|  | // Copyright 2017 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package tls | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "crypto" | 
|  | "crypto/ecdsa" | 
|  | "crypto/ed25519" | 
|  | "crypto/elliptic" | 
|  | "crypto/rsa" | 
|  | "errors" | 
|  | "fmt" | 
|  | "hash" | 
|  | "io" | 
|  | ) | 
|  |  | 
|  | // verifyHandshakeSignature verifies a signature against pre-hashed | 
|  | // (if required) handshake contents. | 
|  | func verifyHandshakeSignature(sigType uint8, pubkey crypto.PublicKey, hashFunc crypto.Hash, signed, sig []byte) error { | 
|  | switch sigType { | 
|  | case signatureECDSA: | 
|  | pubKey, ok := pubkey.(*ecdsa.PublicKey) | 
|  | if !ok { | 
|  | return fmt.Errorf("expected an ECDSA public key, got %T", pubkey) | 
|  | } | 
|  | if !ecdsa.VerifyASN1(pubKey, signed, sig) { | 
|  | return errors.New("ECDSA verification failure") | 
|  | } | 
|  | case signatureEd25519: | 
|  | pubKey, ok := pubkey.(ed25519.PublicKey) | 
|  | if !ok { | 
|  | return fmt.Errorf("expected an Ed25519 public key, got %T", pubkey) | 
|  | } | 
|  | if !ed25519.Verify(pubKey, signed, sig) { | 
|  | return errors.New("Ed25519 verification failure") | 
|  | } | 
|  | case signaturePKCS1v15: | 
|  | pubKey, ok := pubkey.(*rsa.PublicKey) | 
|  | if !ok { | 
|  | return fmt.Errorf("expected an RSA public key, got %T", pubkey) | 
|  | } | 
|  | if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, signed, sig); err != nil { | 
|  | return err | 
|  | } | 
|  | case signatureRSAPSS: | 
|  | pubKey, ok := pubkey.(*rsa.PublicKey) | 
|  | if !ok { | 
|  | return fmt.Errorf("expected an RSA public key, got %T", pubkey) | 
|  | } | 
|  | signOpts := &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash} | 
|  | if err := rsa.VerifyPSS(pubKey, hashFunc, signed, sig, signOpts); err != nil { | 
|  | return err | 
|  | } | 
|  | default: | 
|  | return errors.New("internal error: unknown signature type") | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | const ( | 
|  | serverSignatureContext = "TLS 1.3, server CertificateVerify\x00" | 
|  | clientSignatureContext = "TLS 1.3, client CertificateVerify\x00" | 
|  | ) | 
|  |  | 
|  | var signaturePadding = []byte{ | 
|  | 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, | 
|  | 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, | 
|  | 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, | 
|  | 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, | 
|  | 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, | 
|  | 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, | 
|  | 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, | 
|  | 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, | 
|  | } | 
|  |  | 
|  | // signedMessage returns the pre-hashed (if necessary) message to be signed by | 
|  | // certificate keys in TLS 1.3. See RFC 8446, Section 4.4.3. | 
|  | func signedMessage(sigHash crypto.Hash, context string, transcript hash.Hash) []byte { | 
|  | if sigHash == directSigning { | 
|  | b := &bytes.Buffer{} | 
|  | b.Write(signaturePadding) | 
|  | io.WriteString(b, context) | 
|  | b.Write(transcript.Sum(nil)) | 
|  | return b.Bytes() | 
|  | } | 
|  | h := sigHash.New() | 
|  | h.Write(signaturePadding) | 
|  | io.WriteString(h, context) | 
|  | h.Write(transcript.Sum(nil)) | 
|  | return h.Sum(nil) | 
|  | } | 
|  |  | 
|  | // typeAndHashFromSignatureScheme returns the corresponding signature type and | 
|  | // crypto.Hash for a given TLS SignatureScheme. | 
|  | func typeAndHashFromSignatureScheme(signatureAlgorithm SignatureScheme) (sigType uint8, hash crypto.Hash, err error) { | 
|  | switch signatureAlgorithm { | 
|  | case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512: | 
|  | sigType = signaturePKCS1v15 | 
|  | case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512: | 
|  | sigType = signatureRSAPSS | 
|  | case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512: | 
