blob: c7c39b4183a1fc41d7be69730e54667a7ee33db2 [file] [log] [blame]
// Derived from Inferno utils/8c/txt.c
// http://code.google.com/p/inferno-os/source/browse/utils/8c/txt.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <u.h>
#include <libc.h>
#include "gg.h"
// TODO(rsc): Can make this bigger if we move
// the text segment up higher in 8l for all GOOS.
uint32 unmappedzero = 4096;
#define CASE(a,b) (((a)<<16)|((b)<<0))
void
clearp(Prog *p)
{
p->as = AEND;
p->from.type = D_NONE;
p->from.index = D_NONE;
p->to.type = D_NONE;
p->to.index = D_NONE;
p->loc = pcloc;
pcloc++;
}
static int ddumped;
static Prog *dfirst;
static Prog *dpc;
/*
* generate and return proc with p->as = as,
* linked into program. pc is next instruction.
*/
Prog*
prog(int as)
{
Prog *p;
if(as == ADATA || as == AGLOBL) {
if(ddumped)
fatal("already dumped data");
if(dpc == nil) {
dpc = mal(sizeof(*dpc));
dfirst = dpc;
}
p = dpc;
dpc = mal(sizeof(*dpc));
p->link = dpc;
} else {
p = pc;
pc = mal(sizeof(*pc));
clearp(pc);
p->link = pc;
}
if(lineno == 0) {
if(debug['K'])
warn("prog: line 0");
}
p->as = as;
p->lineno = lineno;
return p;
}
void
dumpdata(void)
{
ddumped = 1;
if(dfirst == nil)
return;
newplist();
*pc = *dfirst;
pc = dpc;
clearp(pc);
}
/*
* generate a branch.
* t is ignored.
*/
Prog*
gbranch(int as, Type *t)
{
Prog *p;
USED(t);
p = prog(as);
p->to.type = D_BRANCH;
p->to.branch = P;
return p;
}
/*
* patch previous branch to jump to to.
*/
void
patch(Prog *p, Prog *to)
{
if(p->to.type != D_BRANCH)
fatal("patch: not a branch");
p->to.branch = to;
p->to.offset = to->loc;
}
Prog*
unpatch(Prog *p)
{
Prog *q;
if(p->to.type != D_BRANCH)
fatal("unpatch: not a branch");
q = p->to.branch;
p->to.branch = P;
p->to.offset = 0;
return q;
}
/*
* start a new Prog list.
*/
Plist*
newplist(void)
{
Plist *pl;
pl = mal(sizeof(*pl));
if(plist == nil)
plist = pl;
else
plast->link = pl;
plast = pl;
pc = mal(sizeof(*pc));
clearp(pc);
pl->firstpc = pc;
return pl;
}
void
clearstk(void)
{
Plist *pl;
Prog *p1, *p2;
Node sp, di, cx, con, ax;
if(plast->firstpc->to.offset <= 0)
return;
// reestablish context for inserting code
// at beginning of function.
pl = plast;
p1 = pl->firstpc;
p2 = p1->link;
pc = mal(sizeof(*pc));
clearp(pc);
p1->link = pc;
// zero stack frame
nodreg(&sp, types[tptr], D_SP);
nodreg(&di, types[tptr], D_DI);
nodreg(&cx, types[TUINT32], D_CX);
nodconst(&con, types[TUINT32], p1->to.offset / widthptr);
gins(ACLD, N, N);
gins(AMOVL, &sp, &di);
gins(AMOVL, &con, &cx);
nodconst(&con, types[TUINT32], 0);
nodreg(&ax, types[TUINT32], D_AX);
gins(AMOVL, &con, &ax);
gins(AREP, N, N);
gins(ASTOSL, N, N);
// continue with original code.
gins(ANOP, N, N)->link = p2;
pc = P;
}
void
gused(Node *n)
{
gins(ANOP, n, N); // used
}
Prog*
gjmp(Prog *to)
{
Prog *p;
p = gbranch(AJMP, T);
if(to != P)
patch(p, to);
return p;
}
void
ggloblnod(Node *nam, int32 width)
{
Prog *p;
p = gins(AGLOBL, nam, N);
p->lineno = nam->lineno;
p->to.sym = S;
p->to.type = D_CONST;
p->to.offset = width;
if(nam->readonly)
p->from.scale = RODATA;
}
void
ggloblsym(Sym *s, int32 width, int dupok)
{
Prog *p;
p = gins(AGLOBL, N, N);
p->from.type = D_EXTERN;
p->from.index = D_NONE;
p->from.sym = s;
p->to.type = D_CONST;
p->to.index = D_NONE;
p->to.offset = width;
if(dupok)
p->from.scale = DUPOK;
p->from.scale |= RODATA;
}
int
isfat(Type *t)
{
if(t != T)
switch(t->etype) {
case TSTRUCT:
case TARRAY:
case TSTRING:
case TINTER: // maybe remove later
return 1;
}
return 0;
}
/*
* naddr of func generates code for address of func.
* if using opcode that can take address implicitly,
* call afunclit to fix up the argument.
*/
void
afunclit(Addr *a)
{
if(a->type == D_ADDR && a->index == D_EXTERN) {
a->type = D_EXTERN;
a->index = D_NONE;
}
}
/*
* return Axxx for Oxxx on type t.
