| // Derived from Inferno utils/8c/txt.c |
| // http://code.google.com/p/inferno-os/source/browse/utils/8c/txt.c |
| // |
| // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. |
| // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) |
| // Portions Copyright © 1997-1999 Vita Nuova Limited |
| // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) |
| // Portions Copyright © 2004,2006 Bruce Ellis |
| // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) |
| // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others |
| // Portions Copyright © 2009 The Go Authors. All rights reserved. |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| #include <u.h> |
| #include <libc.h> |
| #include "gg.h" |
| |
| // TODO(rsc): Can make this bigger if we move |
| // the text segment up higher in 8l for all GOOS. |
| uint32 unmappedzero = 4096; |
| |
| #define CASE(a,b) (((a)<<16)|((b)<<0)) |
| |
| void |
| clearp(Prog *p) |
| { |
| p->as = AEND; |
| p->from.type = D_NONE; |
| p->from.index = D_NONE; |
| p->to.type = D_NONE; |
| p->to.index = D_NONE; |
| p->loc = pcloc; |
| pcloc++; |
| } |
| |
| static int ddumped; |
| static Prog *dfirst; |
| static Prog *dpc; |
| |
| /* |
| * generate and return proc with p->as = as, |
| * linked into program. pc is next instruction. |
| */ |
| Prog* |
| prog(int as) |
| { |
| Prog *p; |
| |
| if(as == ADATA || as == AGLOBL) { |
| if(ddumped) |
| fatal("already dumped data"); |
| if(dpc == nil) { |
| dpc = mal(sizeof(*dpc)); |
| dfirst = dpc; |
| } |
| p = dpc; |
| dpc = mal(sizeof(*dpc)); |
| p->link = dpc; |
| } else { |
| p = pc; |
| pc = mal(sizeof(*pc)); |
| clearp(pc); |
| p->link = pc; |
| } |
| |
| if(lineno == 0) { |
| if(debug['K']) |
| warn("prog: line 0"); |
| } |
| |
| p->as = as; |
| p->lineno = lineno; |
| return p; |
| } |
| |
| void |
| dumpdata(void) |
| { |
| ddumped = 1; |
| if(dfirst == nil) |
| return; |
| newplist(); |
| *pc = *dfirst; |
| pc = dpc; |
| clearp(pc); |
| } |
| |
| /* |
| * generate a branch. |
| * t is ignored. |
| */ |
| Prog* |
| gbranch(int as, Type *t) |
| { |
| Prog *p; |
| |
| USED(t); |
| p = prog(as); |
| p->to.type = D_BRANCH; |
| p->to.branch = P; |
| return p; |
| } |
| |
| /* |
| * patch previous branch to jump to to. |
| */ |
| void |
| patch(Prog *p, Prog *to) |
| { |
| if(p->to.type != D_BRANCH) |
| fatal("patch: not a branch"); |
| p->to.branch = to; |
| p->to.offset = to->loc; |
| } |
| |
| Prog* |
| unpatch(Prog *p) |
| { |
| Prog *q; |
| |
| if(p->to.type != D_BRANCH) |
| fatal("unpatch: not a branch"); |
| q = p->to.branch; |
| p->to.branch = P; |
| p->to.offset = 0; |
| return q; |
