blob: fc1541f74ee9cf6cf6e63bf603958cb1f80cc887 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"errors"
"fmt"
"go/constant"
"go/token"
"internal/buildcfg"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"cmd/compile/internal/base"
"cmd/compile/internal/dwarfgen"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/objabi"
"cmd/internal/src"
)
func LoadPackage(filenames []string) {
base.Timer.Start("fe", "parse")
// -G=3 and unified expect generics syntax, but -G=0 does not.
supportsGenerics := base.Flag.G != 0 || buildcfg.Experiment.Unified
mode := syntax.CheckBranches
if supportsGenerics {
mode |= syntax.AllowGenerics
}
// Limit the number of simultaneously open files.
sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10)
noders := make([]*noder, len(filenames))
for i, filename := range filenames {
p := noder{
err: make(chan syntax.Error),
trackScopes: base.Flag.Dwarf,
}
noders[i] = &p
filename := filename
go func() {
sem <- struct{}{}
defer func() { <-sem }()
defer close(p.err)
fbase := syntax.NewFileBase(filename)
f, err := os.Open(filename)
if err != nil {
p.error(syntax.Error{Msg: err.Error()})
return
}
defer f.Close()
p.file, _ = syntax.Parse(fbase, f, p.error, p.pragma, mode) // errors are tracked via p.error
}()
}
var lines uint
for _, p := range noders {
for e := range p.err {
p.errorAt(e.Pos, "%s", e.Msg)
}
if p.file == nil {
base.ErrorExit()
}
lines += p.file.EOF.Line()
}
base.Timer.AddEvent(int64(lines), "lines")
if base.Debug.Unified != 0 {
unified(noders)
return
}
if base.Flag.G != 0 {
// Use types2 to type-check and possibly generate IR.
check2(noders)
return
}
for _, p := range noders {
p.node()
p.file = nil // release memory
}
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
types.CheckDclstack()
for _, p := range noders {
p.processPragmas()
}
// Typecheck.
types.LocalPkg.Height = myheight
typecheck.DeclareUniverse()
typecheck.TypecheckAllowed = true
// Process top-level declarations in phases.
// Phase 1: const, type, and names and types of funcs.
// This will gather all the information about types
// and methods but doesn't depend on any of it.
//
// We also defer type alias declarations until phase 2
// to avoid cycles like #18640.
// TODO(gri) Remove this again once we have a fix for #25838.
//
// Phase 2: Variable assignments.
// To check interface assignments, depends on phase 1.
// Don't use range--typecheck can add closures to Target.Decls.
for phase, name := range []string{"top1", "top2"} {
base.Timer.Start("fe", "typecheck", name)
for i := 0; i < len(typecheck.Target.Decls); i++ {
n := typecheck.Target.Decls[i]
op := n.Op()
// Closure function declarations are typechecked as part of the
// closure expression.
if fn, ok := n.(*ir.Func); ok && fn.OClosure != nil {
continue
}
// We don't actually add ir.ODCL nodes to Target.Decls. Make sure of that.
if op == ir.ODCL {
base.FatalfAt(n.Pos(), "unexpected top declaration: %v", op)
}
// Identify declarations that should be deferred to the second
// iteration.
late := op == ir.OAS || op == ir.OAS2 || op == ir.ODCLTYPE && n.(*ir.Decl).X.Alias()
if late == (phase == 1) {
typecheck.Target.Decls[i] = typecheck.Stmt(n)
}
}
}
// Phase 3: Type check function bodies.
// Don't use range--typecheck can add closures to Target.Decls.
base.Timer.Start("fe", "typecheck", "func")
for i := 0; i < len(typecheck.Target.Decls); i++ {
if fn, ok := typecheck.Target.Decls[i].(*ir.Func); ok {
if base.Flag.W > 1 {
s := fmt.Sprintf("\nbefore typecheck %v", fn)
ir.Dump(s, fn)
}
typecheck.FuncBody(fn)
if base.Flag.W > 1 {
s := fmt.Sprintf("\nafter typecheck %v", fn)
ir.Dump(s, fn)
}
}
}
// Phase 4: Check external declarations.
// TODO(mdempsky): This should be handled when type checking their
// corresponding ODCL nodes.
base.Timer.Start("fe", "typecheck", "externdcls")
for i, n := range typecheck.Target.Externs {
if n.Op() == ir.ONAME {
typecheck.Target.Externs[i] = typecheck.Expr(typecheck.Target.Externs[i])
}
}
// Phase 5: With all user code type-checked, it's now safe to verify map keys.
// With all user code typechecked, it's now safe to verify unused dot imports.
typecheck.CheckMapKeys()
CheckDotImports()
base.ExitIfErrors()
}
func (p *noder) errorAt(pos syntax.Pos, format string, args ...interface{}) {
base.ErrorfAt(p.makeXPos(pos), format, args...)
}
// trimFilename returns the "trimmed" filename of b, which is the
// absolute filename after applying -trimpath processing. This
// filename form is suitable for use in object files and export data.
//
// If b's filename has already been trimmed (i.e., because it was read
// in from an imported package's export data), then the filename is
// returned unchanged.
func trimFilename(b *syntax.PosBase) string {
filename := b.Filename()
if !b.Trimmed() {
dir := ""
if b.IsFileBase() {
dir = base.Ctxt.Pathname
}
filename = objabi.AbsFile(dir, filename, base.Flag.TrimPath)
}
return filename
}
// noder transforms package syntax's AST into a Node tree.
type noder struct {
posMap
file *syntax.File
linknames []linkname
pragcgobuf [][]string
err chan syntax.Error
importedUnsafe bool
importedEmbed bool
trackScopes bool
funcState *funcState
}
// funcState tracks all per-function state to make handling nested
// functions easier.
type funcState struct {
// scopeVars is a stack tracking the number of variables declared in
// the current function at the moment each open scope was opened.
scopeVars []int
marker dwarfgen.ScopeMarker
lastCloseScopePos syntax.Pos
}
func (p *noder) funcBody(fn *ir.Func, block *syntax.BlockStmt) {
outerFuncState := p.funcState
p.funcState = new(funcState)
typecheck.StartFuncBody(fn)
if block != nil {
body := p.stmts(block.List)
if body == nil {
body = []ir.Node{ir.NewBlockStmt(base.Pos, nil)}
}
fn.Body = body
base.Pos = p.makeXPos(block.Rbrace)
fn.Endlineno = base.Pos
}
typecheck.FinishFuncBody()
p.funcState.marker.WriteTo(fn)
p.funcState = outerFuncState
}
func (p *noder) openScope(pos syntax.Pos) {
fs := p.funcState
types.Markdcl()
if p.trackScopes {
fs.scopeVars = append(fs.scopeVars, len(ir.CurFunc.Dcl))
fs.marker.Push(p.makeXPos(pos))
}
}
func (p *noder) closeScope(pos syntax.Pos) {
fs := p.funcState
fs.lastCloseScopePos = pos
types.Popdcl()
if p.trackScopes {
scopeVars := fs.scopeVars[len(fs.scopeVars)-1]
fs.scopeVars = fs.scopeVars[:len(fs.scopeVars)-1]
if scopeVars == len(ir.CurFunc.Dcl) {
// no variables were declared in this scope, so we can retract it.