*/
int
optoas(int op, Type *t)
{
int a;
if(t == T)
fatal("optoas: t is nil");
a = AGOK;
switch(CASE(op, simtype[t->etype])) {
default:
fatal("optoas: no entry %O-%T", op, t);
break;
case CASE(OADDR, TPTR32):
a = ALEAL;
break;
case CASE(OEQ, TBOOL):
case CASE(OEQ, TINT8):
case CASE(OEQ, TUINT8):
case CASE(OEQ, TINT16):
case CASE(OEQ, TUINT16):
case CASE(OEQ, TINT32):
case CASE(OEQ, TUINT32):
case CASE(OEQ, TINT64):
case CASE(OEQ, TUINT64):
case CASE(OEQ, TPTR32):
case CASE(OEQ, TPTR64):
case CASE(OEQ, TFLOAT32):
case CASE(OEQ, TFLOAT64):
a = AJEQ;
break;
case CASE(ONE, TBOOL):
case CASE(ONE, TINT8):
case CASE(ONE, TUINT8):
case CASE(ONE, TINT16):
case CASE(ONE, TUINT16):
case CASE(ONE, TINT32):
case CASE(ONE, TUINT32):
case CASE(ONE, TINT64):
case CASE(ONE, TUINT64):
case CASE(ONE, TPTR32):
case CASE(ONE, TPTR64):
case CASE(ONE, TFLOAT32):
case CASE(ONE, TFLOAT64):
a = AJNE;
break;
case CASE(OLT, TINT8):
case CASE(OLT, TINT16):
case CASE(OLT, TINT32):
case CASE(OLT, TINT64):
a = AJLT;
break;
case CASE(OLT, TUINT8):
case CASE(OLT, TUINT16):
case CASE(OLT, TUINT32):
case CASE(OLT, TUINT64):
a = AJCS;
break;
case CASE(OLE, TINT8):
case CASE(OLE, TINT16):
case CASE(OLE, TINT32):
case CASE(OLE, TINT64):
a = AJLE;
break;
case CASE(OLE, TUINT8):
case CASE(OLE, TUINT16):
case CASE(OLE, TUINT32):
case CASE(OLE, TUINT64):
a = AJLS;
break;
case CASE(OGT, TINT8):
case CASE(OGT, TINT16):
case CASE(OGT, TINT32):
case CASE(OGT, TINT64):
a = AJGT;
break;
case CASE(OGT, TUINT8):
case CASE(OGT, TUINT16):
case CASE(OGT, TUINT32):
case CASE(OGT, TUINT64):
case CASE(OLT, TFLOAT32):
case CASE(OLT, TFLOAT64):
a = AJHI;
break;
case CASE(OGE, TINT8):
case CASE(OGE, TINT16):
case CASE(OGE, TINT32):
case CASE(OGE, TINT64):
a = AJGE;
break;
case CASE(OGE, TUINT8):
case CASE(OGE, TUINT16):
case CASE(OGE, TUINT32):
case CASE(OGE, TUINT64):
case CASE(OLE, TFLOAT32):
case CASE(OLE, TFLOAT64):
a = AJCC;
break;
case CASE(OCMP, TBOOL):
case CASE(OCMP, TINT8):
case CASE(OCMP, TUINT8):
a = ACMPB;
break;
case CASE(OCMP, TINT16):
case CASE(OCMP, TUINT16):
a = ACMPW;
break;
case CASE(OCMP, TINT32):
case CASE(OCMP, TUINT32):
case CASE(OCMP, TPTR32):
a = ACMPL;
break;
case CASE(OAS, TBOOL):
case CASE(OAS, TINT8):
case CASE(OAS, TUINT8):
a = AMOVB;
break;
case CASE(OAS, TINT16):
case CASE(OAS, TUINT16):
a = AMOVW;
break;
case CASE(OAS, TINT32):
case CASE(OAS, TUINT32):
case CASE(OAS, TPTR32):
a = AMOVL;
break;
case CASE(OADD, TINT8):
case CASE(OADD, TUINT8):
a = AADDB;
break;
case CASE(OADD, TINT16):
case CASE(OADD, TUINT16):
a = AADDW;
break;
case CASE(OADD, TINT32):
case CASE(OADD, TUINT32):
case CASE(OADD, TPTR32):
a = AADDL;
break;
case CASE(OSUB, TINT8):
case CASE(OSUB, TUINT8):
a = ASUBB;
break;
case CASE(OSUB, TINT16):
case CASE(OSUB, TUINT16):
a = ASUBW;
break;
case CASE(OSUB, TINT32):
case CASE(OSUB, TUINT32):
case CASE(OSUB, TPTR32):
a = ASUBL;
break;
case CASE(OINC, TINT8):
case CASE(OINC, TUINT8):
a = AINCB;
break;
case CASE(OINC, TINT16):
case CASE(OINC, TUINT16):
a = AINCW;
break;
case CASE(OINC, TINT32):
case CASE(OINC, TUINT32):
case CASE(OINC, TPTR32):
a = AINCL;
break;
case CASE(ODEC, TINT8):
case CASE(ODEC, TUINT8):
a = ADECB;
break;
case CASE(ODEC, TINT16):
case CASE(ODEC, TUINT16):
a = ADECW;
break;
case CASE(ODEC, TINT32):
case CASE(ODEC, TUINT32):
case CASE(ODEC, TPTR32):
a = ADECL;
break;
case CASE(OCOM, TINT8):
case CASE(OCOM, TUINT8):
a = ANOTB;
break;
case CASE(OCOM, TINT16):
case CASE(OCOM, TUINT16):
a = ANOTW;
break;
case CASE(OCOM, TINT32):
case CASE(OCOM, TUINT32):
case CASE(OCOM, TPTR32):
a = ANOTL;
break;
case CASE(OMINUS, TINT8):
case CASE(OMINUS, TUINT8):
a = ANEGB;
break;
case CASE(OMINUS, TINT16):
case CASE(OMINUS, TUINT16):
a = ANEGW;
break;
case CASE(OMINUS, TINT32):
case CASE(OMINUS, TUINT32):
case CASE(OMINUS, TPTR32):
a = ANEGL;
break;
case CASE(OAND, TINT8):
case CASE(OAND, TUINT8):
a = AANDB;
break;
case CASE(OAND, TINT16):
case CASE(OAND, TUINT16):
a = AANDW;
break;
case CASE(OAND, TINT32):
case CASE(OAND, TUINT32):
case CASE(OAND, TPTR32):
a = AANDL;
break;
case CASE(OOR, TINT8):
case CASE(OOR, TUINT8):
a = AORB;
break;
case CASE(OOR, TINT16):