| } |
| |
| /* |
| * start a new Prog list. |
| */ |
| Plist* |
| newplist(void) |
| { |
| Plist *pl; |
| |
| pl = mal(sizeof(*pl)); |
| if(plist == nil) |
| plist = pl; |
| else |
| plast->link = pl; |
| plast = pl; |
| |
| pc = mal(sizeof(*pc)); |
| clearp(pc); |
| pl->firstpc = pc; |
| |
| return pl; |
| } |
| |
| void |
| clearstk(void) |
| { |
| Plist *pl; |
| Prog *p1, *p2; |
| Node sp, di, cx, con, ax; |
| |
| if(plast->firstpc->to.offset <= 0) |
| return; |
| |
| // reestablish context for inserting code |
| // at beginning of function. |
| pl = plast; |
| p1 = pl->firstpc; |
| p2 = p1->link; |
| pc = mal(sizeof(*pc)); |
| clearp(pc); |
| p1->link = pc; |
| |
| // zero stack frame |
| nodreg(&sp, types[tptr], D_SP); |
| nodreg(&di, types[tptr], D_DI); |
| nodreg(&cx, types[TUINT32], D_CX); |
| nodconst(&con, types[TUINT32], p1->to.offset / widthptr); |
| gins(ACLD, N, N); |
| gins(AMOVL, &sp, &di); |
| gins(AMOVL, &con, &cx); |
| nodconst(&con, types[TUINT32], 0); |
| nodreg(&ax, types[TUINT32], D_AX); |
| gins(AMOVL, &con, &ax); |
| gins(AREP, N, N); |
| gins(ASTOSL, N, N); |
| |
| // continue with original code. |
| gins(ANOP, N, N)->link = p2; |
| pc = P; |
| } |
| |
| void |
| gused(Node *n) |
| { |
| gins(ANOP, n, N); // used |
| } |
| |
| Prog* |
| gjmp(Prog *to) |
| { |
| Prog *p; |
| |
| p = gbranch(AJMP, T); |
| if(to != P) |
| patch(p, to); |
| return p; |
| } |
| |
| void |
| ggloblnod(Node *nam, int32 width) |
| { |
| Prog *p; |
| |
| p = gins(AGLOBL, nam, N); |
| p->lineno = nam->lineno; |
| p->to.sym = S; |
| p->to.type = D_CONST; |
| p->to.offset = width; |
| if(nam->readonly) |
| p->from.scale = RODATA; |
| } |
| |
| void |
| ggloblsym(Sym *s, int32 width, int dupok) |
| { |
| Prog *p; |
| |
| p = gins(AGLOBL, N, N); |
| p->from.type = D_EXTERN; |
| p->from.index = D_NONE; |
| p->from.sym = s; |
| p->to.type = D_CONST; |
| p->to.index = D_NONE; |
| p->to.offset = width; |
| if(dupok) |
| p->from.scale = DUPOK; |
| p->from.scale |= RODATA; |
| } |
| |
| int |
| isfat(Type *t) |
| { |
| if(t != T) |
| switch(t->etype) { |
| case TSTRUCT: |
| case TARRAY: |
| case TSTRING: |
| case TINTER: // maybe remove later |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * naddr of func generates code for address of func. |
| * if using opcode that can take address implicitly, |
| * call afunclit to fix up the argument. |
| */ |
| void |
| afunclit(Addr *a) |
| { |
| if(a->type == D_ADDR && a->index == D_EXTERN) { |
| a->type = D_EXTERN; |
| a->index = D_NONE; |
| } |
| } |
| |
| /* |
| * return Axxx for Oxxx on type t. |
| */ |
| int |
| optoas(int op, Type *t) |
