blob: 063fb65b33ab90bf7e56f5f681a1a32ec959487e [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package arm
import (
"fmt"
"internal/buildcfg"
"math"
"math/bits"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/logopt"
"cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/arm"
)
// loadByType returns the load instruction of the given type.
func loadByType(t *types.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return arm.AMOVF
case 8:
return arm.AMOVD
}
} else {
switch t.Size() {
case 1:
if t.IsSigned() {
return arm.AMOVB
} else {
return arm.AMOVBU
}
case 2:
if t.IsSigned() {
return arm.AMOVH
} else {
return arm.AMOVHU
}
case 4:
return arm.AMOVW
}
}
panic("bad load type")
}
// storeByType returns the store instruction of the given type.
func storeByType(t *types.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return arm.AMOVF
case 8:
return arm.AMOVD
}
} else {
switch t.Size() {
case 1:
return arm.AMOVB
case 2:
return arm.AMOVH
case 4:
return arm.AMOVW
}
}
panic("bad store type")
}
// shift type is used as Offset in obj.TYPE_SHIFT operands to encode shifted register operands
type shift int64
// copied from ../../../internal/obj/util.go:/TYPE_SHIFT
func (v shift) String() string {
op := "<<>>->@>"[((v>>5)&3)<<1:]
if v&(1<<4) != 0 {
// register shift
return fmt.Sprintf("R%d%c%cR%d", v&15, op[0], op[1], (v>>8)&15)
} else {
// constant shift
return fmt.Sprintf("R%d%c%c%d", v&15, op[0], op[1], (v>>7)&31)
}
}
// makeshift encodes a register shifted by a constant
func makeshift(v *ssa.Value, reg int16, typ int64, s int64) shift {
if s < 0 || s >= 32 {
v.Fatalf("shift out of range: %d", s)
}
return shift(int64(reg&0xf) | typ | (s&31)<<7)
}
// genshift generates a Prog for r = r0 op (r1 shifted by n)
func genshift(s *ssagen.State, v *ssa.Value, as obj.As, r0, r1, r int16, typ int64, n int64) *obj.Prog {
p := s.Prog(as)
p.From.Type = obj.TYPE_SHIFT
p.From.Offset = int64(makeshift(v, r1, typ, n))
p.Reg = r0
if r != 0 {
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
return p
}
// makeregshift encodes a register shifted by a register
func makeregshift(r1 int16, typ int64, r2 int16) shift {
return shift(int64(r1&0xf) | typ | int64(r2&0xf)<<8 | 1<<4)
}
// genregshift generates a Prog for r = r0 op (r1 shifted by r2)
func genregshift(s *ssagen.State, as obj.As, r0, r1, r2, r int16, typ int64) *obj.Prog {
p := s.Prog(as)
p.From.Type = obj.TYPE_SHIFT
p.From.Offset = int64(makeregshift(r1, typ, r2))
p.Reg = r0
if r != 0 {
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
return p
}
// find a (lsb, width) pair for BFC
// lsb must be in [0, 31], width must be in [1, 32 - lsb]
// return (0xffffffff, 0) if v is not a binary like 0...01...10...0
func getBFC(v uint32) (uint32, uint32) {
var m, l uint32
// BFC is not applicable with zero
if v == 0 {
return 0xffffffff, 0
}
// find the lowest set bit, for example l=2 for 0x3ffffffc
l = uint32(bits.TrailingZeros32(v))
// m-1 represents the highest set bit index, for example m=30 for 0x3ffffffc
m = 32 - uint32(bits.LeadingZeros32(v))
// check if v is a binary like 0...01...10...0
if (1<<m)-(1<<l) == v {
// it must be m > l for non-zero v
return l, m - l
}
// invalid
return 0xffffffff, 0
}
func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op {
case ssa.OpCopy, ssa.OpARMMOVWreg:
if v.Type.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x == y {
return
}
as := arm.AMOVW
if v.Type.IsFloat() {
switch v.Type.Size() {
case 4:
as = arm.AMOVF
case 8:
as = arm.AMOVD
default:
panic("bad float size")
}
}
p := s.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
case ssa.OpARMMOVWnop:
// nothing to do
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