case CASE(OOR, TUINT16):
a = AORW;
break;
case CASE(OOR, TINT32):
case CASE(OOR, TUINT32):
case CASE(OOR, TPTR32):
a = AORL;
break;
case CASE(OXOR, TINT8):
case CASE(OXOR, TUINT8):
a = AXORB;
break;
case CASE(OXOR, TINT16):
case CASE(OXOR, TUINT16):
a = AXORW;
break;
case CASE(OXOR, TINT32):
case CASE(OXOR, TUINT32):
case CASE(OXOR, TPTR32):
a = AXORL;
break;
case CASE(OLSH, TINT8):
case CASE(OLSH, TUINT8):
a = ASHLB;
break;
case CASE(OLSH, TINT16):
case CASE(OLSH, TUINT16):
a = ASHLW;
break;
case CASE(OLSH, TINT32):
case CASE(OLSH, TUINT32):
case CASE(OLSH, TPTR32):
a = ASHLL;
break;
case CASE(ORSH, TUINT8):
a = ASHRB;
break;
case CASE(ORSH, TUINT16):
a = ASHRW;
break;
case CASE(ORSH, TUINT32):
case CASE(ORSH, TPTR32):
a = ASHRL;
break;
case CASE(ORSH, TINT8):
a = ASARB;
break;
case CASE(ORSH, TINT16):
a = ASARW;
break;
case CASE(ORSH, TINT32):
a = ASARL;
break;
case CASE(OMUL, TINT8):
case CASE(OMUL, TUINT8):
a = AIMULB;
break;
case CASE(OMUL, TINT16):
case CASE(OMUL, TUINT16):
a = AIMULW;
break;
case CASE(OMUL, TINT32):
case CASE(OMUL, TUINT32):
case CASE(OMUL, TPTR32):
a = AIMULL;
break;
case CASE(ODIV, TINT8):
case CASE(OMOD, TINT8):
a = AIDIVB;
break;
case CASE(ODIV, TUINT8):
case CASE(OMOD, TUINT8):
a = ADIVB;
break;
case CASE(ODIV, TINT16):
case CASE(OMOD, TINT16):
a = AIDIVW;
break;
case CASE(ODIV, TUINT16):
case CASE(OMOD, TUINT16):
a = ADIVW;
break;
case CASE(ODIV, TINT32):
case CASE(OMOD, TINT32):
a = AIDIVL;
break;
case CASE(ODIV, TUINT32):
case CASE(ODIV, TPTR32):
case CASE(OMOD, TUINT32):
case CASE(OMOD, TPTR32):
a = ADIVL;
break;
case CASE(OEXTEND, TINT16):
a = ACWD;
break;
case CASE(OEXTEND, TINT32):
a = ACDQ;
break;
}
return a;
}
#define FCASE(a, b, c) (((a)<<16)|((b)<<8)|(c))
int
foptoas(int op, Type *t, int flg)
{
int et;
et = simtype[t->etype];
// If we need Fpop, it means we're working on
// two different floating-point registers, not memory.
// There the instruction only has a float64 form.
if(flg & Fpop)
et = TFLOAT64;
// clear Frev if unneeded
switch(op) {
case OADD:
case OMUL:
flg &= ~Frev;
break;
}
switch(FCASE(op, et, flg)) {
case FCASE(OADD, TFLOAT32, 0):
return AFADDF;
case FCASE(OADD, TFLOAT64, 0):
return AFADDD;
case FCASE(OADD, TFLOAT64, Fpop):
return AFADDDP;
case FCASE(OSUB, TFLOAT32, 0):
return AFSUBF;
case FCASE(OSUB, TFLOAT32, Frev):
return AFSUBRF;
case FCASE(OSUB, TFLOAT64, 0):
return AFSUBD;
case FCASE(OSUB, TFLOAT64, Frev):
return AFSUBRD;
case FCASE(OSUB, TFLOAT64, Fpop):
return AFSUBDP;
case FCASE(OSUB, TFLOAT64, Fpop|Frev):
return AFSUBRDP;
case FCASE(OMUL, TFLOAT32, 0):
return AFMULF;
case FCASE(OMUL, TFLOAT64, 0):
return AFMULD;
case FCASE(OMUL, TFLOAT64, Fpop):
return AFMULDP;
case FCASE(ODIV, TFLOAT32, 0):
return AFDIVF;
case FCASE(ODIV, TFLOAT32, Frev):
return AFDIVRF;
case FCASE(ODIV, TFLOAT64, 0):
return AFDIVD;
case FCASE(ODIV, TFLOAT64, Frev):
return AFDIVRD;
case FCASE(ODIV, TFLOAT64, Fpop):
return AFDIVDP;
case FCASE(ODIV, TFLOAT64, Fpop|Frev):
return AFDIVRDP;
case FCASE(OCMP, TFLOAT32, 0):
return AFCOMF;
case FCASE(OCMP, TFLOAT32, Fpop):
return AFCOMFP;
case FCASE(OCMP, TFLOAT64, 0):
return AFCOMD;
case FCASE(OCMP, TFLOAT64, Fpop):
return AFCOMDP;
case FCASE(OCMP, TFLOAT64, Fpop2):
return AFCOMDPP;
case FCASE(OMINUS, TFLOAT32, 0):
return AFCHS;
case FCASE(OMINUS, TFLOAT64, 0):
return AFCHS;
}
fatal("foptoas %O %T %#x", op, t, flg);
return 0;
}
static int resvd[] =
{
// D_DI, // for movstring
// D_SI, // for movstring
D_AX, // for divide
D_CX, // for shift
D_DX, // for divide
D_SP, // for stack
D_BL, // because D_BX can be allocated
D_BH,
};
void
ginit(void)
{
int i;
for(i=0; i<nelem(reg); i++)
reg[i] = 1;
for(i=D_AL; i<=D_DI; i++)
reg[i] = 0;
for(i=0; i<nelem(resvd); i++)
reg[resvd[i]]++;
}
ulong regpc[D_NONE];
void
gclean(void)
{
int i;
for(i=0; i<nelem(resvd); i++)
reg[resvd[i]]--;
for(i=D_AL; i<=D_DI; i++)
if(reg[i])
yyerror("reg %R left allocated at %ux", i, regpc[i]);
}
int32
anyregalloc(void)
{
int i, j;
for(i=D_AL; i<=D_DI; i++) {
if(reg[i] == 0)
goto ok;
for(j=0; j<nelem(resvd); j++)
if(resvd[j] == i)
goto ok;
return 1;
ok:;
}
return 0;
}
/*
* allocate register of type t, leave in n.