| { |
| int a; |
| |
| if(t == T) |
| fatal("optoas: t is nil"); |
| |
| a = AGOK; |
| switch(CASE(op, simtype[t->etype])) { |
| default: |
| fatal("optoas: no entry %O-%T", op, t); |
| break; |
| |
| case CASE(OADDR, TPTR32): |
| a = ALEAL; |
| break; |
| |
| case CASE(OEQ, TBOOL): |
| case CASE(OEQ, TINT8): |
| case CASE(OEQ, TUINT8): |
| case CASE(OEQ, TINT16): |
| case CASE(OEQ, TUINT16): |
| case CASE(OEQ, TINT32): |
| case CASE(OEQ, TUINT32): |
| case CASE(OEQ, TINT64): |
| case CASE(OEQ, TUINT64): |
| case CASE(OEQ, TPTR32): |
| case CASE(OEQ, TPTR64): |
| case CASE(OEQ, TFLOAT32): |
| case CASE(OEQ, TFLOAT64): |
| a = AJEQ; |
| break; |
| |
| case CASE(ONE, TBOOL): |
| case CASE(ONE, TINT8): |
| case CASE(ONE, TUINT8): |
| case CASE(ONE, TINT16): |
| case CASE(ONE, TUINT16): |
| case CASE(ONE, TINT32): |
| case CASE(ONE, TUINT32): |
| case CASE(ONE, TINT64): |
| case CASE(ONE, TUINT64): |
| case CASE(ONE, TPTR32): |
| case CASE(ONE, TPTR64): |
| case CASE(ONE, TFLOAT32): |
| case CASE(ONE, TFLOAT64): |
| a = AJNE; |
| break; |
| |
| case CASE(OLT, TINT8): |
| case CASE(OLT, TINT16): |
| case CASE(OLT, TINT32): |
| case CASE(OLT, TINT64): |
| a = AJLT; |
| break; |
| |
| case CASE(OLT, TUINT8): |
| case CASE(OLT, TUINT16): |
| case CASE(OLT, TUINT32): |
| case CASE(OLT, TUINT64): |
| a = AJCS; |
| break; |
| |
| case CASE(OLE, TINT8): |
| case CASE(OLE, TINT16): |
| case CASE(OLE, TINT32): |
| case CASE(OLE, TINT64): |
| a = AJLE; |
| break; |
| |
| case CASE(OLE, TUINT8): |
| case CASE(OLE, TUINT16): |
| case CASE(OLE, TUINT32): |
| case CASE(OLE, TUINT64): |
| a = AJLS; |
| break; |
| |
| case CASE(OGT, TINT8): |
| case CASE(OGT, TINT16): |
| case CASE(OGT, TINT32): |
| case CASE(OGT, TINT64): |
| a = AJGT; |
| break; |
| |
| case CASE(OGT, TUINT8): |
| case CASE(OGT, TUINT16): |
| case CASE(OGT, TUINT32): |
| case CASE(OGT, TUINT64): |
| case CASE(OLT, TFLOAT32): |
| case CASE(OLT, TFLOAT64): |
| a = AJHI; |
| break; |
| |
| case CASE(OGE, TINT8): |
| case CASE(OGE, TINT16): |
| case CASE(OGE, TINT32): |
| case CASE(OGE, TINT64): |
| a = AJGE; |
| break; |
| |
| case CASE(OGE, TUINT8): |
| case CASE(OGE, TUINT16): |
| case CASE(OGE, TUINT32): |
| case CASE(OGE, TUINT64): |
| case CASE(OLE, TFLOAT32): |
| case CASE(OLE, TFLOAT64): |
| a = AJCC; |
| break; |
| |
| case CASE(OCMP, TBOOL): |
| case CASE(OCMP, TINT8): |
| case CASE(OCMP, TUINT8): |
| a = ACMPB; |
| break; |
| |
| case CASE(OCMP, TINT16): |
| case CASE(OCMP, TUINT16): |
| a = ACMPW; |
| break; |
| |
| case CASE(OCMP, TINT32): |
| case CASE(OCMP, TUINT32): |
| case CASE(OCMP, TPTR32): |
| a = ACMPL; |
