // xN.Outer = variable captured in next outward scope |
| // to make closure where xN appears |
| // |
| // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn |
| // and x.Innermost/Outer means x.Name.Param.Innermost/Outer. |
| Innermost *Node |
| Outer *Node |
| } |
| |
| // Func holds Node fields used only with function-like nodes. |
| type Func struct { |
| Shortname *Node |
| Enter Nodes // for example, allocate and initialize memory for escaping parameters |
| Exit Nodes |
| Cvars Nodes // closure params |
| Dcl []*Node // autodcl for this func/closure |
| Inldcl Nodes // copy of dcl for use in inlining |
| Closgen int |
| Outerfunc *Node // outer function (for closure) |
| FieldTrack map[*Sym]struct{} |
| Ntype *Node // signature |
| Top int // top context (Ecall, Eproc, etc) |
| Closure *Node // OCLOSURE <-> ODCLFUNC |
| FCurfn *Node |
| Nname *Node |
| |
| Inl Nodes // copy of the body for use in inlining |
| InlCost int32 |
| Depth int32 |
| |
| Label int32 // largest auto-generated label in this function |
| |
| Endlineno int32 |
| WBLineno int32 // line number of first write barrier |
| |
| Pragma Pragma // go:xxx function annotations |
| Dupok bool // duplicate definitions ok |
| Wrapper bool // is method wrapper |
| Needctxt bool // function uses context register (has closure variables) |
| ReflectMethod bool // function calls reflect.Type.Method or MethodByName |
| } |
| |
| type Op uint8 |
| |
| // Node ops. |
| const ( |
| OXXX = Op(iota) |
| |
| // names |
| ONAME // var, const or func name |
| ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } |
| OTYPE // type name |
| OPACK // import |
| OLITERAL // literal |
| |
| // expressions |
| OADD // Left + Right |
| OSUB // Left - Right |
| OOR // Left | Right |
| OXOR // Left ^ Right |
| OADDSTR // +{List} (string addition, list elements are strings) |
| OADDR // &Left |
| OANDAND // Left && Right |
| OAPPEND // append(List) |
| OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte) |
| OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) |
| OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune) |
| OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string) |
| OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral) |
| OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string) |
| OAS // Left = Right or (if Colas=true) Left := Right |
| OAS2 // List = Rlist (x, y, z = a, b, c) |
| OAS2FUNC // List = Rlist (x, y = f()) |
| OAS2RECV // List = Rlist (x, ok = <-c) |
| OAS2MAPR // List = Rlist (x, ok = m["foo"]) |
| OAS2DOTTYPE // List = Rlist (x, ok = I.(int)) |
| OASOP // Left Etype= Right (x += y) |
| OASWB // Left = Right (with write barrier) |
| OCALL // Left(List) (function call, method call or type conversion) |
| OCALLFUNC // Left(List) (function call f(args)) |
| OCALLMETH // Left(List) (direct method call x.Method(args)) |
| OCALLINTER // Left(List) (interface method call x.Method(args)) |
| OCALLPART // Left.Right (method expression x.Method, not called) |
| OCAP // cap(Left) |
| OCLOSE // close(Left) |
| OCLOSURE // func Type { Body } (func literal) |
| OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y) |
| OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc) |
| OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) |
| OMAPLIT // Type{List} (composite literal, Type is map) |
| OSTRUCTLIT // Type{List} (composite literal, Type is struct) |
| OARRAYLIT // Type{List} (composite literal, Type is array or slice) |
| OPTRLIT // &Left (left is composite literal) |
| OCONV // Type(Left) (type conversion) |
| OCONVIFACE // Type(Left) (type conversion, to interface) |
| OCONVNOP // Type(Left) (type conversion, no effect) |
| OCOPY // copy(Left, Right) |
| ODCL // var Left (declares Left of type Left.Type) |
| |
| // Used during parsing but don't last. |
| ODCLFUNC // func f() or func (r) f() |
| ODCLFIELD // struct field, interface field, or func/method argument/return value. |