* if o != N, o is desired fixed register.
* caller must regfree(n).
*/
void
regalloc(Node *n, Type *t, Node *o)
{
int i, et;
if(t == T)
fatal("regalloc: t nil");
et = simtype[t->etype];
switch(et) {
case TINT8:
case TUINT8:
case TINT16:
case TUINT16:
case TINT32:
case TUINT32:
case TINT64:
case TUINT64:
case TPTR32:
case TPTR64:
case TBOOL:
if(o != N && o->op == OREGISTER) {
i = o->val.u.reg;
if(i >= D_AX && i <= D_DI)
goto out;
}
for(i=D_AX; i<=D_DI; i++)
if(reg[i] == 0)
goto out;
fprint(2, "registers allocated at\n");
for(i=D_AX; i<=D_DI; i++)
fprint(2, "\t%R\t%#lux\n", i, regpc[i]);
yyerror("out of fixed registers");
goto err;
case TFLOAT32:
case TFLOAT64:
i = D_F0;
goto out;
}
yyerror("regalloc: unknown type %T", t);
err:
nodreg(n, t, 0);
return;
out:
if (i == D_SP)
print("alloc SP\n");
if(reg[i] == 0) {
regpc[i] = (ulong)getcallerpc(&n);
if(i == D_AX || i == D_CX || i == D_DX || i == D_SP) {
dump("regalloc-o", o);
fatal("regalloc %R", i);
}
}
reg[i]++;
nodreg(n, t, i);
}
void
regfree(Node *n)
{
int i;
if(n->op == ONAME)
return;
if(n->op != OREGISTER && n->op != OINDREG)
fatal("regfree: not a register");
i = n->val.u.reg;
if(i == D_SP)
return;
if(i < 0 || i >= sizeof(reg))
fatal("regfree: reg out of range");
if(reg[i] <= 0)
fatal("regfree: reg not allocated");
reg[i]--;
if(reg[i] == 0 && (i == D_AX || i == D_CX || i == D_DX || i == D_SP))
fatal("regfree %R", i);
}
/*
* initialize n to be register r of type t.
*/
void
nodreg(Node *n, Type *t, int r)
{
if(t == T)
fatal("nodreg: t nil");
memset(n, 0, sizeof(*n));
n->op = OREGISTER;
n->addable = 1;
ullmancalc(n);
n->val.u.reg = r;
n->type = t;
}
/*
* initialize n to be indirect of register r; n is type t.
*/
void
nodindreg(Node *n, Type *t, int r)
{
nodreg(n, t, r);
n->op = OINDREG;
}
Node*
nodarg(Type *t, int fp)
{
Node *n;
Type *first;
Iter savet;
// entire argument struct, not just one arg
switch(t->etype) {
default:
fatal("nodarg %T", t);
case TSTRUCT:
if(!t->funarg)
fatal("nodarg: TSTRUCT but not funarg");
n = nod(ONAME, N, N);
n->sym = lookup(".args");
n->type = t;
first = structfirst(&savet, &t);
if(first == nil)
fatal("nodarg: bad struct");
if(first->width == BADWIDTH)
fatal("nodarg: offset not computed for %T", t);
n->xoffset = first->width;
n->addable = 1;
break;
case TFIELD:
n = nod(ONAME, N, N);
n->type = t->type;
n->sym = t->sym;
if(t->width == BADWIDTH)
fatal("nodarg: offset not computed for %T", t);
n->xoffset = t->width;
n->addable = 1;
n->orig = t->nname;
break;
}
switch(fp) {
default:
fatal("nodarg %T %d", t, fp);
case 0: // output arg
n->op = OINDREG;
n->val.u.reg = D_SP;
break;
case 1: // input arg
n->class = PPARAM;
break;
}
n->typecheck = 1;
return n;
}
/*
* generate
* as $c, reg
*/
void
gconreg(int as, vlong c, int reg)
{
Node n1, n2;
nodconst(&n1, types[TINT64], c);
nodreg(&n2, types[TINT64], reg);
gins(as, &n1, &n2);
}
/*
* swap node contents
*/
void
nswap(Node *a, Node *b)
{
Node t;
t = *a;
*a = *b;
*b = t;
}
/*
* return constant i node.
* overwritten by next call, but useful in calls to gins.
*/
Node*
ncon(uint32 i)
{
static Node n;
if(n.type == T)
nodconst(&n, types[TUINT32], 0);
mpmovecfix(n.val.u.xval, i);
return &n;
}
/*
* Is this node a memory operand?
*/
int
ismem(Node *n)
{
switch(n->op) {
case OLEN:
case OCAP:
case OINDREG:
case ONAME:
case OPARAM:
return 1;
}
return 0;
}
Node sclean[10];
int nsclean;
/*
* n is a 64-bit value. fill in lo and hi to refer to its 32-bit halves.
*/
void
split64(Node *n, Node *lo, Node *hi)
{
Node n1;
int64 i;
if(!is64(n->type))
fatal("split64 %T", n->type);
sclean[nsclean].op = OEMPTY;
if(nsclean >= nelem(sclean))
fatal("split64 clean");
nsclean++;
switch(n->op) {
default:
if(!dotaddable(n, &n1)) {
igen(n, &n1, N);
sclean[nsclean-1] = n1;
}
n = &n1;
goto common;
case ONAME:
if(n->class == PPARAMREF) {
cgen(n->heapaddr, &n1);
sclean[nsclean-1] = n1;
// fall through.