fs.marker.Unpush()
} else {
fs.marker.Pop(p.makeXPos(pos))
}
}
}
// closeAnotherScope is like closeScope, but it reuses the same mark
// position as the last closeScope call. This is useful for "for" and
// "if" statements, as their implicit blocks always end at the same
// position as an explicit block.
func (p *noder) closeAnotherScope() {
p.closeScope(p.funcState.lastCloseScopePos)
}
// linkname records a //go:linkname directive.
type linkname struct {
pos syntax.Pos
local string
remote string
}
func (p *noder) node() {
p.importedUnsafe = false
p.importedEmbed = false
p.setlineno(p.file.PkgName)
mkpackage(p.file.PkgName.Value)
if pragma, ok := p.file.Pragma.(*pragmas); ok {
pragma.Flag &^= ir.GoBuildPragma
p.checkUnused(pragma)
}
typecheck.Target.Decls = append(typecheck.Target.Decls, p.decls(p.file.DeclList)...)
base.Pos = src.NoXPos
clearImports()
}
func (p *noder) processPragmas() {
for _, l := range p.linknames {
if !p.importedUnsafe {
p.errorAt(l.pos, "//go:linkname only allowed in Go files that import \"unsafe\"")
continue
}
n := ir.AsNode(typecheck.Lookup(l.local).Def)
if n == nil || n.Op() != ir.ONAME {
// TODO(mdempsky): Change to p.errorAt before Go 1.17 release.
// base.WarnfAt(p.makeXPos(l.pos), "//go:linkname must refer to declared function or variable (will be an error in Go 1.17)")
continue
}
if n.Sym().Linkname != "" {
p.errorAt(l.pos, "duplicate //go:linkname for %s", l.local)
continue
}
n.Sym().Linkname = l.remote
}
typecheck.Target.CgoPragmas = append(typecheck.Target.CgoPragmas, p.pragcgobuf...)
}
func (p *noder) decls(decls []syntax.Decl) (l []ir.Node) {
var cs constState
for _, decl := range decls {
p.setlineno(decl)
switch decl := decl.(type) {
case *syntax.ImportDecl:
p.importDecl(decl)
case *syntax.VarDecl:
l = append(l, p.varDecl(decl)...)
case *syntax.ConstDecl:
l = append(l, p.constDecl(decl, &cs)...)
case *syntax.TypeDecl:
l = append(l, p.typeDecl(decl))
case *syntax.FuncDecl:
l = append(l, p.funcDecl(decl))
default:
panic("unhandled Decl")
}
}
return
}
func (p *noder) importDecl(imp *syntax.ImportDecl) {
if imp.Path == nil || imp.Path.Bad {
return // avoid follow-on errors if there was a syntax error
}
if pragma, ok := imp.Pragma.(*pragmas); ok {
p.checkUnused(pragma)
}
ipkg := importfile(imp)
if ipkg == nil {
if base.Errors() == 0 {
base.Fatalf("phase error in import")
}
return
}
if ipkg == types.UnsafePkg {
p.importedUnsafe = true
}
if ipkg.Path == "embed" {
p.importedEmbed = true
}
var my *types.Sym
if imp.LocalPkgName != nil {
my = p.name(imp.LocalPkgName)
} else {
my = typecheck.Lookup(ipkg.Name)
}
pack := ir.NewPkgName(p.pos(imp), my, ipkg)
switch my.Name {
case ".":
importDot(pack)
return
case "init":
base.ErrorfAt(pack.Pos(), "cannot import package as init - init must be a func")
return
case "_":
return
}
if my.Def != nil {
typecheck.Redeclared(pack.Pos(), my, "as imported package name")
}
my.Def = pack
my.Lastlineno = pack.Pos()
my.Block = 1 // at top level
}
func (p *noder) varDecl(decl *syntax.VarDecl) []ir.Node {
names := p.declNames(ir.ONAME, decl.NameList)
typ := p.typeExprOrNil(decl.Type)
exprs := p.exprList(decl.Values)
if pragma, ok := decl.Pragma.(*pragmas); ok {
varEmbed(p.makeXPos, names[0], decl, pragma, p.importedEmbed)
p.checkUnused(pragma)
}
var init []ir.Node
p.setlineno(decl)
if len(names) > 1 && len(exprs) == 1 {
as2 := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, exprs)
for _, v := range names {
as2.Lhs.Append(v)
typecheck.Declare(v, typecheck.DeclContext)
v.Ntype = typ
v.Defn = as2
if ir.CurFunc != nil {
init = append(init, ir.NewDecl(base.Pos, ir.ODCL, v))
}
}
return append(init, as2)
}
for i, v := range names {
var e ir.Node
if i < len(exprs) {
e = exprs[i]
}
typecheck.Declare(v, typecheck.DeclContext)
v.Ntype = typ
if ir.CurFunc != nil {
init = append(init, ir.NewDecl(base.Pos, ir.ODCL, v))
}
as := ir.NewAssignStmt(base.Pos, v, e)
init = append(init, as)
if e != nil || ir.CurFunc == nil {
v.Defn = as
}
}
if len(exprs) != 0 && len(names) != len(exprs) {
base.Errorf("assignment mismatch: %d variables but %d values", len(names), len(exprs))
}
return init
}
// constState tracks state between constant specifiers within a
// declaration group. This state is kept separate from noder so nested
// constant declarations are handled correctly (e.g., issue 15550).