| ODCLCONST // const pi = 3.14 |
| ODCLTYPE // type Int int |
| |
| ODELETE // delete(Left, Right) |
| ODOT // Left.Sym (Left is of struct type) |
| ODOTPTR // Left.Sym (Left is of pointer to struct type) |
| ODOTMETH // Left.Sym (Left is non-interface, Right is method name) |
| ODOTINTER // Left.Sym (Left is interface, Right is method name) |
| OXDOT // Left.Sym (before rewrite to one of the preceding) |
| ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved) |
| ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE) |
| OEQ // Left == Right |
| ONE // Left != Right |
| OLT // Left < Right |
| OLE // Left <= Right |
| OGE // Left >= Right |
| OGT // Left > Right |
| OIND // *Left |
| OINDEX // Left[Right] (index of array or slice) |
| OINDEXMAP // Left[Right] (index of map) |
| OKEY // Left:Right (key:value in struct/array/map literal, or slice index pair) |
| OIDATA // data word of an interface value in Left; TODO: move next to OITAB once it is easier to regenerate the binary blob in builtin.go (issues 15835, 15839) |
| OLEN // len(Left) |
| OMAKE // make(List) (before type checking converts to one of the following) |
| OMAKECHAN // make(Type, Left) (type is chan) |
| OMAKEMAP // make(Type, Left) (type is map) |
| OMAKESLICE // make(Type, Left, Right) (type is slice) |
| OMUL // Left * Right |
| ODIV // Left / Right |
| OMOD // Left % Right |
| OLSH // Left << Right |
| ORSH // Left >> Right |
| OAND // Left & Right |
| OANDNOT // Left &^ Right |
| ONEW // new(Left) |
| ONOT // !Left |
| OCOM // ^Left |
| OPLUS // +Left |
| OMINUS // -Left |
| OOROR // Left || Right |
| OPANIC // panic(Left) |
| OPRINT // print(List) |
| OPRINTN // println(List) |
| OPAREN // (Left) |
| OSEND // Left <- Right |
| OSLICE // Left[Right.Left : Right.Right] (Left is untypechecked or slice; Right.Op==OKEY) |
| OSLICEARR // Left[Right.Left : Right.Right] (Left is array) |
| OSLICESTR // Left[Right.Left : Right.Right] (Left is string) |
| OSLICE3 // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is untypedchecked or slice; R.Op and R.R.Op==OKEY) |
| OSLICE3ARR // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is array; R.Op and R.R.Op==OKEY) |
| ORECOVER // recover() |
| ORECV // <-Left |
| ORUNESTR // Type(Left) (Type is string, Left is rune) |
| OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) |
| OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV) |
| OIOTA // iota |
| OREAL // real(Left) |
| OIMAG // imag(Left) |
| OCOMPLEX // complex(Left, Right) |
| |
| // statements |
| OBLOCK // { List } (block of code) |
| OBREAK // break |
| OCASE // case Left: Nbody (select case after processing; Left==nil means default) |
| OXCASE // case List: Nbody (select case before processing; List==nil means default) |
| OCONTINUE // continue |
| ODEFER // defer Left (Left must be call) |
| OEMPTY // no-op (empty statement) |
| OFALL // fallthrough (after processing) |
| OXFALL // fallthrough (before processing) |
| OFOR // for Ninit; Left; Right { Nbody } |
| OGOTO // goto Left |
| OIF // if Ninit; Left { Nbody } else { Rlist } |
| OLABEL // Left: |
| OPROC // go Left (Left must be call) |
| ORANGE // for List = range Right { Nbody } |
| ORETURN // return List |
| OSELECT // select { List } (List is list of OXCASE or OCASE) |
| OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE) |
| OTYPESW // List = Left.(type) (appears as .Left of OSWITCH) |
| |
| // types |
| OTCHAN // chan int |
| OTMAP // map[string]int |
| OTSTRUCT // struct{} |
| OTINTER // interface{} |
| OTFUNC // func() |
| OTARRAY // []int, [8]int, [N]int or [...]int |
| |
| // misc |
| ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. |
| ODDDARG // func f(args ...int), introduced by escape analysis. |
| OINLCALL // intermediary representation of an inlined call. |
| OEFACE // itable and data words of an empty-interface value. |
| OITAB // itable word of an interface value. |
| OSPTR // base pointer of a slice or string. |