n = &n1;
}
goto common;
case OINDREG:
common:
*lo = *n;
*hi = *n;
lo->type = types[TUINT32];
if(n->type->etype == TINT64)
hi->type = types[TINT32];
else
hi->type = types[TUINT32];
hi->xoffset += 4;
break;
case OLITERAL:
convconst(&n1, n->type, &n->val);
i = mpgetfix(n1.val.u.xval);
nodconst(lo, types[TUINT32], (uint32)i);
i >>= 32;
if(n->type->etype == TINT64)
nodconst(hi, types[TINT32], (int32)i);
else
nodconst(hi, types[TUINT32], (uint32)i);
break;
}
}
void
splitclean(void)
{
if(nsclean <= 0)
fatal("splitclean");
nsclean--;
if(sclean[nsclean].op != OEMPTY)
regfree(&sclean[nsclean]);
}
/*
* set up nodes representing fp constants
*/
Node zerof;
Node two64f;
Node two63f;
void
bignodes(void)
{
static int did;
if(did)
return;
did = 1;
two64f = *ncon(0);
two64f.type = types[TFLOAT64];
two64f.val.ctype = CTFLT;
two64f.val.u.fval = mal(sizeof *two64f.val.u.fval);
mpmovecflt(two64f.val.u.fval, 18446744073709551616.);
two63f = two64f;
two63f.val.u.fval = mal(sizeof *two63f.val.u.fval);
mpmovecflt(two63f.val.u.fval, 9223372036854775808.);
zerof = two64f;
zerof.val.u.fval = mal(sizeof *zerof.val.u.fval);
mpmovecflt(zerof.val.u.fval, 0);
}
void
memname(Node *n, Type *t)
{
tempname(n, t);
strcpy(namebuf, n->sym->name);
namebuf[0] = '.'; // keep optimizer from registerizing
n->sym = lookup(namebuf);
n->orig->sym = n->sym;
}
void
gmove(Node *f, Node *t)
{
int a, ft, tt;
Type *cvt;
Node r1, r2, t1, t2, flo, fhi, tlo, thi, con, f0, f1, ax, dx, cx;
Prog *p1, *p2, *p3;
if(debug['M'])
print("gmove %N -> %N\n", f, t);
ft = simsimtype(f->type);
tt = simsimtype(t->type);
cvt = t->type;
if(iscomplex[ft] || iscomplex[tt]) {
complexmove(f, t);
return;
}
// cannot have two integer memory operands;
// except 64-bit, which always copies via registers anyway.
if(isint[ft] && isint[tt] && !is64(f->type) && !is64(t->type) && ismem(f) && ismem(t))
goto hard;
// convert constant to desired type
if(f->op == OLITERAL) {
if(tt == TFLOAT32)
convconst(&con, types[TFLOAT64], &f->val);
else
convconst(&con, t->type, &f->val);
f = &con;
ft = simsimtype(con.type);
// some constants can't move directly to memory.
if(ismem(t)) {
// float constants come from memory.
if(isfloat[tt])
goto hard;
}
}
// value -> value copy, only one memory operand.
// figure out the instruction to use.
// break out of switch for one-instruction gins.
// goto rdst for "destination must be register".
// goto hard for "convert to cvt type first".
// otherwise handle and return.
switch(CASE(ft, tt)) {
default:
goto fatal;
/*
* integer copy and truncate
*/
case CASE(TINT8, TINT8): // same size
case CASE(TINT8, TUINT8):
case CASE(TUINT8, TINT8):
case CASE(TUINT8, TUINT8):
a = AMOVB;
break;
case CASE(TINT16, TINT8): // truncate
case CASE(TUINT16, TINT8):
case CASE(TINT32, TINT8):
case CASE(TUINT32, TINT8):
case CASE(TINT16, TUINT8):
case CASE(TUINT16, TUINT8):
case CASE(TINT32, TUINT8):
case CASE(TUINT32, TUINT8):
a = AMOVB;
goto rsrc;
case CASE(TINT64, TINT8): // truncate low word
case CASE(TUINT64, TINT8):
case CASE(TINT64, TUINT8):
case CASE(TUINT64, TUINT8):
split64(f, &flo, &fhi);
nodreg(&r1, t->type, D_AX);
gmove(&flo, &r1);
gins(AMOVB, &r1, t);
splitclean();
return;
case CASE(TINT16, TINT16): // same size
case CASE(TINT16, TUINT16):
case CASE(TUINT16, TINT16):
case CASE(TUINT16, TUINT16):
a = AMOVW;
break;
case CASE(TINT32, TINT16): // truncate
case CASE(TUINT32, TINT16):
case CASE(TINT32, TUINT16):
case CASE(TUINT32, TUINT16):
a = AMOVW;
goto rsrc;
case CASE(TINT64, TINT16): // truncate low word
case CASE(TUINT64, TINT16):
case CASE(TINT64, TUINT16):
case CASE(TUINT64, TUINT16):
split64(f, &flo, &fhi);
nodreg(&r1, t->type, D_AX);
gmove(&flo, &r1);
gins(AMOVW, &r1, t);
splitclean();
return;
case CASE(TINT32, TINT32): // same size
case CASE(TINT32, TUINT32):
case CASE(TUINT32, TINT32):
case CASE(TUINT32, TUINT32):
a = AMOVL;
break;
case CASE(TINT64, TINT32): // truncate
case CASE(TUINT64, TINT32):
case CASE(TINT64, TUINT32):
case CASE(TUINT64, TUINT32):
split64(f, &flo, &fhi);
nodreg(&r1, t->type, D_AX);
gmove(&flo, &r1);
gins(AMOVL, &r1, t);
splitclean();
return;
case CASE(TINT64, TINT64): // same size
case CASE(TINT64, TUINT64):
case CASE(TUINT64, TINT64):
case CASE(TUINT64, TUINT64):
split64(f, &flo, &fhi);
split64(t, &tlo, &thi);
if(f->op == OLITERAL) {
gins(AMOVL, &flo, &tlo);
