| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package color |
| |
| import ( |
| "fmt" |
| "testing" |
| ) |
| |
| func delta(x, y uint8) uint8 { |
| if x >= y { |
| return x - y |
| } |
| return y - x |
| } |
| |
| func eq(c0, c1 Color) error { |
| r0, g0, b0, a0 := c0.RGBA() |
| r1, g1, b1, a1 := c1.RGBA() |
| if r0 != r1 || g0 != g1 || b0 != b1 || a0 != a1 { |
| return fmt.Errorf("got 0x%04x 0x%04x 0x%04x 0x%04x\nwant 0x%04x 0x%04x 0x%04x 0x%04x", |
| r0, g0, b0, a0, r1, g1, b1, a1) |
| } |
| return nil |
| } |
| |
| // TestYCbCrRoundtrip tests that a subset of RGB space can be converted to YCbCr |
| // and back to within 2/256 tolerance. |
| func TestYCbCrRoundtrip(t *testing.T) { |
| for r := 0; r < 256; r += 7 { |
| for g := 0; g < 256; g += 5 { |
| for b := 0; b < 256; b += 3 { |
| r0, g0, b0 := uint8(r), uint8(g), uint8(b) |
| y, cb, cr := RGBToYCbCr(r0, g0, b0) |
| r1, g1, b1 := YCbCrToRGB(y, cb, cr) |
| if delta(r0, r1) > 2 || delta(g0, g1) > 2 || delta(b0, b1) > 2 { |
| t.Fatalf("\nr0, g0, b0 = %d, %d, %d\ny, cb, cr = %d, %d, %d\nr1, g1, b1 = %d, %d, %d", |
| r0, g0, b0, y, cb, cr, r1, g1, b1) |
| } |
| } |
| } |
| } |
| } |
| |
| // TestYCbCrToRGBConsistency tests that calling the RGBA method (16 bit color) |
| // then truncating to 8 bits is equivalent to calling the YCbCrToRGB function (8 |
| // bit color). |
| func TestYCbCrToRGBConsistency(t *testing.T) { |
| for y := 0; y < 256; y += 7 { |
| for cb := 0; cb < 256; cb += 5 { |
| for cr := 0; cr < 256; cr += 3 { |
| x := YCbCr{uint8(y), uint8(cb), uint8(cr)} |
| r0, g0, b0, _ := x.RGBA() |
| r1, g1, b1 := uint8(r0>>8), uint8(g0>>8), uint8(b0>>8) |
| r2, g2, b2 := YCbCrToRGB(x.Y, x.Cb, x.Cr) |
| if r1 != r2 || g1 != g2 || b1 != b2 { |
| t.Fatalf("y, cb, cr = %d, %d, %d\nr1, g1, b1 = %d, %d, %d\nr2, g2, b2 = %d, %d, %d", |
| y, cb, cr, r1, g1, b1, r2, g2, b2) |
| } |
| } |
| } |
| } |
| } |
| |
| // TestYCbCrGray tests that YCbCr colors are a superset of Gray colors. |
| func TestYCbCrGray(t *testing.T) { |
| for i := 0; i < 256; i++ { |
| c0 := YCbCr{uint8(i), 0x80, 0x80} |
| c1 := Gray{uint8(i)} |
| if err := eq(c0, c1); err != nil { |
| t.Errorf("i=0x%02x:\n%v", i, err) |
| } |
| } |
| } |
| |
| // TestNYCbCrAAlpha tests that NYCbCrA colors are a superset of Alpha colors. |
| func TestNYCbCrAAlpha(t *testing.T) { |
| for i := 0; i < 256; i++ { |
| c0 := NYCbCrA{YCbCr{0xff, 0x80, 0x80}, uint8(i)} |
| c1 := Alpha{uint8(i)} |
| if err := eq(c0, c1); err != nil { |
| t.Errorf("i=0x%02x:\n%v", i, err) |
| } |
| } |
| } |
| |
| // TestNYCbCrAYCbCr tests that NYCbCrA colors are a superset of YCbCr colors. |
| func TestNYCbCrAYCbCr(t *testing.T) { |
| for i := 0; i < 256; i++ { |
| c0 := NYCbCrA{YCbCr{uint8(i), 0x40, 0xc0}, 0xff} |
| c1 := YCbCr{uint8(i), 0x40, 0xc0} |
| if err := eq(c0, c1); err != nil { |
| t.Errorf("i=0x%02x:\n%v", i, err) |
| } |
| } |
| } |
| |
| // TestCMYKRoundtrip tests that a subset of RGB space can be converted to CMYK |
| // and back to within 1/256 tolerance. |
| func TestCMYKRoundtrip(t *testing.T) { |
| for r := 0; r < 256; r += 7 { |
| for g := 0; g < 256; g += 5 { |
| for b := 0; b < 256; b += 3 { |
| r0, g0, b0 := uint8(r), uint8(g), uint8(b) |
| c, m, y, k := RGBToCMYK(r0, g0, b0) |
| r1, g1, b1 := CMYKToRGB(c, m, y, k) |
| if delta(r0, r1) > 1 || delta(g0, g1) > 1 || delta(b0, b1) > 1 { |
| t.Fatalf("\nr0, g0, b0 = %d, %d, %d\nc, m, y, k = %d, %d, %d, %d\nr1, g1, b1 = %d, %d, %d", |
| r0, g0, b0, c, m, y, k, r1, g1, b1) |
| } |
| } |
| } |
| } |
| } |
| |
| // TestCMYKToRGBConsistency tests that calling the RGBA method (16 bit color) |
| // then truncating to 8 bits is equivalent to calling the CMYKToRGB function (8 |
| // bit color). |
| func TestCMYKToRGBConsistency(t *testing.T) { |
| for c := 0; c < 256; c += 7 { |
| for m := 0; m < 256; m += 5 { |
| for y := 0; y < 256; y += 3 { |
| for k := 0; k < 256; k += 11 { |
| x := CMYK{uint8(c), uint8(m), uint8(y), uint8(k)} |
| r0, g0, b0, _ := x.RGBA() |