p := s.Prog(loadByType(v.Type))
ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
ssagen.AddrAuto(&p.To, v)
case ssa.OpARMADD,
ssa.OpARMADC,
ssa.OpARMSUB,
ssa.OpARMSBC,
ssa.OpARMRSB,
ssa.OpARMAND,
ssa.OpARMOR,
ssa.OpARMXOR,
ssa.OpARMBIC,
ssa.OpARMMUL,
ssa.OpARMADDF,
ssa.OpARMADDD,
ssa.OpARMSUBF,
ssa.OpARMSUBD,
ssa.OpARMSLL,
ssa.OpARMSRL,
ssa.OpARMSRA,
ssa.OpARMMULF,
ssa.OpARMMULD,
ssa.OpARMNMULF,
ssa.OpARMNMULD,
ssa.OpARMDIVF,
ssa.OpARMDIVD:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMSRR:
genregshift(s, arm.AMOVW, 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_RR)
case ssa.OpARMMULAF, ssa.OpARMMULAD, ssa.OpARMMULSF, ssa.OpARMMULSD, ssa.OpARMFMULAD:
r := v.Reg()
r0 := v.Args[0].Reg()
r1 := v.Args[1].Reg()
r2 := v.Args[2].Reg()
if r != r0 {
v.Fatalf("result and addend are not in the same register: %v", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMADDS,
ssa.OpARMSUBS:
r := v.Reg0()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := s.Prog(v.Op.Asm())
p.Scond = arm.C_SBIT
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMSRAcond:
// ARM shift instructions uses only the low-order byte of the shift amount
// generate conditional instructions to deal with large shifts
// flag is already set
// SRA.HS $31, Rarg0, Rdst // shift 31 bits to get the sign bit
// SRA.LO Rarg1, Rarg0, Rdst
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := s.Prog(arm.ASRA)
p.Scond = arm.C_SCOND_HS
p.From.Type = obj.TYPE_CONST
p.From.Offset = 31
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
p = s.Prog(arm.ASRA)
p.Scond = arm.C_SCOND_LO
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMBFX, ssa.OpARMBFXU:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt >> 8
p.SetFrom3Const(v.AuxInt & 0xff)
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMANDconst, ssa.OpARMBICconst:
// try to optimize ANDconst and BICconst to BFC, which saves bytes and ticks
// BFC is only available on ARMv7, and its result and source are in the same register
if buildcfg.GOARM == 7 && v.Reg() == v.Args[0].Reg() {
var val uint32
if v.Op == ssa.OpARMANDconst {
val = ^uint32(v.AuxInt)
} else { // BICconst
val = uint32(v.AuxInt)
}
lsb, width := getBFC(val)
// omit BFC for ARM's imm12
if 8 < width && width < 24 {
p := s.Prog(arm.ABFC)
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(width)
p.SetFrom3Const(int64(lsb))
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
break
}
}
// fall back to ordinary form
fallthrough
case ssa.OpARMADDconst,
ssa.OpARMADCconst,
ssa.OpARMSUBconst,
ssa.OpARMSBCconst,
ssa.OpARMRSBconst,
ssa.OpARMRSCconst,
ssa.OpARMORconst,
ssa.OpARMXORconst,
ssa.OpARMSLLconst,
ssa.OpARMSRLconst,
ssa.OpARMSRAconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMADDSconst,
ssa.OpARMSUBSconst,
ssa.OpARMRSBSconst:
p := s.Prog(v.Op.Asm())
p.Scond = arm.C_SBIT
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0()
case ssa.OpARMSRRconst:
genshift(s, v, arm.AMOVW, 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_RR, v.AuxInt)
case ssa.OpARMADDshiftLL,
ssa.OpARMADCshiftLL,
ssa.OpARMSUBshiftLL,
ssa.OpARMSBCshiftLL,
ssa.OpARMRSBshiftLL,
ssa.OpARMRSCshiftLL,
ssa.OpARMANDshiftLL,
ssa.OpARMORshiftLL,
ssa.OpARMXORshiftLL,
ssa.OpARMBICshiftLL:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
case ssa.OpARMADDSshiftLL,
ssa.OpARMSUBSshiftLL,
ssa.OpARMRSBSshiftLL:
p := genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_LL, v.AuxInt)
p.Scond = arm.C_SBIT
case ssa.OpARMADDshiftRL,
ssa.OpARMADCshiftRL,
ssa.OpARMSUBshiftRL,
ssa.OpARMSBCshiftRL,
ssa.OpARMRSBshiftRL,
ssa.OpARMRSCshiftRL,
ssa.OpARMANDshiftRL,
ssa.OpARMORshiftRL,
ssa.OpARMXORshiftRL,
ssa.OpARMBICshiftRL:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