gins(AMOVL, &fhi, &thi);
} else {
nodreg(&r1, t->type, D_AX);
nodreg(&r2, t->type, D_DX);
gins(AMOVL, &flo, &r1);
gins(AMOVL, &fhi, &r2);
gins(AMOVL, &r1, &tlo);
gins(AMOVL, &r2, &thi);
}
splitclean();
splitclean();
return;
/*
* integer up-conversions
*/
case CASE(TINT8, TINT16): // sign extend int8
case CASE(TINT8, TUINT16):
a = AMOVBWSX;
goto rdst;
case CASE(TINT8, TINT32):
case CASE(TINT8, TUINT32):
a = AMOVBLSX;
goto rdst;
case CASE(TINT8, TINT64): // convert via int32
case CASE(TINT8, TUINT64):
cvt = types[TINT32];
goto hard;
case CASE(TUINT8, TINT16): // zero extend uint8
case CASE(TUINT8, TUINT16):
a = AMOVBWZX;
goto rdst;
case CASE(TUINT8, TINT32):
case CASE(TUINT8, TUINT32):
a = AMOVBLZX;
goto rdst;
case CASE(TUINT8, TINT64): // convert via uint32
case CASE(TUINT8, TUINT64):
cvt = types[TUINT32];
goto hard;
case CASE(TINT16, TINT32): // sign extend int16
case CASE(TINT16, TUINT32):
a = AMOVWLSX;
goto rdst;
case CASE(TINT16, TINT64): // convert via int32
case CASE(TINT16, TUINT64):
cvt = types[TINT32];
goto hard;
case CASE(TUINT16, TINT32): // zero extend uint16
case CASE(TUINT16, TUINT32):
a = AMOVWLZX;
goto rdst;
case CASE(TUINT16, TINT64): // convert via uint32
case CASE(TUINT16, TUINT64):
cvt = types[TUINT32];
goto hard;
case CASE(TINT32, TINT64): // sign extend int32
case CASE(TINT32, TUINT64):
split64(t, &tlo, &thi);
nodreg(&flo, tlo.type, D_AX);
nodreg(&fhi, thi.type, D_DX);
gmove(f, &flo);
gins(ACDQ, N, N);
gins(AMOVL, &flo, &tlo);
gins(AMOVL, &fhi, &thi);
splitclean();
return;
case CASE(TUINT32, TINT64): // zero extend uint32
case CASE(TUINT32, TUINT64):
split64(t, &tlo, &thi);
gmove(f, &tlo);
gins(AMOVL, ncon(0), &thi);
splitclean();
return;
/*
* float to integer
*/
case CASE(TFLOAT32, TINT16):
case CASE(TFLOAT32, TINT32):
case CASE(TFLOAT32, TINT64):
case CASE(TFLOAT64, TINT16):
case CASE(TFLOAT64, TINT32):
case CASE(TFLOAT64, TINT64):
if(t->op == OREGISTER)
goto hardmem;
nodreg(&r1, types[ft], D_F0);
if(f->op != OREGISTER) {
if(ft == TFLOAT32)
gins(AFMOVF, f, &r1);
else
gins(AFMOVD, f, &r1);
}
// set round to zero mode during conversion
memname(&t1, types[TUINT16]);
memname(&t2, types[TUINT16]);
gins(AFSTCW, N, &t1);
gins(AMOVW, ncon(0xf7f), &t2);
gins(AFLDCW, &t2, N);
if(tt == TINT16)
gins(AFMOVWP, &r1, t);
else if(tt == TINT32)
gins(AFMOVLP, &r1, t);
else
gins(AFMOVVP, &r1, t);
gins(AFLDCW, &t1, N);
return;
case CASE(TFLOAT32, TINT8):
case CASE(TFLOAT32, TUINT16):
case CASE(TFLOAT32, TUINT8):
case CASE(TFLOAT64, TINT8):
case CASE(TFLOAT64, TUINT16):
case CASE(TFLOAT64, TUINT8):
// convert via int32.
tempname(&t1, types[TINT32]);
gmove(f, &t1);
switch(tt) {
default:
fatal("gmove %T", t);
case TINT8:
gins(ACMPL, &t1, ncon(-0x80));
p1 = gbranch(optoas(OLT, types[TINT32]), T);
gins(ACMPL, &t1, ncon(0x7f));
p2 = gbranch(optoas(OGT, types[TINT32]), T);
p3 = gbranch(AJMP, T);
patch(p1, pc);
patch(p2, pc);
gmove(ncon(-0x80), &t1);
patch(p3, pc);
gmove(&t1, t);
break;
case TUINT8:
gins(ATESTL, ncon(0xffffff00), &t1);
p1 = gbranch(AJEQ, T);
gins(AMOVL, ncon(0), &t1);
patch(p1, pc);
gmove(&t1, t);
break;
case TUINT16:
gins(ATESTL, ncon(0xffff0000), &t1);
p1 = gbranch(AJEQ, T);
gins(AMOVL, ncon(0), &t1);
patch(p1, pc);
gmove(&t1, t);
break;
}
return;
case CASE(TFLOAT32, TUINT32):
case CASE(TFLOAT64, TUINT32):
// convert via int64.
tempname(&t1, types[TINT64]);
gmove(f, &t1);
split64(&t1, &tlo, &thi);
gins(ACMPL, &thi, ncon(0));
p1 = gbranch(AJEQ, T);
gins(AMOVL, ncon(0), &tlo);
patch(p1, pc);
gmove(&tlo, t);
splitclean();
return;
case CASE(TFLOAT32, TUINT64):
case CASE(TFLOAT64, TUINT64):
bignodes();
nodreg(&f0, types[ft], D_F0);
nodreg(&f1, types[ft], D_F0 + 1);
nodreg(&ax, types[TUINT16], D_AX);
gmove(f, &f0);
// if 0 > v { answer = 0 }
gmove(&zerof, &f0);
gins(AFUCOMIP, &f0, &f1);
p1 = gbranch(optoas(OGT, types[tt]), T);
// if 1<<64 <= v { answer = 0 too }
gmove(&two64f, &f0);
gins(AFUCOMIP, &f0, &f1);
p2 = gbranch(optoas(OGT, types[tt]), T);
patch(p1, pc);
gins(AFMOVVP, &f0, t); // don't care about t, but will pop the stack
split64(t, &tlo, &thi);
gins(AMOVL, ncon(0), &tlo);
gins(AMOVL, ncon(0), &thi);
splitclean();
p1 = gbranch(AJMP, T);
patch(p2, pc);
// in range; algorithm is:
// if small enough, use native float64 -> int64 conversion.
// otherwise, subtract 2^63, convert, and add it back.