type constState struct {
group *syntax.Group
typ ir.Ntype
values syntax.Expr
iota int64
}
func (p *noder) constDecl(decl *syntax.ConstDecl, cs *constState) []ir.Node {
if decl.Group == nil || decl.Group != cs.group {
*cs = constState{
group: decl.Group,
}
}
if pragma, ok := decl.Pragma.(*pragmas); ok {
p.checkUnused(pragma)
}
names := p.declNames(ir.OLITERAL, decl.NameList)
typ := p.typeExprOrNil(decl.Type)
if decl.Values != nil {
cs.typ, cs.values = typ, decl.Values
} else {
if typ != nil {
base.Errorf("const declaration cannot have type without expression")
}
typ = cs.typ
}
values := p.exprList(cs.values)
nn := make([]ir.Node, 0, len(names))
for i, n := range names {
if i >= len(values) {
base.Errorf("missing value in const declaration")
break
}
v := values[i]
if decl.Values == nil {
ir.Visit(v, func(v ir.Node) {
if ir.HasUniquePos(v) {
v.SetPos(n.Pos())
}
})
}
typecheck.Declare(n, typecheck.DeclContext)
n.Ntype = typ
n.Defn = v
n.SetIota(cs.iota)
nn = append(nn, ir.NewDecl(p.pos(decl), ir.ODCLCONST, n))
}
if len(values) > len(names) {
base.Errorf("extra expression in const declaration")
}
cs.iota++
return nn
}
func (p *noder) typeDecl(decl *syntax.TypeDecl) ir.Node {
n := p.declName(ir.OTYPE, decl.Name)
typecheck.Declare(n, typecheck.DeclContext)
// decl.Type may be nil but in that case we got a syntax error during parsing
typ := p.typeExprOrNil(decl.Type)
n.Ntype = typ
n.SetAlias(decl.Alias)
if pragma, ok := decl.Pragma.(*pragmas); ok {
if !decl.Alias {
n.SetPragma(pragma.Flag & typePragmas)
pragma.Flag &^= typePragmas
}
p.checkUnused(pragma)
}
nod := ir.NewDecl(p.pos(decl), ir.ODCLTYPE, n)
if n.Alias() && !types.AllowsGoVersion(types.LocalPkg, 1, 9) {
base.ErrorfAt(nod.Pos(), "type aliases only supported as of -lang=go1.9")
}
return nod
}
func (p *noder) declNames(op ir.Op, names []*syntax.Name) []*ir.Name {
nodes := make([]*ir.Name, 0, len(names))
for _, name := range names {
nodes = append(nodes, p.declName(op, name))
}
return nodes
}
func (p *noder) declName(op ir.Op, name *syntax.Name) *ir.Name {
return ir.NewDeclNameAt(p.pos(name), op, p.name(name))
}
func (p *noder) funcDecl(fun *syntax.FuncDecl) ir.Node {
name := p.name(fun.Name)
t := p.signature(fun.Recv, fun.Type)
f := ir.NewFunc(p.pos(fun))
if fun.Recv == nil {
if name.Name == "init" {
name = renameinit()
if len(t.Params) > 0 || len(t.Results) > 0 {
base.ErrorfAt(f.Pos(), "func init must have no arguments and no return values")
}
typecheck.Target.Inits = append(typecheck.Target.Inits, f)
}
if types.LocalPkg.Name == "main" && name.Name == "main" {
if len(t.Params) > 0 || len(t.Results) > 0 {
base.ErrorfAt(f.Pos(), "func main must have no arguments and no return values")
}
}
} else {
f.Shortname = name
name = ir.BlankNode.Sym() // filled in by tcFunc
}
f.Nname = ir.NewNameAt(p.pos(fun.Name), name)
f.Nname.Func = f
f.Nname.Defn = f
f.Nname.Ntype = t
if pragma, ok := fun.Pragma.(*pragmas); ok {
f.Pragma = pragma.Flag & funcPragmas
if pragma.Flag&ir.Systemstack != 0 && pragma.Flag&ir.Nosplit != 0 {
base.ErrorfAt(f.Pos(), "go:nosplit and go:systemstack cannot be combined")
}
pragma.Flag &^= funcPragmas
p.checkUnused(pragma)
}
if fun.Recv == nil {
typecheck.Declare(f.Nname, ir.PFUNC)
}
p.funcBody(f, fun.Body)
if fun.Body != nil {
if f.Pragma&ir.Noescape != 0 {
base.ErrorfAt(f.Pos(), "can only use //go:noescape with external func implementations")
}
} else {
if base.Flag.Complete || strings.HasPrefix(ir.FuncName(f), "init.") {
// Linknamed functions are allowed to have no body. Hopefully
// the linkname target has a body. See issue 23311.
isLinknamed := false
for _, n := range p.linknames {
if ir.FuncName(f) == n.local {
isLinknamed = true
break
}
}
if !isLinknamed {
base.ErrorfAt(f.Pos(), "missing function body")
}
}
}
return f
}
func (p *noder) signature(recv *syntax.Field, typ *syntax.FuncType) *ir.FuncType {
var rcvr *ir.Field
if recv != nil {
rcvr = p.param(recv, false, false)
}
return ir.NewFuncType(p.pos(typ), rcvr,
p.params(typ.ParamList, true),
p.params(typ.ResultList, false))
}
func (p *noder) params(params []*syntax.Field, dddOk bool) []*ir.Field {
nodes := make([]*ir.Field, 0, len(params))
for i, param := range params {
p.setlineno(param)
nodes = append(nodes, p.param(param, dddOk, i+1 == len(params)))
if i > 0 && params[i].Type == params[i-1].Type {
nodes[i].Ntype = nodes[i-1].Ntype
}
}
return nodes
}
func (p *noder) param(param *syntax.Field, dddOk, final bool) *ir.Field {
var name *types.Sym
if param.Name != nil {
name = p.name(param.Name)
}
typ := p.typeExpr(param.Type)
n := ir.NewField(p.pos(param), name, typ, nil)
// rewrite ...T parameter
if typ, ok := typ.(*ir.SliceType); ok && typ.DDD {
if !dddOk {
// We mark these as syntax errors to get automatic elimination
// of multiple such errors per line (see ErrorfAt in subr.go).
base.Errorf("syntax error: cannot use ... in receiver or result parameter list")
} else if !final {
if param.Name == nil {
base.Errorf("syntax error: cannot use ... with non-final parameter")
} else {
p.errorAt(param.Name.Pos(), "syntax error: cannot use ... with non-final parameter %s", param.Name.Value)
}
}
typ.DDD = false
n.IsDDD = true
}
return n
}
func (p *noder) exprList(expr syntax.Expr) []ir.Node {
switch expr := expr.(type) {
case nil:
return nil
case *syntax.ListExpr:
return p.exprs(expr.ElemList)
default:
return []ir.Node{p.expr(expr)}
}
}
func (p *noder) exprs(exprs []syntax.Expr) []ir.Node {
nodes := make([]ir.Node, 0, len(exprs))
for _, expr := range exprs {
nodes = append(nodes, p.expr(expr))
}
return nodes
}
func (p *noder) expr(expr syntax.Expr) ir.Node {
p.setlineno(expr)
switch expr := expr.(type) {
case nil, *syntax.BadExpr:
return nil
case *syntax.Name:
return p.mkname(expr)
case *syntax.BasicLit:
n := ir.NewBasicLit(p.pos(expr), p.basicLit(expr))
if expr.Kind == syntax.RuneLit {
n.SetType(types.UntypedRune)
}
n.SetDiag(expr.Bad || n.Val().Kind() == constant.Unknown) // avoid follow-on errors if there was a syntax error
return n
case *syntax.CompositeLit:
n := ir.NewCompLitExpr(p.pos(expr), ir.OCOMPLIT, p.typeExpr(expr.Type), nil)
l := p.exprs(expr.ElemList)
for i, e := range l {
l[i] = p.wrapname(expr.ElemList[i], e)
}
n.List = l
base.Pos = p.makeXPos(expr.Rbrace)
return n
case *syntax.KeyValueExpr:
// use position of expr.Key rather than of expr (which has position of ':')
return ir.NewKeyExpr(p.pos(expr.Key), p.expr(expr.Key), p.wrapname(expr.Value, p.expr(expr.Value)))
case *syntax.FuncLit:
return p.funcLit(expr)
case *syntax.ParenExpr:
return ir.NewParenExpr(p.pos(expr), p.expr(expr.X))
case *syntax.SelectorExpr:
// parser.new_dotname
obj := p.expr(expr.X)
if obj.Op() == ir.OPACK {
pack := obj.(*ir.PkgName)
pack.Used = true
return importName(pack.Pkg.Lookup(expr.Sel.Value))
}
n := ir.NewSelectorExpr(base.Pos, ir.OXDOT, obj, p.name(expr.Sel))
n.SetPos(p.pos(expr)) // lineno may have been changed by p.expr(expr.X)
return n
case *syntax.IndexExpr:
return ir.NewIndexExpr(p.pos(expr), p.expr(expr.X), p.expr(expr.Index))
case *syntax.SliceExpr:
op := ir.OSLICE
if expr.Full {
op = ir.OSLICE3
}
x := p.expr(expr.X)
var index [3]ir.Node
for i, n := range &expr.Index {
if n != nil {
index[i] = p.expr(n)
}
}