| break; |
| |
| case CASE(OAS, TBOOL): |
| case CASE(OAS, TINT8): |
| case CASE(OAS, TUINT8): |
| a = AMOVB; |
| break; |
| |
| case CASE(OAS, TINT16): |
| case CASE(OAS, TUINT16): |
| a = AMOVW; |
| break; |
| |
| case CASE(OAS, TINT32): |
| case CASE(OAS, TUINT32): |
| case CASE(OAS, TPTR32): |
| a = AMOVL; |
| break; |
| |
| case CASE(OADD, TINT8): |
| case CASE(OADD, TUINT8): |
| a = AADDB; |
| break; |
| |
| case CASE(OADD, TINT16): |
| case CASE(OADD, TUINT16): |
| a = AADDW; |
| break; |
| |
| case CASE(OADD, TINT32): |
| case CASE(OADD, TUINT32): |
| case CASE(OADD, TPTR32): |
| a = AADDL; |
| break; |
| |
| case CASE(OSUB, TINT8): |
| case CASE(OSUB, TUINT8): |
| a = ASUBB; |
| break; |
| |
| case CASE(OSUB, TINT16): |
| case CASE(OSUB, TUINT16): |
| a = ASUBW; |
| break; |
| |
| case CASE(OSUB, TINT32): |
| case CASE(OSUB, TUINT32): |
| case CASE(OSUB, TPTR32): |
| a = ASUBL; |
| break; |
| |
| case CASE(OINC, TINT8): |
| case CASE(OINC, TUINT8): |
| a = AINCB; |
| break; |
| |
| case CASE(OINC, TINT16): |
| case CASE(OINC, TUINT16): |
| a = AINCW; |
| break; |
| |
| case CASE(OINC, TINT32): |
| case CASE(OINC, TUINT32): |
| case CASE(OINC, TPTR32): |
| a = AINCL; |
| break; |
| |
| case CASE(ODEC, TINT8): |
| case CASE(ODEC, TUINT8): |
| a = ADECB; |
| break; |
| |
| case CASE(ODEC, TINT16): |
| case CASE(ODEC, TUINT16): |
| a = ADECW; |
| break; |
| |
| case CASE(ODEC, TINT32): |
| case CASE(ODEC, TUINT32): |
| case CASE(ODEC, TPTR32): |
| a = ADECL; |
| break; |
| |
| case CASE(OCOM, TINT8): |
| case CASE(OCOM, TUINT8): |
| a = ANOTB; |
| break; |
| |
| case CASE(OCOM, TINT16): |
| case CASE(OCOM, TUINT16): |
| a = ANOTW; |
| break; |
| |
| case CASE(OCOM, TINT32): |
| case CASE(OCOM, TUINT32): |
| case CASE(OCOM, TPTR32): |
| a = ANOTL; |
| break; |
| |
| case CASE(OMINUS, TINT8): |
| case CASE(OMINUS, TUINT8): |
| a = ANEGB; |
| break; |
| |
| case CASE(OMINUS, TINT16): |
| case CASE(OMINUS, TUINT16): |
| a = ANEGW; |
| break; |
| |
| case CASE(OMINUS, TINT32): |
| case CASE(OMINUS, TUINT32): |
| case CASE(OMINUS, TPTR32): |
| a = ANEGL; |
| break; |
| |
| case CASE(OAND, TINT8): |
| case CASE(OAND, TUINT8): |
| a = AANDB; |
| break; |
| |
| case CASE(OAND, TINT16): |
| case CASE(OAND, TUINT16): |
| a = AANDW; |
| break; |
| |
| case CASE(OAND, TINT32): |
| case CASE(OAND, TUINT32): |
| case CASE(OAND, TPTR32): |
| a = AANDL; |
| break; |
| |
| case CASE(OOR, TINT8): |
| case CASE(OOR, TUINT8): |
| a = AORB; |
| break; |
| |
| case CASE(OOR, TINT16): |
| case CASE(OOR, TUINT16): |
| a = AORW; |
| break; |
| |
| case CASE(OOR, TINT32): |
| case CASE(OOR, TUINT32): |