// set round to zero mode during conversion
memname(&t1, types[TUINT16]);
memname(&t2, types[TUINT16]);
gins(AFSTCW, N, &t1);
gins(AMOVW, ncon(0xf7f), &t2);
gins(AFLDCW, &t2, N);
// actual work
gmove(&two63f, &f0);
gins(AFUCOMIP, &f0, &f1);
p2 = gbranch(optoas(OLE, types[tt]), T);
gins(AFMOVVP, &f0, t);
p3 = gbranch(AJMP, T);
patch(p2, pc);
gmove(&two63f, &f0);
gins(AFSUBDP, &f0, &f1);
gins(AFMOVVP, &f0, t);
split64(t, &tlo, &thi);
gins(AXORL, ncon(0x80000000), &thi); // + 2^63
patch(p3, pc);
splitclean();
// restore rounding mode
gins(AFLDCW, &t1, N);
patch(p1, pc);
return;
/*
* integer to float
*/
case CASE(TINT16, TFLOAT32):
case CASE(TINT16, TFLOAT64):
case CASE(TINT32, TFLOAT32):
case CASE(TINT32, TFLOAT64):
case CASE(TINT64, TFLOAT32):
case CASE(TINT64, TFLOAT64):
if(t->op != OREGISTER)
goto hard;
if(f->op == OREGISTER) {
cvt = f->type;
goto hardmem;
}
switch(ft) {
case TINT16:
a = AFMOVW;
break;
case TINT32:
a = AFMOVL;
break;
default:
a = AFMOVV;
break;
}
break;
case CASE(TINT8, TFLOAT32):
case CASE(TINT8, TFLOAT64):
case CASE(TUINT16, TFLOAT32):
case CASE(TUINT16, TFLOAT64):
case CASE(TUINT8, TFLOAT32):
case CASE(TUINT8, TFLOAT64):
// convert via int32 memory
cvt = types[TINT32];
goto hardmem;
case CASE(TUINT32, TFLOAT32):
case CASE(TUINT32, TFLOAT64):
// convert via int64 memory
cvt = types[TINT64];
goto hardmem;
case CASE(TUINT64, TFLOAT32):
case CASE(TUINT64, TFLOAT64):
// algorithm is:
// if small enough, use native int64 -> uint64 conversion.
// otherwise, halve (rounding to odd?), convert, and double.
nodreg(&ax, types[TUINT32], D_AX);
nodreg(&dx, types[TUINT32], D_DX);
nodreg(&cx, types[TUINT32], D_CX);
tempname(&t1, f->type);
split64(&t1, &tlo, &thi);
gmove(f, &t1);
gins(ACMPL, &thi, ncon(0));
p1 = gbranch(AJLT, T);
// native
t1.type = types[TINT64];
gmove(&t1, t);
p2 = gbranch(AJMP, T);
// simulated
patch(p1, pc);
gmove(&tlo, &ax);
gmove(&thi, &dx);
p1 = gins(ASHRL, ncon(1), &ax);
p1->from.index = D_DX; // double-width shift DX -> AX
p1->from.scale = 0;
gins(ASETCC, N, &cx);
gins(AORB, &cx, &ax);
gins(ASHRL, ncon(1), &dx);
gmove(&dx, &thi);
gmove(&ax, &tlo);
nodreg(&r1, types[tt], D_F0);
nodreg(&r2, types[tt], D_F0 + 1);
gmove(&t1, &r1); // t1.type is TINT64 now, set above
gins(AFMOVD, &r1, &r1);
gins(AFADDDP, &r1, &r2);
gmove(&r1, t);
patch(p2, pc);
splitclean();
return;
/*
* float to float
*/
case CASE(TFLOAT32, TFLOAT32):
case CASE(TFLOAT64, TFLOAT64):
// The way the code generator uses floating-point
// registers, a move from F0 to F0 is intended as a no-op.
// On the x86, it's not: it pushes a second copy of F0
// on the floating point stack. So toss it away here.
// Also, F0 is the *only* register we ever evaluate
// into, so we should only see register/register as F0/F0.
if(ismem(f) && ismem(t))
goto hard;
if(f->op == OREGISTER && t->op == OREGISTER) {
if(f->val.u.reg != D_F0 || t->val.u.reg != D_F0)
goto fatal;
return;
}
a = AFMOVF;
if(ft == TFLOAT64)
a = AFMOVD;
if(ismem(t)) {
if(f->op != OREGISTER || f->val.u.reg != D_F0)
fatal("gmove %N", f);
a = AFMOVFP;
if(ft == TFLOAT64)
a = AFMOVDP;
}
break;
case CASE(TFLOAT32, TFLOAT64):
if(ismem(f) && ismem(t))
goto hard;
if(f->op == OREGISTER && t->op == OREGISTER) {
if(f->val.u.reg != D_F0 || t->val.u.reg != D_F0)
goto fatal;
return;
}
if(f->op == OREGISTER)
gins(AFMOVDP, f, t);
else
gins(AFMOVF, f, t);
return;
case CASE(TFLOAT64, TFLOAT32):
if(ismem(f) && ismem(t))
goto hard;
if(f->op == OREGISTER && t->op == OREGISTER) {
tempname(&r1, types[TFLOAT32]);
gins(AFMOVFP, f, &r1);
gins(AFMOVF, &r1, t);
return;
}
if(f->op == OREGISTER)
gins(AFMOVFP, f, t);
else
gins(AFMOVD, f, t);
return;
}
gins(a, f, t);
return;
rsrc:
// requires register source
regalloc(&r1, f->type, t);
gmove(f, &r1);
gins(a, &r1, t);
regfree(&r1);
return;
rdst:
// requires register destination
regalloc(&r1, t->type, t);
gins(a, f, &r1);
gmove(&r1, t);
regfree(&r1);
return;
hard:
// requires register intermediate
regalloc(&r1, cvt, t);
gmove(f, &r1);
gmove(&r1, t);
regfree(&r1);
return;
hardmem:
// requires memory intermediate
tempname(&r1, cvt);
gmove(f, &r1);
gmove(&r1, t);
return;
fatal:
// should not happen
fatal("gmove %N -> %N", f, t);
}
int
samaddr(Node *f, Node *t)
{
if(f->op != t->op)
return 0;
switch(f->op) {
case OREGISTER:
if(f->val.u.reg != t->val.u.reg)
break;
return 1;
}
return 0;
}
/*
* generate one instruction:
* as f, t
*/
Prog*
gins(int as, Node *f, Node *t)
{
Prog *p;
Addr af, at;
int w;
if(as == AFMOVF && f && f->op == OREGISTER && t && t->op == OREGISTER)
fatal("gins MOVF reg, reg");
switch(as) {
case AMOVB:
case AMOVW:
case AMOVL:
if(f != N && t != N && samaddr(f, t))
return nil;
}
memset(&af, 0, sizeof af);
memset(&at, 0, sizeof at);
if(f != N)
naddr(f, &af, 1);
if(t != N)
naddr(t, &at, 1);
p = prog(as);
if(f != N)
p->from = af;
if(t != N)
p->to = at;
if(debug['g'])
print("%P\n", p);
w = 0;
switch(as) {
case AMOVB:
w = 1;
break;
case AMOVW:
w = 2;
break;
case AMOVL:
w = 4;
break;
}
if(1 && w != 0 && f != N && (af.width > w || at.width > w)) {
dump("bad width from:", f);
dump("bad width to:", t);
fatal("bad width: %P (%d, %d)\n", p, af.width, at.width);
}
return p;
}
static void
checkoffset(Addr *a, int canemitcode)
{
Prog *p;
if(a->offset < unmappedzero)
return;
if(!canemitcode)
fatal("checkoffset %#x, cannot emit code", a->offset);
// cannot rely on unmapped nil page at 0 to catch
// reference with large offset. instead, emit explicit
// test of 0(reg).