return ir.NewSliceExpr(p.pos(expr), op, x, index[0], index[1], index[2])
case *syntax.AssertExpr:
return ir.NewTypeAssertExpr(p.pos(expr), p.expr(expr.X), p.typeExpr(expr.Type))
case *syntax.Operation:
if expr.Op == syntax.Add && expr.Y != nil {
return p.sum(expr)
}
x := p.expr(expr.X)
if expr.Y == nil {
pos, op := p.pos(expr), p.unOp(expr.Op)
switch op {
case ir.OADDR:
return typecheck.NodAddrAt(pos, x)
case ir.ODEREF:
return ir.NewStarExpr(pos, x)
}
return ir.NewUnaryExpr(pos, op, x)
}
pos, op, y := p.pos(expr), p.binOp(expr.Op), p.expr(expr.Y)
switch op {
case ir.OANDAND, ir.OOROR:
return ir.NewLogicalExpr(pos, op, x, y)
}
return ir.NewBinaryExpr(pos, op, x, y)
case *syntax.CallExpr:
n := ir.NewCallExpr(p.pos(expr), ir.OCALL, p.expr(expr.Fun), p.exprs(expr.ArgList))
n.IsDDD = expr.HasDots
return n
case *syntax.ArrayType:
var len ir.Node
if expr.Len != nil {
len = p.expr(expr.Len)
}
return ir.NewArrayType(p.pos(expr), len, p.typeExpr(expr.Elem))
case *syntax.SliceType:
return ir.NewSliceType(p.pos(expr), p.typeExpr(expr.Elem))
case *syntax.DotsType:
t := ir.NewSliceType(p.pos(expr), p.typeExpr(expr.Elem))
t.DDD = true
return t
case *syntax.StructType:
return p.structType(expr)
case *syntax.InterfaceType:
return p.interfaceType(expr)
case *syntax.FuncType:
return p.signature(nil, expr)
case *syntax.MapType:
return ir.NewMapType(p.pos(expr),
p.typeExpr(expr.Key), p.typeExpr(expr.Value))
case *syntax.ChanType:
return ir.NewChanType(p.pos(expr),
p.typeExpr(expr.Elem), p.chanDir(expr.Dir))
case *syntax.TypeSwitchGuard:
var tag *ir.Ident
if expr.Lhs != nil {
tag = ir.NewIdent(p.pos(expr.Lhs), p.name(expr.Lhs))
if ir.IsBlank(tag) {
base.Errorf("invalid variable name %v in type switch", tag)
}
}
return ir.NewTypeSwitchGuard(p.pos(expr), tag, p.expr(expr.X))
}
panic("unhandled Expr")
}
// sum efficiently handles very large summation expressions (such as
// in issue #16394). In particular, it avoids left recursion and
// collapses string literals.
func (p *noder) sum(x syntax.Expr) ir.Node {
// While we need to handle long sums with asymptotic
// efficiency, the vast majority of sums are very small: ~95%
// have only 2 or 3 operands, and ~99% of string literals are
// never concatenated.
adds := make([]*syntax.Operation, 0, 2)
for {
add, ok := x.(*syntax.Operation)
if !ok || add.Op != syntax.Add || add.Y == nil {
break
}
adds = append(adds, add)
x = add.X
}
// nstr is the current rightmost string literal in the
// summation (if any), and chunks holds its accumulated
// substrings.
//
// Consider the expression x + "a" + "b" + "c" + y. When we
// reach the string literal "a", we assign nstr to point to
// its corresponding Node and initialize chunks to {"a"}.
// Visiting the subsequent string literals "b" and "c", we
// simply append their values to chunks. Finally, when we
// reach the non-constant operand y, we'll join chunks to form
// "abc" and reassign the "a" string literal's value.
//
// N.B., we need to be careful about named string constants
// (indicated by Sym != nil) because 1) we can't modify their
// value, as doing so would affect other uses of the string
// constant, and 2) they may have types, which we need to
// handle correctly. For now, we avoid these problems by
// treating named string constants the same as non-constant
// operands.
var nstr ir.Node
chunks := make([]string, 0, 1)
n := p.expr(x)
if ir.IsConst(n, constant.String) && n.Sym() == nil {
nstr = n
chunks = append(chunks, ir.StringVal(nstr))
}
for i := len(adds) - 1; i >= 0; i-- {
add := adds[i]
r := p.expr(add.Y)
if ir.IsConst(r, constant.String) && r.Sym() == nil {
if nstr != nil {
// Collapse r into nstr instead of adding to n.
chunks = append(chunks, ir.StringVal(r))
continue
}
nstr = r
chunks = append(chunks, ir.StringVal(nstr))
} else {
if len(chunks) > 1 {
nstr.SetVal(constant.MakeString(strings.Join(chunks, "")))
}
nstr = nil
chunks = chunks[:0]
}
n = ir.NewBinaryExpr(p.pos(add), ir.OADD, n, r)
}
if len(chunks) > 1 {
nstr.SetVal(constant.MakeString(strings.Join(chunks, "")))
}
return n
}
func (p *noder) typeExpr(typ syntax.Expr) ir.Ntype {
// TODO(mdempsky): Be stricter? typecheck should handle errors anyway.
n := p.expr(typ)
if n == nil {
return nil
}
return n.(ir.Ntype)
}
func (p *noder) typeExprOrNil(typ syntax.Expr) ir.Ntype {
if typ != nil {
return p.typeExpr(typ)
}
return nil
}
func (p *noder) chanDir(dir syntax.ChanDir) types.ChanDir {
switch dir {
case 0:
return types.Cboth
case syntax.SendOnly:
return types.Csend
case syntax.RecvOnly:
return types.Crecv
}
panic("unhandled ChanDir")
}
func (p *noder) structType(expr *syntax.StructType) ir.Node {
l := make([]*ir.Field, 0, len(expr.FieldList))
for i, field := range expr.FieldList {
p.setlineno(field)
var n *ir.Field
if field.Name == nil {
n = p.embedded(field.Type)
} else {
n = ir.NewField(p.pos(field), p.name(field.Name), p.typeExpr(field.Type), nil)
}
if i > 0 && expr.FieldList[i].Type == expr.FieldList[i-1].Type {
n.Ntype = l[i-1].Ntype
}
if i < len(expr.TagList) && expr.TagList[i] != nil {
n.Note = constant.StringVal(p.basicLit(expr.TagList[i]))
}
l = append(l, n)
}
p.setlineno(expr)
return ir.NewStructType(p.pos(expr), l)
}
func (p *noder) interfaceType(expr *syntax.InterfaceType) ir.Node {
l := make([]*ir.Field, 0, len(expr.MethodList))
for _, method := range expr.MethodList {
p.setlineno(method)
var n *ir.Field
if method.Name == nil {
n = ir.NewField(p.pos(method), nil, importName(p.packname(method.Type)).(ir.Ntype), nil)
} else {
mname := p.name(method.Name)
if mname.IsBlank() {
base.Errorf("methods must have a unique non-blank name")
continue
}
sig := p.typeExpr(method.Type).(*ir.FuncType)
sig.Recv = fakeRecv()
n = ir.NewField(p.pos(method), mname, sig, nil)
}
l = append(l, n)
}
return ir.NewInterfaceType(p.pos(expr), l)
}
func (p *noder) packname(expr syntax.Expr) *types.Sym {
switch expr := expr.(type) {
case *syntax.Name:
name := p.name(expr)
if n := oldname(name); n.Name() != nil && n.Name().PkgName != nil {
n.Name().PkgName.Used = true
}
return name
case *syntax.SelectorExpr:
name := p.name(expr.X.(*syntax.Name))
def := ir.AsNode(name.Def)
if def == nil {
base.Errorf("undefined: %v", name)
return name
}
var pkg *types.Pkg
if def.Op() != ir.OPACK {
base.Errorf("%v is not a package", name)
pkg = types.LocalPkg
} else {
def := def.(*ir.PkgName)
def.Used = true
pkg = def.Pkg
}
return pkg.Lookup(expr.Sel.Value)
}
panic(fmt.Sprintf("unexpected packname: %#v", expr))
}
func (p *noder) embedded(typ syntax.Expr) *ir.Field {
pos := p.pos(syntax.StartPos(typ))
op, isStar := typ.(*syntax.Operation)
if isStar {
if op.Op != syntax.Mul || op.Y != nil {
panic("unexpected Operation")
}
typ = op.X
}
sym := p.packname(typ)
n := ir.NewField(pos, typecheck.Lookup(sym.Name), importName(sym).(ir.Ntype), nil)
n.Embedded = true
if isStar {
n.Ntype = ir.NewStarExpr(pos, n.Ntype)
}
return n
}
func (p *noder) stmts(stmts []syntax.Stmt) []ir.Node {
return p.stmtsFall(stmts, false)
}
func (p *noder) stmtsFall(stmts []syntax.Stmt, fallOK bool) []ir.Node {
var nodes []ir.Node
for i, stmt := range stmts {
s := p.stmtFall(stmt, fallOK && i+1 == len(stmts))
if s == nil {
} else if s.Op() == ir.OBLOCK && len(s.(*ir.BlockStmt).List) > 0 {
// Inline non-empty block.