| OCLOSUREVAR // variable reference at beginning of closure function |
| OCFUNC // reference to c function pointer (not go func value) |
| OCHECKNIL // emit code to ensure pointer/interface not nil |
| OVARKILL // variable is dead |
| OVARLIVE // variable is alive |
| |
| // thearch-specific registers |
| OREGISTER // a register, such as AX. |
| OINDREG // offset plus indirect of a register, such as 8(SP). |
| |
| // arch-specific opcodes |
| OCMP // compare: ACMP. |
| ODEC // decrement: ADEC. |
| OINC // increment: AINC. |
| OEXTEND // extend: ACWD/ACDQ/ACQO. |
| OHMUL // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both). |
| OLROT // left rotate: AROL. |
| ORROTC // right rotate-carry: ARCR. |
| ORETJMP // return to other function |
| OPS // compare parity set (for x86 NaN check) |
| OPC // compare parity clear (for x86 NaN check) |
| OSQRT // sqrt(float64), on systems that have hw support |
| OGETG // runtime.getg() (read g pointer) |
| |
| OEND |
| ) |
| |
| // Nodes is a pointer to a slice of *Node. |
| // For fields that are not used in most nodes, this is used instead of |
| // a slice to save space. |
| type Nodes struct{ slice *[]*Node } |
| |
| // Slice returns the entries in Nodes as a slice. |
| // Changes to the slice entries (as in s[i] = n) will be reflected in |
| // the Nodes. |
| func (n Nodes) Slice() []*Node { |
| if n.slice == nil { |
| return nil |
| } |
| return *n.slice |
| } |
| |
| // Len returns the number of entries in Nodes. |
| func (n Nodes) Len() int { |
| if n.slice == nil { |
| return 0 |
| } |
| return len(*n.slice) |
| } |
| |
| // Index returns the i'th element of Nodes. |
| // It panics if n does not have at least i+1 elements. |
| func (n Nodes) Index(i int) *Node { |
| return (*n.slice)[i] |
| } |
| |
| // First returns the first element of Nodes (same as n.Index(0)). |
| // It panics if n has no elements. |
| func (n Nodes) First() *Node { |
| return (*n.slice)[0] |
| } |
| |
| // Second returns the second element of Nodes (same as n.Index(1)). |
| // It panics if n has fewer than two elements. |
| func (n Nodes) Second() *Node { |
| return (*n.slice)[1] |
| } |
| |
| // Set sets n to a slice. |
| // This takes ownership of the slice. |
| func (n *Nodes) Set(s []*Node) { |
| if len(s) == 0 { |
| n.slice = nil |
| } else { |
| // Copy s and take address of t rather than s to avoid |
| // allocation in the case where len(s) == 0 (which is |
| // over 3x more common, dynamically, for make.bash). |
| t := s |
| n.slice = &t |
| } |
| } |
| |
| // Set1 sets n to a slice containing a single node. |
| func (n *Nodes) Set1(node *Node) { |
| n.slice = &[]*Node{node} |
| } |
| |
| // Set2 sets n to a slice containing two nodes. |
| func (n *Nodes) Set2(n1, n2 *Node) { |
| n.slice = &[]*Node{n1, n2} |
| } |
| |
| // MoveNodes sets n to the contents of n2, then clears n2. |
| func (n *Nodes) MoveNodes(n2 *Nodes) { |
| n.slice = n2.slice |
| n2.slice = nil |
| } |
| |
| // SetIndex sets the i'th element of Nodes to node. |
| // It panics if n does not have at least i+1 elements. |
| func (n Nodes) SetIndex(i int, node *Node) { |
| (*n.slice)[i] = node |
| } |
| |
| // Addr returns the address of the i'th element of Nodes. |
| // It panics if n does not have at least i+1 elements. |
| func (n Nodes) Addr(i int) **Node { |
| return &(*n.slice)[i] |
| } |
| |
| // Append appends entries to Nodes. |
| // If a slice is passed in, this will take ownership of it. |
| func (n *Nodes) Append(a ...*Node) { |
| if n.slice == nil { |
| if len(a) > 0 { |
| n.slice = &a |
| } |
| } else { |
| *n.slice = append(*n.slice, a...) |
| } |
| } |
| |
| // AppendNodes appends the contents of *n2 to n, then clears n2. |
| func (n *Nodes) AppendNodes(n2 *Nodes) { |
| switch { |
| case n2.slice == nil: |
| case n.slice == nil: |
| n.slice = n2.slice |
| default: |
| *n.slice = append(*n.slice, *n2.slice...) |
| } |
| n2.slice = nil |
| } |