p = gins(ATESTB, nodintconst(0), N);
p->to = *a;
p->to.offset = 0;
}
/*
* generate code to compute n;
* make a refer to result.
*/
void
naddr(Node *n, Addr *a, int canemitcode)
{
a->scale = 0;
a->index = D_NONE;
a->type = D_NONE;
a->gotype = S;
a->node = N;
if(n == N)
return;
switch(n->op) {
default:
fatal("naddr: bad %O %D", n->op, a);
break;
case OREGISTER:
a->type = n->val.u.reg;
a->sym = S;
break;
case OINDREG:
a->type = n->val.u.reg+D_INDIR;
a->sym = n->sym;
a->offset = n->xoffset;
break;
case OPARAM:
// n->left is PHEAP ONAME for stack parameter.
// compute address of actual parameter on stack.
a->etype = n->left->type->etype;
a->width = n->left->type->width;
a->offset = n->xoffset;
a->sym = n->left->sym;
a->type = D_PARAM;
a->node = n->left->orig;
break;
case ONAME:
a->etype = 0;
a->width = 0;
if(n->type != T) {
a->etype = simtype[n->type->etype];
a->width = n->type->width;
a->gotype = ngotype(n);
}
a->offset = n->xoffset;
a->sym = n->sym;
a->node = n->orig;
//if(a->node >= (Node*)&n)
// fatal("stack node");
if(a->sym == S)
a->sym = lookup(".noname");
if(n->method) {
if(n->type != T)
if(n->type->sym != S)
if(n->type->sym->pkg != nil)
a->sym = pkglookup(a->sym->name, n->type->sym->pkg);
}
switch(n->class) {
default:
fatal("naddr: ONAME class %S %d\n", n->sym, n->class);
case PEXTERN:
a->type = D_EXTERN;
break;
case PAUTO:
a->type = D_AUTO;
break;
case PPARAM:
case PPARAMOUT:
a->type = D_PARAM;
break;
case PFUNC:
a->index = D_EXTERN;
a->type = D_ADDR;
break;
}
break;
case OLITERAL:
switch(n->val.ctype) {
default:
fatal("naddr: const %lT", n->type);
break;
case CTFLT:
a->type = D_FCONST;
a->dval = mpgetflt(n->val.u.fval);
break;
case CTINT:
a->sym = S;
a->type = D_CONST;
a->offset = mpgetfix(n->val.u.xval);
break;
case CTSTR:
datagostring(n->val.u.sval, a);
break;
case CTBOOL:
a->sym = S;
a->type = D_CONST;
a->offset = n->val.u.bval;
break;
case CTNIL:
a->sym = S;
a->type = D_CONST;
a->offset = 0;
break;
}
break;
case OADDR:
naddr(n->left, a, canemitcode);
if(a->type >= D_INDIR) {
a->type -= D_INDIR;
break;
}
if(a->type == D_EXTERN || a->type == D_STATIC ||
a->type == D_AUTO || a->type == D_PARAM)
if(a->index == D_NONE) {
a->index = a->type;
a->type = D_ADDR;
break;
}
fatal("naddr: OADDR\n");
case OLEN:
// len of string or slice
naddr(n->left, a, canemitcode);
if(a->type == D_CONST && a->offset == 0)
break; // len(nil)
a->etype = TUINT32;
a->offset += Array_nel;
a->width = 4;
if(a->offset >= unmappedzero && a->offset-Array_nel < unmappedzero)
checkoffset(a, canemitcode);
break;
case OCAP:
// cap of string or slice
naddr(n->left, a, canemitcode);
if(a->type == D_CONST && a->offset == 0)
break; // cap(nil)
a->etype = TUINT32;
a->offset += Array_cap;
a->width = 4;
if(a->offset >= unmappedzero && a->offset-Array_nel < unmappedzero)
checkoffset(a, canemitcode);
break;
// case OADD:
// if(n->right->op == OLITERAL) {
// v = n->right->vconst;
// naddr(n->left, a, canemitcode);
// } else
// if(n->left->op == OLITERAL) {
// v = n->left->vconst;
// naddr(n->right, a, canemitcode);
// } else
// goto bad;
// a->offset += v;
// break;
}
}
int
dotaddable(Node *n, Node *n1)
{
int o, oary[10];
Node *nn;
if(n->op != ODOT)
return 0;
o = dotoffset(n, oary, &nn);
if(nn != N && nn->addable && o == 1 && oary[0] >= 0) {
*n1 = *nn;
n1->type = n->type;
n1->xoffset += oary[0];
return 1;
}
return 0;
}
void
sudoclean(void)
{
}
int
sudoaddable(int as, Node *n, Addr *a)
{
USED(as);
USED(n);
USED(a);
return 0;
}