// Empty blocks must be preserved for CheckReturn.
nodes = append(nodes, s.(*ir.BlockStmt).List...)
} else {
nodes = append(nodes, s)
}
}
return nodes
}
func (p *noder) stmt(stmt syntax.Stmt) ir.Node {
return p.stmtFall(stmt, false)
}
func (p *noder) stmtFall(stmt syntax.Stmt, fallOK bool) ir.Node {
p.setlineno(stmt)
switch stmt := stmt.(type) {
case nil, *syntax.EmptyStmt:
return nil
case *syntax.LabeledStmt:
return p.labeledStmt(stmt, fallOK)
case *syntax.BlockStmt:
l := p.blockStmt(stmt)
if len(l) == 0 {
// TODO(mdempsky): Line number?
return ir.NewBlockStmt(base.Pos, nil)
}
return ir.NewBlockStmt(src.NoXPos, l)
case *syntax.ExprStmt:
return p.wrapname(stmt, p.expr(stmt.X))
case *syntax.SendStmt:
return ir.NewSendStmt(p.pos(stmt), p.expr(stmt.Chan), p.expr(stmt.Value))
case *syntax.DeclStmt:
return ir.NewBlockStmt(src.NoXPos, p.decls(stmt.DeclList))
case *syntax.AssignStmt:
if stmt.Rhs == nil {
pos := p.pos(stmt)
n := ir.NewAssignOpStmt(pos, p.binOp(stmt.Op), p.expr(stmt.Lhs), ir.NewBasicLit(pos, one))
n.IncDec = true
return n
}
if stmt.Op != 0 && stmt.Op != syntax.Def {
n := ir.NewAssignOpStmt(p.pos(stmt), p.binOp(stmt.Op), p.expr(stmt.Lhs), p.expr(stmt.Rhs))
return n
}
rhs := p.exprList(stmt.Rhs)
if list, ok := stmt.Lhs.(*syntax.ListExpr); ok && len(list.ElemList) != 1 || len(rhs) != 1 {
n := ir.NewAssignListStmt(p.pos(stmt), ir.OAS2, nil, nil)
n.Def = stmt.Op == syntax.Def
n.Lhs = p.assignList(stmt.Lhs, n, n.Def)
n.Rhs = rhs
return n
}
n := ir.NewAssignStmt(p.pos(stmt), nil, nil)
n.Def = stmt.Op == syntax.Def
n.X = p.assignList(stmt.Lhs, n, n.Def)[0]
n.Y = rhs[0]
return n
case *syntax.BranchStmt:
var op ir.Op
switch stmt.Tok {
case syntax.Break:
op = ir.OBREAK
case syntax.Continue:
op = ir.OCONTINUE
case syntax.Fallthrough:
if !fallOK {
base.Errorf("fallthrough statement out of place")
}
op = ir.OFALL
case syntax.Goto:
op = ir.OGOTO
default:
panic("unhandled BranchStmt")
}
var sym *types.Sym
if stmt.Label != nil {
sym = p.name(stmt.Label)
}
return ir.NewBranchStmt(p.pos(stmt), op, sym)
case *syntax.CallStmt:
var op ir.Op
switch stmt.Tok {
case syntax.Defer:
op = ir.ODEFER
case syntax.Go:
op = ir.OGO
default:
panic("unhandled CallStmt")
}
return ir.NewGoDeferStmt(p.pos(stmt), op, p.expr(stmt.Call))
case *syntax.ReturnStmt:
n := ir.NewReturnStmt(p.pos(stmt), p.exprList(stmt.Results))
if len(n.Results) == 0 && ir.CurFunc != nil {
for _, ln := range ir.CurFunc.Dcl {
if ln.Class == ir.PPARAM {
continue
}
if ln.Class != ir.PPARAMOUT {
break
}
if ln.Sym().Def != ln {
base.Errorf("%s is shadowed during return", ln.Sym().Name)
}
}
}
return n
case *syntax.IfStmt:
return p.ifStmt(stmt)
case *syntax.ForStmt:
return p.forStmt(stmt)
case *syntax.SwitchStmt:
return p.switchStmt(stmt)
case *syntax.SelectStmt:
return p.selectStmt(stmt)
}
panic("unhandled Stmt")
}
func (p *noder) assignList(expr syntax.Expr, defn ir.InitNode, colas bool) []ir.Node {
if !colas {
return p.exprList(expr)
}
var exprs []syntax.Expr
if list, ok := expr.(*syntax.ListExpr); ok {
exprs = list.ElemList
} else {
exprs = []syntax.Expr{expr}
}
res := make([]ir.Node, len(exprs))
seen := make(map[*types.Sym]bool, len(exprs))
newOrErr := false
for i, expr := range exprs {
p.setlineno(expr)
res[i] = ir.BlankNode
name, ok := expr.(*syntax.Name)
if !ok {
p.errorAt(expr.Pos(), "non-name %v on left side of :=", p.expr(expr))
newOrErr = true
continue
}
sym := p.name(name)
if sym.IsBlank() {
continue
}
if seen[sym] {
p.errorAt(expr.Pos(), "%v repeated on left side of :=", sym)
newOrErr = true
continue
}
seen[sym] = true
if sym.Block == types.Block {
res[i] = oldname(sym)
continue
}
newOrErr = true
n := typecheck.NewName(sym)
typecheck.Declare(n, typecheck.DeclContext)
n.Defn = defn
defn.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, n))
res[i] = n
}
if !newOrErr {
base.ErrorfAt(defn.Pos(), "no new variables on left side of :=")
}
return res
}
func (p *noder) blockStmt(stmt *syntax.BlockStmt) []ir.Node {
p.openScope(stmt.Pos())
nodes := p.stmts(stmt.List)
p.closeScope(stmt.Rbrace)
return nodes
}
func (p *noder) ifStmt(stmt *syntax.IfStmt) ir.Node {
p.openScope(stmt.Pos())
init := p.stmt(stmt.Init)
n := ir.NewIfStmt(p.pos(stmt), p.expr(stmt.Cond), p.blockStmt(stmt.Then), nil)
if init != nil {
n.SetInit([]ir.Node{init})
}
if stmt.Else != nil {
e := p.stmt(stmt.Else)
if e.Op() == ir.OBLOCK {
e := e.(*ir.BlockStmt)
n.Else = e.List
} else {
n.Else = []ir.Node{e}
}
}
p.closeAnotherScope()
return n
}
func (p *noder) forStmt(stmt *syntax.ForStmt) ir.Node {
p.openScope(stmt.Pos())