|  | sigType = signatureECDSA | 
|  | case Ed25519: | 
|  | sigType = signatureEd25519 | 
|  | default: | 
|  | return 0, 0, fmt.Errorf("unsupported signature algorithm: %v", signatureAlgorithm) | 
|  | } | 
|  | switch signatureAlgorithm { | 
|  | case PKCS1WithSHA1, ECDSAWithSHA1: | 
|  | hash = crypto.SHA1 | 
|  | case PKCS1WithSHA256, PSSWithSHA256, ECDSAWithP256AndSHA256: | 
|  | hash = crypto.SHA256 | 
|  | case PKCS1WithSHA384, PSSWithSHA384, ECDSAWithP384AndSHA384: | 
|  | hash = crypto.SHA384 | 
|  | case PKCS1WithSHA512, PSSWithSHA512, ECDSAWithP521AndSHA512: | 
|  | hash = crypto.SHA512 | 
|  | case Ed25519: | 
|  | hash = directSigning | 
|  | default: | 
|  | return 0, 0, fmt.Errorf("unsupported signature algorithm: %v", signatureAlgorithm) | 
|  | } | 
|  | return sigType, hash, nil | 
|  | } | 
|  |  | 
|  | // legacyTypeAndHashFromPublicKey returns the fixed signature type and crypto.Hash for | 
|  | // a given public key used with TLS 1.0 and 1.1, before the introduction of | 
|  | // signature algorithm negotiation. | 
|  | func legacyTypeAndHashFromPublicKey(pub crypto.PublicKey) (sigType uint8, hash crypto.Hash, err error) { | 
|  | switch pub.(type) { | 
|  | case *rsa.PublicKey: | 
|  | return signaturePKCS1v15, crypto.MD5SHA1, nil | 
|  | case *ecdsa.PublicKey: | 
|  | return signatureECDSA, crypto.SHA1, nil | 
|  | case ed25519.PublicKey: | 
|  | // RFC 8422 specifies support for Ed25519 in TLS 1.0 and 1.1, | 
|  | // but it requires holding on to a handshake transcript to do a | 
|  | // full signature, and not even OpenSSL bothers with the | 
|  | // complexity, so we can't even test it properly. | 
|  | return 0, 0, fmt.Errorf("tls: Ed25519 public keys are not supported before TLS 1.2") | 
|  | default: | 
|  | return 0, 0, fmt.Errorf("tls: unsupported public key: %T", pub) | 
|  | } | 
|  | } | 
|  |  | 
|  | var rsaSignatureSchemes = []struct { | 
|  | scheme          SignatureScheme | 
|  | minModulusBytes int | 
|  | maxVersion      uint16 | 
|  | }{ | 
|  | // RSA-PSS is used with PSSSaltLengthEqualsHash, and requires | 
|  | //    emLen >= hLen + sLen + 2 | 
|  | {PSSWithSHA256, crypto.SHA256.Size()*2 + 2, VersionTLS13}, | 
|  | {PSSWithSHA384, crypto.SHA384.Size()*2 + 2, VersionTLS13}, | 
|  | {PSSWithSHA512, crypto.SHA512.Size()*2 + 2, VersionTLS13}, | 
|  | // PKCS #1 v1.5 uses prefixes from hashPrefixes in crypto/rsa, and requires | 
|  | //    emLen >= len(prefix) + hLen + 11 | 
|  | // TLS 1.3 dropped support for PKCS #1 v1.5 in favor of RSA-PSS. | 
|  | {PKCS1WithSHA256, 19 + crypto.SHA256.Size() + 11, VersionTLS12}, | 
|  | {PKCS1WithSHA384, 19 + crypto.SHA384.Size() + 11, VersionTLS12}, | 
|  | {PKCS1WithSHA512, 19 + crypto.SHA512.Size() + 11, VersionTLS12}, | 
|  | {PKCS1WithSHA1, 15 + crypto.SHA1.Size() + 11, VersionTLS12}, | 
|  | } | 
|  |  | 
|  | // signatureSchemesForCertificate returns the list of supported SignatureSchemes | 
|  | // for a given certificate, based on the public key and the protocol version, | 
|  | // and optionally filtered by its explicit SupportedSignatureAlgorithms. | 
|  | // | 
|  | // This function must be kept in sync with supportedSignatureAlgorithms. | 
|  | func signatureSchemesForCertificate(version uint16, cert *Certificate) []SignatureScheme { | 
|  | priv, ok := cert.PrivateKey.(crypto.Signer) | 
|  | if !ok { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | var sigAlgs []SignatureScheme | 
|  | switch pub := priv.Public().(type) { | 
|  | case *ecdsa.PublicKey: | 
|  | if version != VersionTLS13 { | 
|  | // In TLS 1.2 and earlier, ECDSA algorithms are not | 
|  | // constrained to a single curve. | 
|  | sigAlgs = []SignatureScheme{ | 
|  | ECDSAWithP256AndSHA256, | 
|  | ECDSAWithP384AndSHA384, | 
|  | ECDSAWithP521AndSHA512, | 
|  | ECDSAWithSHA1, | 
|  | } | 
|  | break | 
|  | } | 
|  | switch pub.Curve { | 
|  | case elliptic.P256(): | 
|  | sigAlgs = []SignatureScheme{ECDSAWithP256AndSHA256} | 