case ssa.OpARMADDSshiftRL,
ssa.OpARMSUBSshiftRL,
ssa.OpARMRSBSshiftRL:
p := genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_LR, v.AuxInt)
p.Scond = arm.C_SBIT
case ssa.OpARMADDshiftRA,
ssa.OpARMADCshiftRA,
ssa.OpARMSUBshiftRA,
ssa.OpARMSBCshiftRA,
ssa.OpARMRSBshiftRA,
ssa.OpARMRSCshiftRA,
ssa.OpARMANDshiftRA,
ssa.OpARMORshiftRA,
ssa.OpARMXORshiftRA,
ssa.OpARMBICshiftRA:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
case ssa.OpARMADDSshiftRA,
ssa.OpARMSUBSshiftRA,
ssa.OpARMRSBSshiftRA:
p := genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_AR, v.AuxInt)
p.Scond = arm.C_SBIT
case ssa.OpARMXORshiftRR:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_RR, v.AuxInt)
case ssa.OpARMMVNshiftLL:
genshift(s, v, v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
case ssa.OpARMMVNshiftRL:
genshift(s, v, v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
case ssa.OpARMMVNshiftRA:
genshift(s, v, v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
case ssa.OpARMMVNshiftLLreg:
genregshift(s, v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL)
case ssa.OpARMMVNshiftRLreg:
genregshift(s, v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR)
case ssa.OpARMMVNshiftRAreg:
genregshift(s, v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR)
case ssa.OpARMADDshiftLLreg,
ssa.OpARMADCshiftLLreg,
ssa.OpARMSUBshiftLLreg,
ssa.OpARMSBCshiftLLreg,
ssa.OpARMRSBshiftLLreg,
ssa.OpARMRSCshiftLLreg,
ssa.OpARMANDshiftLLreg,
ssa.OpARMORshiftLLreg,
ssa.OpARMXORshiftLLreg,
ssa.OpARMBICshiftLLreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_LL)
case ssa.OpARMADDSshiftLLreg,
ssa.OpARMSUBSshiftLLreg,
ssa.OpARMRSBSshiftLLreg:
p := genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_LL)
p.Scond = arm.C_SBIT
case ssa.OpARMADDshiftRLreg,
ssa.OpARMADCshiftRLreg,
ssa.OpARMSUBshiftRLreg,
ssa.OpARMSBCshiftRLreg,
ssa.OpARMRSBshiftRLreg,
ssa.OpARMRSCshiftRLreg,
ssa.OpARMANDshiftRLreg,
ssa.OpARMORshiftRLreg,
ssa.OpARMXORshiftRLreg,
ssa.OpARMBICshiftRLreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_LR)
case ssa.OpARMADDSshiftRLreg,
ssa.OpARMSUBSshiftRLreg,
ssa.OpARMRSBSshiftRLreg:
p := genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_LR)
p.Scond = arm.C_SBIT
case ssa.OpARMADDshiftRAreg,
ssa.OpARMADCshiftRAreg,
ssa.OpARMSUBshiftRAreg,
ssa.OpARMSBCshiftRAreg,
ssa.OpARMRSBshiftRAreg,
ssa.OpARMRSCshiftRAreg,
ssa.OpARMANDshiftRAreg,
ssa.OpARMORshiftRAreg,
ssa.OpARMXORshiftRAreg,
ssa.OpARMBICshiftRAreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_AR)
case ssa.OpARMADDSshiftRAreg,
ssa.OpARMSUBSshiftRAreg,
ssa.OpARMRSBSshiftRAreg:
p := genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_AR)
p.Scond = arm.C_SBIT
case ssa.OpARMHMUL,
ssa.OpARMHMULU:
// 32-bit high multiplication
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REGREG
p.To.Reg = v.Reg()
p.To.Offset = arm.REGTMP // throw away low 32-bit into tmp register
case ssa.OpARMMULLU:
// 32-bit multiplication, results 64-bit, high 32-bit in out0, low 32-bit in out1
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REGREG
p.To.Reg = v.Reg0() // high 32-bit
p.To.Offset = int64(v.Reg1()) // low 32-bit
case ssa.OpARMMULA, ssa.OpARMMULS:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REGREG2
p.To.Reg = v.Reg() // result
p.To.Offset = int64(v.Args[2].Reg()) // addend
case ssa.OpARMMOVWconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMMOVFconst,
ssa.OpARMMOVDconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMCMP,
ssa.OpARMCMN,
ssa.OpARMTST,
ssa.OpARMTEQ,
ssa.OpARMCMPF,
ssa.OpARMCMPD:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
// Special layout in ARM assembly
// Comparing to x86, the operands of ARM's CMP are reversed.