if r, ok := stmt.Init.(*syntax.RangeClause); ok {
if stmt.Cond != nil || stmt.Post != nil {
panic("unexpected RangeClause")
}
n := ir.NewRangeStmt(p.pos(r), nil, nil, p.expr(r.X), nil)
if r.Lhs != nil {
n.Def = r.Def
lhs := p.assignList(r.Lhs, n, n.Def)
n.Key = lhs[0]
if len(lhs) > 1 {
n.Value = lhs[1]
}
}
n.Body = p.blockStmt(stmt.Body)
p.closeAnotherScope()
return n
}
n := ir.NewForStmt(p.pos(stmt), p.stmt(stmt.Init), p.expr(stmt.Cond), p.stmt(stmt.Post), p.blockStmt(stmt.Body))
p.closeAnotherScope()
return n
}
func (p *noder) switchStmt(stmt *syntax.SwitchStmt) ir.Node {
p.openScope(stmt.Pos())
init := p.stmt(stmt.Init)
n := ir.NewSwitchStmt(p.pos(stmt), p.expr(stmt.Tag), nil)
if init != nil {
n.SetInit([]ir.Node{init})
}
var tswitch *ir.TypeSwitchGuard
if l := n.Tag; l != nil && l.Op() == ir.OTYPESW {
tswitch = l.(*ir.TypeSwitchGuard)
}
n.Cases = p.caseClauses(stmt.Body, tswitch, stmt.Rbrace)
p.closeScope(stmt.Rbrace)
return n
}
func (p *noder) caseClauses(clauses []*syntax.CaseClause, tswitch *ir.TypeSwitchGuard, rbrace syntax.Pos) []*ir.CaseClause {
nodes := make([]*ir.CaseClause, 0, len(clauses))
for i, clause := range clauses {
p.setlineno(clause)
if i > 0 {
p.closeScope(clause.Pos())
}
p.openScope(clause.Pos())
n := ir.NewCaseStmt(p.pos(clause), p.exprList(clause.Cases), nil)
if tswitch != nil && tswitch.Tag != nil {
nn := typecheck.NewName(tswitch.Tag.Sym())
typecheck.Declare(nn, typecheck.DeclContext)
n.Var = nn
// keep track of the instances for reporting unused
nn.Defn = tswitch
}
// Trim trailing empty statements. We omit them from
// the Node AST anyway, and it's easier to identify
// out-of-place fallthrough statements without them.
body := clause.Body
for len(body) > 0 {
if _, ok := body[len(body)-1].(*syntax.EmptyStmt); !ok {
break
}
body = body[:len(body)-1]
}
n.Body = p.stmtsFall(body, true)
if l := len(n.Body); l > 0 && n.Body[l-1].Op() == ir.OFALL {
if tswitch != nil {
base.Errorf("cannot fallthrough in type switch")
}
if i+1 == len(clauses) {
base.Errorf("cannot fallthrough final case in switch")
}
}
nodes = append(nodes, n)
}
if len(clauses) > 0 {
p.closeScope(rbrace)
}
return nodes
}
func (p *noder) selectStmt(stmt *syntax.SelectStmt) ir.Node {
return ir.NewSelectStmt(p.pos(stmt), p.commClauses(stmt.Body, stmt.Rbrace))
}
func (p *noder) commClauses(clauses []*syntax.CommClause, rbrace syntax.Pos) []*ir.CommClause {
nodes := make([]*ir.CommClause, len(clauses))
for i, clause := range clauses {
p.setlineno(clause)
if i > 0 {
p.closeScope(clause.Pos())
}
p.openScope(clause.Pos())
nodes[i] = ir.NewCommStmt(p.pos(clause), p.stmt(clause.Comm), p.stmts(clause.Body))
}
if len(clauses) > 0 {
p.closeScope(rbrace)
}
return nodes
}
func (p *noder) labeledStmt(label *syntax.LabeledStmt, fallOK bool) ir.Node {
sym := p.name(label.Label)
lhs := ir.NewLabelStmt(p.pos(label), sym)
var ls ir.Node
if label.Stmt != nil { // TODO(mdempsky): Should always be present.
ls = p.stmtFall(label.Stmt, fallOK)
// Attach label directly to control statement too.
if ls != nil {
switch ls.Op() {
case ir.OFOR:
ls := ls.(*ir.ForStmt)
ls.Label = sym
case ir.ORANGE:
ls := ls.(*ir.RangeStmt)
ls.Label = sym
case ir.OSWITCH:
ls := ls.(*ir.SwitchStmt)
ls.Label = sym
case ir.OSELECT:
ls := ls.(*ir.SelectStmt)
ls.Label = sym
}
}
}
l := []ir.Node{lhs}
if ls != nil {
if ls.Op() == ir.OBLOCK {
ls := ls.(*ir.BlockStmt)
l = append(l, ls.List...)
} else {
l = append(l, ls)
}
}
return ir.NewBlockStmt(src.NoXPos, l)
}
var unOps = [...]ir.Op{
syntax.Recv: ir.ORECV,
syntax.Mul: ir.ODEREF,
syntax.And: ir.OADDR,
syntax.Not: ir.ONOT,
syntax.Xor: ir.OBITNOT,
syntax.Add: ir.OPLUS,
syntax.Sub: ir.ONEG,
}
func (p *noder) unOp(op syntax.Operator) ir.Op {
if uint64(op) >= uint64(len(unOps)) || unOps[op] == 0 {
panic("invalid Operator")
}
return unOps[op]
}
var binOps = [...]ir.Op{
syntax.OrOr: ir.OOROR,
syntax.AndAnd: ir.OANDAND,
syntax.Eql: ir.OEQ,
syntax.Neq: ir.ONE,
syntax.Lss: ir.OLT,
syntax.Leq: ir.OLE,
syntax.Gtr: ir.OGT,
syntax.Geq: ir.OGE,
syntax.Add: ir.OADD,
syntax.Sub: ir.OSUB,
syntax.Or: ir.OOR,
syntax.Xor: ir.OXOR,
syntax.Mul: ir.OMUL,
syntax.Div: ir.ODIV,
syntax.Rem: ir.OMOD,
syntax.And: ir.OAND,
syntax.AndNot: ir.OANDNOT,
syntax.Shl: ir.OLSH,
syntax.Shr: ir.ORSH,
}
func (p *noder) binOp(op syntax.Operator) ir.Op {
if uint64(op) >= uint64(len(binOps)) || binOps[op] == 0 {
panic("invalid Operator")
}
return binOps[op]
}
// checkLangCompat reports an error if the representation of a numeric
// literal is not compatible with the current language version.