| r1, g1, b1 := uint8(r0>>8), uint8(g0>>8), uint8(b0>>8) |
| r2, g2, b2 := CMYKToRGB(x.C, x.M, x.Y, x.K) |
| if r1 != r2 || g1 != g2 || b1 != b2 { |
| t.Fatalf("c, m, y, k = %d, %d, %d, %d\nr1, g1, b1 = %d, %d, %d\nr2, g2, b2 = %d, %d, %d", |
| c, m, y, k, r1, g1, b1, r2, g2, b2) |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // TestCMYKGray tests that CMYK colors are a superset of Gray colors. |
| func TestCMYKGray(t *testing.T) { |
| for i := 0; i < 256; i++ { |
| if err := eq(CMYK{0x00, 0x00, 0x00, uint8(255 - i)}, Gray{uint8(i)}); err != nil { |
| t.Errorf("i=0x%02x:\n%v", i, err) |
| } |
| } |
| } |
| |
| func TestPalette(t *testing.T) { |
| p := Palette{ |
| RGBA{0xff, 0xff, 0xff, 0xff}, |
| RGBA{0x80, 0x00, 0x00, 0xff}, |
| RGBA{0x7f, 0x00, 0x00, 0x7f}, |
| RGBA{0x00, 0x00, 0x00, 0x7f}, |
| RGBA{0x00, 0x00, 0x00, 0x00}, |
| RGBA{0x40, 0x40, 0x40, 0x40}, |
| } |
| // Check that, for a Palette with no repeated colors, the closest color to |
| // each element is itself. |
| for i, c := range p { |
| j := p.Index(c) |
| if i != j { |
| t.Errorf("Index(%v): got %d (color = %v), want %d", c, j, p[j], i) |
| } |
| } |
| // Check that finding the closest color considers alpha, not just red, |
| // green and blue. |
| got := p.Convert(RGBA{0x80, 0x00, 0x00, 0x80}) |
| want := RGBA{0x7f, 0x00, 0x00, 0x7f} |
| if got != want { |
| t.Errorf("got %v, want %v", got, want) |
| } |
| } |
| |
| var sink8 uint8 |
| var sink32 uint32 |
| |
| func BenchmarkYCbCrToRGB(b *testing.B) { |
| // YCbCrToRGB does saturating arithmetic. |
| // Low, middle, and high values can take |
| // different paths through the generated code. |
| b.Run("0", func(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| sink8, sink8, sink8 = YCbCrToRGB(0, 0, 0) |
| } |
| }) |
| b.Run("128", func(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| sink8, sink8, sink8 = YCbCrToRGB(128, 128, 128) |
| } |
| }) |
| b.Run("255", func(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| sink8, sink8, sink8 = YCbCrToRGB(255, 255, 255) |
| } |
| }) |
| } |
| |
| func BenchmarkRGBToYCbCr(b *testing.B) { |
| // RGBToYCbCr does saturating arithmetic. |
| // Different values can take different paths |
| // through the generated code. |
| b.Run("0", func(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| sink8, sink8, sink8 = RGBToYCbCr(0, 0, 0) |
| } |
| }) |
| b.Run("Cb", func(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| sink8, sink8, sink8 = RGBToYCbCr(0, 0, 255) |
| } |
| }) |
| b.Run("Cr", func(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| sink8, sink8, sink8 = RGBToYCbCr(255, 0, 0) |
| } |
| }) |
| } |
| |
| func BenchmarkYCbCrToRGBA(b *testing.B) { |
| // RGB does saturating arithmetic. |
| // Low, middle, and high values can take |
| // different paths through the generated code. |
| b.Run("0", func(b *testing.B) { |
| c := YCbCr{0, 0, 0} |
| for i := 0; i < b.N; i++ { |
| sink32, sink32, sink32, sink32 = c.RGBA() |
| } |
| }) |
| b.Run("128", func(b *testing.B) { |
| c := YCbCr{128, 128, 128} |
| for i := 0; i < b.N; i++ { |
| sink32, sink32, sink32, sink32 = c.RGBA() |
| } |
| }) |
| b.Run("255", func(b *testing.B) { |
| c := YCbCr{255, 255, 255} |
| for i := 0; i < b.N; i++ { |
| sink32, sink32, sink32, sink32 = c.RGBA() |
| } |
| }) |
| } |
| |
| func BenchmarkNYCbCrAToRGBA(b *testing.B) { |
| // RGBA does saturating arithmetic. |
| // Low, middle, and high values can take |
| // different paths through the generated code. |
| b.Run("0", func(b *testing.B) { |
| c := NYCbCrA{YCbCr{0, 0, 0}, 0xff} |
| for i := 0; i < b.N; i++ { |
| sink32, sink32, sink32, sink32 = c.RGBA() |
| } |
| }) |
| b.Run("128", func(b *testing.B) { |
| c := NYCbCrA{YCbCr{128, 128, 128}, 0xff} |
| for i := 0; i < b.N; i++ { |
| sink32, sink32, sink32, sink32 = c.RGBA() |
| } |
| }) |
| b.Run("255", func(b *testing.B) { |
| c := NYCbCrA{YCbCr{255, 255, 255}, 0xff} |
| for i := 0; i < b.N; i++ { |
| sink32, sink32, sink32, sink32 = c.RGBA() |
| } |
| }) |
| } |