p.From.Reg = v.Args[1].Reg()
p.Reg = v.Args[0].Reg()
case ssa.OpARMCMPconst,
ssa.OpARMCMNconst,
ssa.OpARMTSTconst,
ssa.OpARMTEQconst:
// Special layout in ARM assembly
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
case ssa.OpARMCMPF0,
ssa.OpARMCMPD0:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
case ssa.OpARMCMPshiftLL, ssa.OpARMCMNshiftLL, ssa.OpARMTSTshiftLL, ssa.OpARMTEQshiftLL:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_LL, v.AuxInt)
case ssa.OpARMCMPshiftRL, ssa.OpARMCMNshiftRL, ssa.OpARMTSTshiftRL, ssa.OpARMTEQshiftRL:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_LR, v.AuxInt)
case ssa.OpARMCMPshiftRA, ssa.OpARMCMNshiftRA, ssa.OpARMTSTshiftRA, ssa.OpARMTEQshiftRA:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_AR, v.AuxInt)
case ssa.OpARMCMPshiftLLreg, ssa.OpARMCMNshiftLLreg, ssa.OpARMTSTshiftLLreg, ssa.OpARMTEQshiftLLreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_LL)
case ssa.OpARMCMPshiftRLreg, ssa.OpARMCMNshiftRLreg, ssa.OpARMTSTshiftRLreg, ssa.OpARMTEQshiftRLreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_LR)
case ssa.OpARMCMPshiftRAreg, ssa.OpARMCMNshiftRAreg, ssa.OpARMTSTshiftRAreg, ssa.OpARMTEQshiftRAreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_AR)
case ssa.OpARMMOVWaddr:
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_ADDR
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
var wantreg string
// MOVW $sym+off(base), R
// the assembler expands it as the following:
// - base is SP: add constant offset to SP (R13)
// when constant is large, tmp register (R11) may be used
// - base is SB: load external address from constant pool (use relocation)
switch v.Aux.(type) {
default:
v.Fatalf("aux is of unknown type %T", v.Aux)
case *obj.LSym:
wantreg = "SB"
ssagen.AddAux(&p.From, v)
case *ir.Name:
wantreg = "SP"
ssagen.AddAux(&p.From, v)
case nil:
// No sym, just MOVW $off(SP), R
wantreg = "SP"
p.From.Offset = v.AuxInt
}
if reg := v.Args[0].RegName(); reg != wantreg {
v.Fatalf("bad reg %s for symbol type %T, want %s", reg, v.Aux, wantreg)
}
case ssa.OpARMMOVBload,
ssa.OpARMMOVBUload,
ssa.OpARMMOVHload,
ssa.OpARMMOVHUload,
ssa.OpARMMOVWload,
ssa.OpARMMOVFload,
ssa.OpARMMOVDload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMMOVBstore,
ssa.OpARMMOVHstore,
ssa.OpARMMOVWstore,
ssa.OpARMMOVFstore,
ssa.OpARMMOVDstore:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.To, v)
case ssa.OpARMMOVWloadidx, ssa.OpARMMOVBUloadidx, ssa.OpARMMOVBloadidx, ssa.OpARMMOVHUloadidx, ssa.OpARMMOVHloadidx:
// this is just shift 0 bits
fallthrough
case ssa.OpARMMOVWloadshiftLL:
p := genshift(s, v, v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
p.From.Reg = v.Args[0].Reg()
case ssa.OpARMMOVWloadshiftRL:
p := genshift(s, v, v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
p.From.Reg = v.Args[0].Reg()
case ssa.OpARMMOVWloadshiftRA:
p := genshift(s, v, v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
p.From.Reg = v.Args[0].Reg()
case ssa.OpARMMOVWstoreidx, ssa.OpARMMOVBstoreidx, ssa.OpARMMOVHstoreidx:
// this is just shift 0 bits
fallthrough
case ssa.OpARMMOVWstoreshiftLL:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_SHIFT