func checkLangCompat(lit *syntax.BasicLit) {
s := lit.Value
if len(s) <= 2 || types.AllowsGoVersion(types.LocalPkg, 1, 13) {
return
}
// len(s) > 2
if strings.Contains(s, "_") {
base.ErrorfVers("go1.13", "underscores in numeric literals")
return
}
if s[0] != '0' {
return
}
radix := s[1]
if radix == 'b' || radix == 'B' {
base.ErrorfVers("go1.13", "binary literals")
return
}
if radix == 'o' || radix == 'O' {
base.ErrorfVers("go1.13", "0o/0O-style octal literals")
return
}
if lit.Kind != syntax.IntLit && (radix == 'x' || radix == 'X') {
base.ErrorfVers("go1.13", "hexadecimal floating-point literals")
}
}
func (p *noder) basicLit(lit *syntax.BasicLit) constant.Value {
// We don't use the errors of the conversion routines to determine
// if a literal string is valid because the conversion routines may
// accept a wider syntax than the language permits. Rely on lit.Bad
// instead.
if lit.Bad {
return constant.MakeUnknown()
}
switch lit.Kind {
case syntax.IntLit, syntax.FloatLit, syntax.ImagLit:
checkLangCompat(lit)
// The max. mantissa precision for untyped numeric values
// is 512 bits, or 4048 bits for each of the two integer
// parts of a fraction for floating-point numbers that are
// represented accurately in the go/constant package.
// Constant literals that are longer than this many bits
// are not meaningful; and excessively long constants may
// consume a lot of space and time for a useless conversion.
// Cap constant length with a generous upper limit that also
// allows for separators between all digits.
const limit = 10000
if len(lit.Value) > limit {
p.errorAt(lit.Pos(), "excessively long constant: %s... (%d chars)", lit.Value[:10], len(lit.Value))
return constant.MakeUnknown()
}
}
v := constant.MakeFromLiteral(lit.Value, tokenForLitKind[lit.Kind], 0)
if v.Kind() == constant.Unknown {
// TODO(mdempsky): Better error message?
p.errorAt(lit.Pos(), "malformed constant: %s", lit.Value)
}
return v
}
var tokenForLitKind = [...]token.Token{
syntax.IntLit: token.INT,
syntax.RuneLit: token.CHAR,
syntax.FloatLit: token.FLOAT,
syntax.ImagLit: token.IMAG,
syntax.StringLit: token.STRING,
}
func (p *noder) name(name *syntax.Name) *types.Sym {
return typecheck.Lookup(name.Value)
}
func (p *noder) mkname(name *syntax.Name) ir.Node {
// TODO(mdempsky): Set line number?
return mkname(p.name(name))
}
func wrapname(pos src.XPos, x ir.Node) ir.Node {
// These nodes do not carry line numbers.
// Introduce a wrapper node to give them the correct line.
switch x.Op() {
case ir.OTYPE, ir.OLITERAL:
if x.Sym() == nil {
break
}
fallthrough
case ir.ONAME, ir.ONONAME, ir.OPACK:
p := ir.NewParenExpr(pos, x)
p.SetImplicit(true)
return p
}
return x
}
func (p *noder) wrapname(n syntax.Node, x ir.Node) ir.Node {
return wrapname(p.pos(n), x)
}
func (p *noder) setlineno(n syntax.Node) {
if n != nil {
base.Pos = p.pos(n)
}
}
// error is called concurrently if files are parsed concurrently.
func (p *noder) error(err error) {
p.err <- err.(syntax.Error)
}
// pragmas that are allowed in the std lib, but don't have
// a syntax.Pragma value (see lex.go) associated with them.
var allowedStdPragmas = map[string]bool{
"go:cgo_export_static": true,
"go:cgo_export_dynamic": true,
"go:cgo_import_static": true,
"go:cgo_import_dynamic": true,
"go:cgo_ldflag": true,
"go:cgo_dynamic_linker": true,
"go:embed": true,
"go:generate": true,
}
// *pragmas is the value stored in a syntax.pragmas during parsing.
type pragmas struct {
Flag ir.PragmaFlag // collected bits
Pos []pragmaPos // position of each individual flag
Embeds []pragmaEmbed
}
type pragmaPos struct {
Flag ir.PragmaFlag
Pos syntax.Pos
}
type pragmaEmbed struct {
Pos syntax.Pos
Patterns []string
}
func (p *noder) checkUnused(pragma *pragmas) {
for _, pos := range pragma.Pos {
if pos.Flag&pragma.Flag != 0 {
p.errorAt(pos.Pos, "misplaced compiler directive")
}
}
if len(pragma.Embeds) > 0 {
for _, e := range pragma.Embeds {
p.errorAt(e.Pos, "misplaced go:embed directive")
}
}
}
func (p *noder) checkUnusedDuringParse(pragma *pragmas) {
for _, pos := range pragma.Pos {
if pos.Flag&pragma.Flag != 0 {
p.error(syntax.Error{Pos: pos.Pos, Msg: "misplaced compiler directive"})
}
}
if len(pragma.Embeds) > 0 {
for _, e := range pragma.Embeds {
p.error(syntax.Error{Pos: e.Pos, Msg: "misplaced go:embed directive"})
}
}
}
// pragma is called concurrently if files are parsed concurrently.
func (p *noder) pragma(pos syntax.Pos, blankLine bool, text string, old syntax.Pragma) syntax.Pragma {
pragma, _ := old.(*pragmas)
if pragma == nil {
pragma = new(pragmas)
}
if text == "" {
// unused pragma; only called with old != nil.
p.checkUnusedDuringParse(pragma)
return nil
}
if strings.HasPrefix(text, "line ") {
// line directives are handled by syntax package
panic("unreachable")
}
if !blankLine {
// directive must be on line by itself
p.error(syntax.Error{Pos: pos, Msg: "misplaced compiler directive"})
return pragma
}
switch {
case strings.HasPrefix(text, "go:linkname "):
f := strings.Fields(text)
if !(2 <= len(f) && len(f) <= 3) {
p.error(syntax.Error{Pos: pos, Msg: "usage: //go:linkname localname [linkname]"})
break
}
// The second argument is optional. If omitted, we use
// the default object symbol name for this and
// linkname only serves to mark this symbol as
// something that may be referenced via the object
// symbol name from another package.
var target string
if len(f) == 3 {
target = f[2]
} else if base.Ctxt.Pkgpath != "" {
// Use the default object symbol name if the
// user didn't provide one.
target = objabi.PathToPrefix(base.Ctxt.Pkgpath) + "." + f[1]
} else {
p.error(syntax.Error{Pos: pos, Msg: "//go:linkname requires linkname argument or -p compiler flag"})
break
}
p.linknames = append(p.linknames, linkname{pos, f[1], target})
case text == "go:embed", strings.HasPrefix(text, "go:embed "):
args, err := parseGoEmbed(text[len("go:embed"):])
if err != nil {
p.error(syntax.Error{Pos: pos, Msg: err.Error()})
}
if len(args) == 0 {
p.error(syntax.Error{Pos: pos, Msg: "usage: //go:embed pattern..."})
break
}
pragma.Embeds = append(pragma.Embeds, pragmaEmbed{pos, args})
case strings.HasPrefix(text, "go:cgo_import_dynamic "):
// This is permitted for general use because Solaris
// code relies on it in golang.org/x/sys/unix and others.
fields := pragmaFields(text)
if len(fields) >= 4 {
lib := strings.Trim(fields[3], `"`)
if lib != "" && !safeArg(lib) && !isCgoGeneratedFile(pos) {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("invalid library name %q in cgo_import_dynamic directive", lib)})
}
p.pragcgo(pos, text)
pragma.Flag |= pragmaFlag("go:cgo_import_dynamic")
break
}
fallthrough
case strings.HasPrefix(text, "go:cgo_"):
// For security, we disallow //go:cgo_* directives other
// than cgo_import_dynamic outside cgo-generated files.