| case CASE(OOR, TPTR32): |
| a = AORL; |
| break; |
| |
| case CASE(OXOR, TINT8): |
| case CASE(OXOR, TUINT8): |
| a = AXORB; |
| break; |
| |
| case CASE(OXOR, TINT16): |
| case CASE(OXOR, TUINT16): |
| a = AXORW; |
| break; |
| |
| case CASE(OXOR, TINT32): |
| case CASE(OXOR, TUINT32): |
| case CASE(OXOR, TPTR32): |
| a = AXORL; |
| break; |
| |
| case CASE(OLSH, TINT8): |
| case CASE(OLSH, TUINT8): |
| a = ASHLB; |
| break; |
| |
| case CASE(OLSH, TINT16): |
| case CASE(OLSH, TUINT16): |
| a = ASHLW; |
| break; |
| |
| case CASE(OLSH, TINT32): |
| case CASE(OLSH, TUINT32): |
| case CASE(OLSH, TPTR32): |
| a = ASHLL; |
| break; |
| |
| case CASE(ORSH, TUINT8): |
| a = ASHRB; |
| break; |
| |
| case CASE(ORSH, TUINT16): |
| a = ASHRW; |
| break; |
| |
| case CASE(ORSH, TUINT32): |
| case CASE(ORSH, TPTR32): |
| a = ASHRL; |
| break; |
| |
| case CASE(ORSH, TINT8): |
| a = ASARB; |
| break; |
| |
| case CASE(ORSH, TINT16): |
| a = ASARW; |
| break; |
| |
| case CASE(ORSH, TINT32): |
| a = ASARL; |
| break; |
| |
| case CASE(OMUL, TINT8): |
| case CASE(OMUL, TUINT8): |
| a = AIMULB; |
| break; |
| |
| case CASE(OMUL, TINT16): |
| case CASE(OMUL, TUINT16): |
| a = AIMULW; |
| break; |
| |
| case CASE(OMUL, TINT32): |
| case CASE(OMUL, TUINT32): |
| case CASE(OMUL, TPTR32): |
| a = AIMULL; |
| break; |
| |
| case CASE(ODIV, TINT8): |
| case CASE(OMOD, TINT8): |
| a = AIDIVB; |
| break; |
| |
| case CASE(ODIV, TUINT8): |
| case CASE(OMOD, TUINT8): |
| a = ADIVB; |
| break; |
| |
| case CASE(ODIV, TINT16): |
| case CASE(OMOD, TINT16): |
| a = AIDIVW; |
| break; |
| |
| case CASE(ODIV, TUINT16): |
| case CASE(OMOD, TUINT16): |
| a = ADIVW; |
| break; |
| |
| case CASE(ODIV, TINT32): |
| case CASE(OMOD, TINT32): |
| a = AIDIVL; |
| break; |
| |
| case CASE(ODIV, TUINT32): |
| case CASE(ODIV, TPTR32): |
| case CASE(OMOD, TUINT32): |
| case CASE(OMOD, TPTR32): |
| a = ADIVL; |
| break; |
| |
| case CASE(OEXTEND, TINT16): |
| a = ACWD; |
| break; |
| |
| case CASE(OEXTEND, TINT32): |
| a = ACDQ; |
| break; |
| } |
| return a; |
| } |
| |
| #define FCASE(a, b, c) (((a)<<16)|((b)<<8)|(c)) |
| int |
| foptoas(int op, Type *t, int flg) |
| { |
| int et; |
| |
| et = simtype[t->etype]; |
| |
| // If we need Fpop, it means we're working on |
| // two different floating-point registers, not memory. |
| // There the instruction only has a float64 form. |
| if(flg & Fpop) |
| et = TFLOAT64; |
| |
| // clear Frev if unneeded |
| switch(op) { |
| case OADD: |
| case OMUL: |
| flg &= ~Frev; |
| break; |
| } |
| |
| switch(FCASE(op, et, flg)) { |
| case FCASE(OADD, TFLOAT32, 0): |