p.To.Reg = v.Args[0].Reg()
p.To.Offset = int64(makeshift(v, v.Args[1].Reg(), arm.SHIFT_LL, v.AuxInt))
case ssa.OpARMMOVWstoreshiftRL:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_SHIFT
p.To.Reg = v.Args[0].Reg()
p.To.Offset = int64(makeshift(v, v.Args[1].Reg(), arm.SHIFT_LR, v.AuxInt))
case ssa.OpARMMOVWstoreshiftRA:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_SHIFT
p.To.Reg = v.Args[0].Reg()
p.To.Offset = int64(makeshift(v, v.Args[1].Reg(), arm.SHIFT_AR, v.AuxInt))
case ssa.OpARMMOVBreg,
ssa.OpARMMOVBUreg,
ssa.OpARMMOVHreg,
ssa.OpARMMOVHUreg:
a := v.Args[0]
for a.Op == ssa.OpCopy || a.Op == ssa.OpARMMOVWreg || a.Op == ssa.OpARMMOVWnop {
a = a.Args[0]
}
if a.Op == ssa.OpLoadReg {
t := a.Type
switch {
case v.Op == ssa.OpARMMOVBreg && t.Size() == 1 && t.IsSigned(),
v.Op == ssa.OpARMMOVBUreg && t.Size() == 1 && !t.IsSigned(),
v.Op == ssa.OpARMMOVHreg && t.Size() == 2 && t.IsSigned(),
v.Op == ssa.OpARMMOVHUreg && t.Size() == 2 && !t.IsSigned():
// arg is a proper-typed load, already zero/sign-extended, don't extend again
if v.Reg() == v.Args[0].Reg() {
return
}
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
return
default:
}
}
if buildcfg.GOARM >= 6 {
// generate more efficient "MOVB/MOVBU/MOVH/MOVHU Reg@>0, Reg" on ARMv6 & ARMv7
genshift(s, v, v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_RR, 0)
return
}
fallthrough
case ssa.OpARMMVN,
ssa.OpARMCLZ,
ssa.OpARMREV,
ssa.OpARMREV16,
ssa.OpARMRBIT,
ssa.OpARMSQRTF,
ssa.OpARMSQRTD,
ssa.OpARMNEGF,
ssa.OpARMNEGD,
ssa.OpARMABSD,
ssa.OpARMMOVWF,
ssa.OpARMMOVWD,
ssa.OpARMMOVFW,
ssa.OpARMMOVDW,
ssa.OpARMMOVFD,
ssa.OpARMMOVDF:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMMOVWUF,
ssa.OpARMMOVWUD,
ssa.OpARMMOVFWU,
ssa.OpARMMOVDWU:
p := s.Prog(v.Op.Asm())
p.Scond = arm.C_UBIT
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMCMOVWHSconst:
p := s.Prog(arm.AMOVW)
p.Scond = arm.C_SCOND_HS
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMCMOVWLSconst:
p := s.Prog(arm.AMOVW)
p.Scond = arm.C_SCOND_LS
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMCALLstatic, ssa.OpARMCALLclosure, ssa.OpARMCALLinter:
s.Call(v)
case ssa.OpARMCALLtail:
s.TailCall(v)
case ssa.OpARMCALLudiv:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ir.Syms.Udiv
case ssa.OpARMLoweredWB:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = v.Aux.(*obj.LSym)
case ssa.OpARMLoweredPanicBoundsA, ssa.OpARMLoweredPanicBoundsB, ssa.OpARMLoweredPanicBoundsC:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(8) // space used in callee args area by assembly stubs
case ssa.OpARMLoweredPanicExtendA, ssa.OpARMLoweredPanicExtendB, ssa.OpARMLoweredPanicExtendC:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ssagen.ExtendCheckFunc[v.AuxInt]
s.UseArgs(12) // space used in callee args area by assembly stubs
case ssa.OpARMDUFFZERO:
p := s.Prog(obj.ADUFFZERO)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ir.Syms.Duffzero
p.To.Offset = v.AuxInt
case ssa.OpARMDUFFCOPY:
p := s.Prog(obj.ADUFFCOPY)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ir.Syms.Duffcopy
p.To.Offset = v.AuxInt
case ssa.OpARMLoweredNilCheck:
// Issue a load which will fault if arg is nil.