// Exception: they are allowed in the standard library, for runtime and syscall.
if !isCgoGeneratedFile(pos) && !base.Flag.Std {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in cgo-generated code", text)})
}
p.pragcgo(pos, text)
fallthrough // because of //go:cgo_unsafe_args
default:
verb := text
if i := strings.Index(text, " "); i >= 0 {
verb = verb[:i]
}
flag := pragmaFlag(verb)
const runtimePragmas = ir.Systemstack | ir.Nowritebarrier | ir.Nowritebarrierrec | ir.Yeswritebarrierrec
if !base.Flag.CompilingRuntime && flag&runtimePragmas != 0 {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in runtime", verb)})
}
if flag == 0 && !allowedStdPragmas[verb] && base.Flag.Std {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s is not allowed in the standard library", verb)})
}
pragma.Flag |= flag
pragma.Pos = append(pragma.Pos, pragmaPos{flag, pos})
}
return pragma
}
// isCgoGeneratedFile reports whether pos is in a file
// generated by cgo, which is to say a file with name
// beginning with "_cgo_". Such files are allowed to
// contain cgo directives, and for security reasons
// (primarily misuse of linker flags), other files are not.
// See golang.org/issue/23672.
func isCgoGeneratedFile(pos syntax.Pos) bool {
return strings.HasPrefix(filepath.Base(trimFilename(pos.Base())), "_cgo_")
}
// safeArg reports whether arg is a "safe" command-line argument,
// meaning that when it appears in a command-line, it probably
// doesn't have some special meaning other than its own name.
// This is copied from SafeArg in cmd/go/internal/load/pkg.go.
func safeArg(name string) bool {
if name == "" {
return false
}
c := name[0]
return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || c == '.' || c == '_' || c == '/' || c >= utf8.RuneSelf
}
func mkname(sym *types.Sym) ir.Node {
n := oldname(sym)
if n.Name() != nil && n.Name().PkgName != nil {
n.Name().PkgName.Used = true
}
return n
}
// parseGoEmbed parses the text following "//go:embed" to extract the glob patterns.
// It accepts unquoted space-separated patterns as well as double-quoted and back-quoted Go strings.
// go/build/read.go also processes these strings and contains similar logic.
func parseGoEmbed(args string) ([]string, error) {
var list []string
for args = strings.TrimSpace(args); args != ""; args = strings.TrimSpace(args) {
var path string
Switch:
switch args[0] {
default:
i := len(args)
for j, c := range args {
if unicode.IsSpace(c) {
i = j
break
}
}
path = args[:i]
args = args[i:]
case '`':
i := strings.Index(args[1:], "`")
if i < 0 {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
path = args[1 : 1+i]
args = args[1+i+1:]
case '"':
i := 1
for ; i < len(args); i++ {
if args[i] == '\\' {
i++
continue
}
if args[i] == '"' {
q, err := strconv.Unquote(args[:i+1])
if err != nil {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args[:i+1])
}
path = q
args = args[i+1:]
break Switch
}
}
if i >= len(args) {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
}
if args != "" {
r, _ := utf8.DecodeRuneInString(args)
if !unicode.IsSpace(r) {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
}
list = append(list, path)
}
return list, nil
}
func fakeRecv() *ir.Field {
return ir.NewField(base.Pos, nil, nil, types.FakeRecvType())
}
func (p *noder) funcLit(expr *syntax.FuncLit) ir.Node {
fn := ir.NewClosureFunc(p.pos(expr), ir.CurFunc != nil)
fn.Nname.Ntype = p.typeExpr(expr.Type)
p.funcBody(fn, expr.Body)
ir.FinishCaptureNames(base.Pos, ir.CurFunc, fn)
return fn.OClosure
}
// A function named init is a special case.
// It is called by the initialization before main is run.
// To make it unique within a package and also uncallable,
// the name, normally "pkg.init", is altered to "pkg.init.0".
var renameinitgen int
func renameinit() *types.Sym {
s := typecheck.LookupNum("init.", renameinitgen)
renameinitgen++
return s
}
// oldname returns the Node that declares symbol s in the current scope.
// If no such Node currently exists, an ONONAME Node is returned instead.
// Automatically creates a new closure variable if the referenced symbol was
// declared in a different (containing) function.
func oldname(s *types.Sym) ir.Node {
if s.Pkg != types.LocalPkg {
return ir.NewIdent(base.Pos, s)
}
n := ir.AsNode(s.Def)
if n == nil {
// Maybe a top-level declaration will come along later to
// define s. resolve will check s.Def again once all input
// source has been processed.
return ir.NewIdent(base.Pos, s)
}
if n, ok := n.(*ir.Name); ok {
// TODO(rsc): If there is an outer variable x and we
// are parsing x := 5 inside the closure, until we get to
// the := it looks like a reference to the outer x so we'll
// make x a closure variable unnecessarily.
return ir.CaptureName(base.Pos, ir.CurFunc, n)
}
return n
}
func varEmbed(makeXPos func(syntax.Pos) src.XPos, name *ir.Name, decl *syntax.VarDecl, pragma *pragmas, haveEmbed bool) {
pragmaEmbeds := pragma.Embeds
pragma.Embeds = nil
if len(pragmaEmbeds) == 0 {
return
}
if err := checkEmbed(decl, haveEmbed, typecheck.DeclContext != ir.PEXTERN); err != nil {
base.ErrorfAt(makeXPos(pragmaEmbeds[0].Pos), "%s", err)
return
}
var embeds []ir.Embed
for _, e := range pragmaEmbeds {
embeds = append(embeds, ir.Embed{Pos: makeXPos(e.Pos), Patterns: e.Patterns})
}
typecheck.Target.Embeds = append(typecheck.Target.Embeds, name)
name.Embed = &embeds
}
func checkEmbed(decl *syntax.VarDecl, haveEmbed, withinFunc bool) error {
switch {
case !haveEmbed:
return errors.New("go:embed only allowed in Go files that import \"embed\"")
case len(decl.NameList) > 1:
return errors.New("go:embed cannot apply to multiple vars")
case decl.Values != nil:
return errors.New("go:embed cannot apply to var with initializer")
case decl.Type == nil:
// Should not happen, since Values == nil now.
return errors.New("go:embed cannot apply to var without type")
case withinFunc:
return errors.New("go:embed cannot apply to var inside func")
case !types.AllowsGoVersion(types.LocalPkg, 1, 16):
return fmt.Errorf("go:embed requires go1.16 or later (-lang was set to %s; check go.mod)", base.Flag.Lang)
default:
return nil
}
}