|  | case elliptic.P384(): | 
|  | sigAlgs = []SignatureScheme{ECDSAWithP384AndSHA384} | 
|  | case elliptic.P521(): | 
|  | sigAlgs = []SignatureScheme{ECDSAWithP521AndSHA512} | 
|  | default: | 
|  | return nil | 
|  | } | 
|  | case *rsa.PublicKey: | 
|  | size := pub.Size() | 
|  | sigAlgs = make([]SignatureScheme, 0, len(rsaSignatureSchemes)) | 
|  | for _, candidate := range rsaSignatureSchemes { | 
|  | if size >= candidate.minModulusBytes && version <= candidate.maxVersion { | 
|  | sigAlgs = append(sigAlgs, candidate.scheme) | 
|  | } | 
|  | } | 
|  | case ed25519.PublicKey: | 
|  | sigAlgs = []SignatureScheme{Ed25519} | 
|  | default: | 
|  | return nil | 
|  | } | 
|  |  | 
|  | if cert.SupportedSignatureAlgorithms != nil { | 
|  | var filteredSigAlgs []SignatureScheme | 
|  | for _, sigAlg := range sigAlgs { | 
|  | if isSupportedSignatureAlgorithm(sigAlg, cert.SupportedSignatureAlgorithms) { | 
|  | filteredSigAlgs = append(filteredSigAlgs, sigAlg) | 
|  | } | 
|  | } | 
|  | return filteredSigAlgs | 
|  | } | 
|  | return sigAlgs | 
|  | } | 
|  |  | 
|  | // selectSignatureScheme picks a SignatureScheme from the peer's preference list | 
|  | // that works with the selected certificate. It's only called for protocol | 
|  | // versions that support signature algorithms, so TLS 1.2 and 1.3. | 
|  | func selectSignatureScheme(vers uint16, c *Certificate, peerAlgs []SignatureScheme) (SignatureScheme, error) { | 
|  | supportedAlgs := signatureSchemesForCertificate(vers, c) | 
|  | if len(supportedAlgs) == 0 { | 
|  | return 0, unsupportedCertificateError(c) | 
|  | } | 
|  | if len(peerAlgs) == 0 && vers == VersionTLS12 { | 
|  | // For TLS 1.2, if the client didn't send signature_algorithms then we | 
|  | // can assume that it supports SHA1. See RFC 5246, Section 7.4.1.4.1. | 
|  | peerAlgs = []SignatureScheme{PKCS1WithSHA1, ECDSAWithSHA1} | 
|  | } | 
|  | // Pick signature scheme in the peer's preference order, as our | 
|  | // preference order is not configurable. | 
|  | for _, preferredAlg := range peerAlgs { | 
|  | if isSupportedSignatureAlgorithm(preferredAlg, supportedAlgs) { | 
|  | return preferredAlg, nil | 
|  | } | 
|  | } | 
|  | return 0, errors.New("tls: peer doesn't support any of the certificate's signature algorithms") | 
|  | } | 
|  |  | 
|  | // unsupportedCertificateError returns a helpful error for certificates with | 
|  | // an unsupported private key. | 
|  | func unsupportedCertificateError(cert *Certificate) error { | 
|  | switch cert.PrivateKey.(type) { | 
|  | case rsa.PrivateKey, ecdsa.PrivateKey: | 
|  | return fmt.Errorf("tls: unsupported certificate: private key is %T, expected *%T", | 
|  | cert.PrivateKey, cert.PrivateKey) | 
|  | case *ed25519.PrivateKey: | 
|  | return fmt.Errorf("tls: unsupported certificate: private key is *ed25519.PrivateKey, expected ed25519.PrivateKey") | 
|  | } | 
|  |  | 
|  | signer, ok := cert.PrivateKey.(crypto.Signer) | 
|  | if !ok { | 
|  | return fmt.Errorf("tls: certificate private key (%T) does not implement crypto.Signer", | 
|  | cert.PrivateKey) | 
|  | } | 
|  |  | 
|  | switch pub := signer.Public().(type) { | 
|  | case *ecdsa.PublicKey: | 
|  | switch pub.Curve { | 
|  | case elliptic.P256(): | 
|  | case elliptic.P384(): | 
|  | case elliptic.P521(): | 
|  | default: | 
|  | return fmt.Errorf("tls: unsupported certificate curve (%s)", pub.Curve.Params().Name) | 
|  | } | 
|  | case *rsa.PublicKey: | 
|  | return fmt.Errorf("tls: certificate RSA key size too small for supported signature algorithms") | 
|  | case ed25519.PublicKey: | 
|  | default: | 
|  | return fmt.Errorf("tls: unsupported certificate key (%T)", pub) | 
|  | } | 
|  |  | 
|  | if cert.SupportedSignatureAlgorithms != nil { | 
|  | return fmt.Errorf("tls: peer doesn't support the certificate custom signature algorithms") | 
|  | } | 
|  |  | 
|  | return fmt.Errorf("tls: internal error: unsupported key (%T)", cert.PrivateKey) | 
|  | } |