p := s.Prog(arm.AMOVB)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REGTMP
if logopt.Enabled() {
logopt.LogOpt(v.Pos, "nilcheck", "genssa", v.Block.Func.Name)
}
if base.Debug.Nil != 0 && v.Pos.Line() > 1 { // v.Pos.Line()==1 in generated wrappers
base.WarnfAt(v.Pos, "generated nil check")
}
case ssa.OpARMLoweredZero:
// MOVW.P Rarg2, 4(R1)
// CMP Rarg1, R1
// BLE -2(PC)
// arg1 is the address of the last element to zero
// arg2 is known to be zero
// auxint is alignment
var sz int64
var mov obj.As
switch {
case v.AuxInt%4 == 0:
sz = 4
mov = arm.AMOVW
case v.AuxInt%2 == 0:
sz = 2
mov = arm.AMOVH
default:
sz = 1
mov = arm.AMOVB
}
p := s.Prog(mov)
p.Scond = arm.C_PBIT
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = arm.REG_R1
p.To.Offset = sz
p2 := s.Prog(arm.ACMP)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = v.Args[1].Reg()
p2.Reg = arm.REG_R1
p3 := s.Prog(arm.ABLE)
p3.To.Type = obj.TYPE_BRANCH
p3.To.SetTarget(p)
case ssa.OpARMLoweredMove:
// MOVW.P 4(R1), Rtmp
// MOVW.P Rtmp, 4(R2)
// CMP Rarg2, R1
// BLE -3(PC)
// arg2 is the address of the last element of src
// auxint is alignment
var sz int64
var mov obj.As
switch {
case v.AuxInt%4 == 0:
sz = 4
mov = arm.AMOVW
case v.AuxInt%2 == 0:
sz = 2
mov = arm.AMOVH
default:
sz = 1
mov = arm.AMOVB
}
p := s.Prog(mov)
p.Scond = arm.C_PBIT
p.From.Type = obj.TYPE_MEM
p.From.Reg = arm.REG_R1
p.From.Offset = sz
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REGTMP
p2 := s.Prog(mov)
p2.Scond = arm.C_PBIT
p2.From.Type = obj.TYPE_REG
p2.From.Reg = arm.REGTMP
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = arm.REG_R2
p2.To.Offset = sz
p3 := s.Prog(arm.ACMP)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = v.Args[2].Reg()
p3.Reg = arm.REG_R1
p4 := s.Prog(arm.ABLE)
p4.To.Type = obj.TYPE_BRANCH
p4.To.SetTarget(p)
case ssa.OpARMEqual,
ssa.OpARMNotEqual,
ssa.OpARMLessThan,
ssa.OpARMLessEqual,
ssa.OpARMGreaterThan,
ssa.OpARMGreaterEqual,
ssa.OpARMLessThanU,
ssa.OpARMLessEqualU,
ssa.OpARMGreaterThanU,
ssa.OpARMGreaterEqualU:
// generate boolean values
// use conditional move
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 0
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
p = s.Prog(arm.AMOVW)
p.Scond = condBits[v.Op]
p.From.Type = obj.TYPE_CONST
p.From.Offset = 1
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMLoweredGetClosurePtr:
// Closure pointer is R7 (arm.REGCTXT).
ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpARMLoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = -base.Ctxt.FixedFrameSize()
p.From.Name = obj.NAME_PARAM
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMLoweredGetCallerPC:
p := s.Prog(obj.AGETCALLERPC)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMFlagConstant:
v.Fatalf("FlagConstant op should never make it to codegen %v", v.LongString())
case ssa.OpARMInvertFlags:
v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString())
case ssa.OpClobber, ssa.OpClobberReg:
// TODO: implement for clobberdead experiment. Nop is ok for now.
default:
v.Fatalf("genValue not implemented: %s", v.LongString())
}
}
var condBits = map[ssa.Op]uint8{
ssa.OpARMEqual: arm.C_SCOND_EQ,
ssa.OpARMNotEqual: arm.C_SCOND_NE,
ssa.OpARMLessThan: arm.C_SCOND_LT,
ssa.OpARMLessThanU: arm.C_SCOND_LO,
ssa.OpARMLessEqual: arm.C_SCOND_LE,
ssa.OpARMLessEqualU: arm.C_SCOND_LS,
ssa.OpARMGreaterThan: arm.C_SCOND_GT,
ssa.OpARMGreaterThanU: arm.C_SCOND_HI,
ssa.OpARMGreaterEqual: arm.C_SCOND_GE,
ssa.OpARMGreaterEqualU: arm.C_SCOND_HS,
}
var blockJump = map[ssa.BlockKind]struct {
asm, invasm obj.As
}{
ssa.BlockARMEQ: {arm.ABEQ, arm.ABNE},
ssa.BlockARMNE: {arm.ABNE, arm.ABEQ},
ssa.BlockARMLT: {arm.ABLT, arm.ABGE},
ssa.BlockARMGE: {arm.ABGE, arm.ABLT},
ssa.BlockARMLE: {arm.ABLE, arm.ABGT},
ssa.BlockARMGT: {arm.ABGT, arm.ABLE},
ssa.BlockARMULT: {arm.ABLO, arm.ABHS},
ssa.BlockARMUGE: {arm.ABHS, arm.ABLO},
ssa.BlockARMUGT: {arm.ABHI, arm.ABLS},
ssa.BlockARMULE: {arm.ABLS, arm.ABHI},
ssa.BlockARMLTnoov: {arm.ABMI, arm.ABPL},
ssa.BlockARMGEnoov: {arm.ABPL, arm.ABMI},
}
// To model a 'LEnoov' ('<=' without overflow checking) branching
var leJumps = [2][2]ssagen.IndexJump{
{{Jump: arm.ABEQ, Index: 0}, {Jump: arm.ABPL, Index: 1}}, // next == b.Succs[0]
{{Jump: arm.ABMI, Index: 0}, {Jump: arm.ABEQ, Index: 0}}, // next == b.Succs[1]
}
// To model a 'GTnoov' ('>' without overflow checking) branching
var gtJumps = [2][2]ssagen.IndexJump{
{{Jump: arm.ABMI, Index: 1}, {Jump: arm.ABEQ, Index: 1}}, // next == b.Succs[0]
{{Jump: arm.ABEQ, Index: 1}, {Jump: arm.ABPL, Index: 0}}, // next == b.Succs[1]
}
func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind {
case ssa.BlockPlain:
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockDefer:
// defer returns in R0:
// 0 if we should continue executing
// 1 if we should jump to deferreturn call
p := s.Prog(arm.ACMP)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 0
p.Reg = arm.REG_R0
p = s.Prog(arm.ABNE)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockExit, ssa.BlockRetJmp:
case ssa.BlockRet:
s.Prog(obj.ARET)
case ssa.BlockARMEQ, ssa.BlockARMNE,
ssa.BlockARMLT, ssa.BlockARMGE,
ssa.BlockARMLE, ssa.BlockARMGT,
ssa.BlockARMULT, ssa.BlockARMUGT,
ssa.BlockARMULE, ssa.BlockARMUGE,
ssa.BlockARMLTnoov, ssa.BlockARMGEnoov:
jmp := blockJump[b.Kind]
switch next {
case b.Succs[0].Block():
s.Br(jmp.invasm, b.Succs[1].Block())
case b.Succs[1].Block():
s.Br(jmp.asm, b.Succs[0].Block())
default:
if b.Likely != ssa.BranchUnlikely {
s.Br(jmp.asm, b.Succs[0].Block())
s.Br(obj.AJMP, b.Succs[1].Block())
} else {
s.Br(jmp.invasm, b.Succs[1].Block())
s.Br(obj.AJMP, b.Succs[0].Block())
}
}
case ssa.BlockARMLEnoov:
s.CombJump(b, next, &leJumps)
case ssa.BlockARMGTnoov:
s.CombJump(b, next, &gtJumps)
default:
b.Fatalf("branch not implemented: %s", b.LongString())
}
}