| return AFADDF; |
| case FCASE(OADD, TFLOAT64, 0): |
| return AFADDD; |
| case FCASE(OADD, TFLOAT64, Fpop): |
| return AFADDDP; |
| |
| case FCASE(OSUB, TFLOAT32, 0): |
| return AFSUBF; |
| case FCASE(OSUB, TFLOAT32, Frev): |
| return AFSUBRF; |
| |
| case FCASE(OSUB, TFLOAT64, 0): |
| return AFSUBD; |
| case FCASE(OSUB, TFLOAT64, Frev): |
| return AFSUBRD; |
| case FCASE(OSUB, TFLOAT64, Fpop): |
| return AFSUBDP; |
| case FCASE(OSUB, TFLOAT64, Fpop|Frev): |
| return AFSUBRDP; |
| |
| case FCASE(OMUL, TFLOAT32, 0): |
| return AFMULF; |
| case FCASE(OMUL, TFLOAT64, 0): |
| return AFMULD; |
| case FCASE(OMUL, TFLOAT64, Fpop): |
| return AFMULDP; |
| |
| case FCASE(ODIV, TFLOAT32, 0): |
| return AFDIVF; |
| case FCASE(ODIV, TFLOAT32, Frev): |
| return AFDIVRF; |
| |
| case FCASE(ODIV, TFLOAT64, 0): |
| return AFDIVD; |
| case FCASE(ODIV, TFLOAT64, Frev): |
| return AFDIVRD; |
| case FCASE(ODIV, TFLOAT64, Fpop): |
| return AFDIVDP; |
| case FCASE(ODIV, TFLOAT64, Fpop|Frev): |
| return AFDIVRDP; |
| |
| case FCASE(OCMP, TFLOAT32, 0): |
| return AFCOMF; |
| case FCASE(OCMP, TFLOAT32, Fpop): |
| return AFCOMFP; |
| case FCASE(OCMP, TFLOAT64, 0): |
| return AFCOMD; |
| case FCASE(OCMP, TFLOAT64, Fpop): |
| return AFCOMDP; |
| case FCASE(OCMP, TFLOAT64, Fpop2): |
| return AFCOMDPP; |
| |
| case FCASE(OMINUS, TFLOAT32, 0): |
| return AFCHS; |
| case FCASE(OMINUS, TFLOAT64, 0): |
| return AFCHS; |
| } |
| |
| fatal("foptoas %O %T %#x", op, t, flg); |
| return 0; |
| } |
| |
| static int resvd[] = |
| { |
| // D_DI, // for movstring |
| // D_SI, // for movstring |
| |
| D_AX, // for divide |
| D_CX, // for shift |
| D_DX, // for divide |
| D_SP, // for stack |
| |
| D_BL, // because D_BX can be allocated |
| D_BH, |
| }; |
| |
| void |
| ginit(void) |
| { |
| int i; |
| |
| for(i=0; i<nelem(reg); i++) |
| reg[i] = 1; |
| for(i=D_AL; i<=D_DI; i++) |
| reg[i] = 0; |
| for(i=0; i<nelem(resvd); i++) |
| reg[resvd[i]]++; |
| } |
| |
| ulong regpc[D_NONE]; |
| |
| void |
| gclean(void) |
| { |
| int i; |
| |
| for(i=0; i<nelem(resvd); i++) |
| reg[resvd[i]]--; |
| |
| for(i=D_AL; i<=D_DI; i++) |
| if(reg[i]) |
| yyerror("reg %R left allocated at %ux", i, regpc[i]); |
| } |
| |
| int32 |
| anyregalloc(void) |
| { |
| int i, j; |
| |
| for(i=D_AL; i<=D_DI; i++) { |
| if(reg[i] == 0) |
| goto ok; |
| for(j=0; j<nelem(resvd); j++) |
| if(resvd[j] == i) |
| goto ok; |
| return 1; |
| ok:; |
| } |
| return 0; |
| } |
| |
| /* |
| * allocate register of type t, leave in n. |
| * if o != N, o is desired fixed register. |
| * caller must regfree(n). |
| */ |
| void |
| regalloc(Node *n, Type *t, Node *o) |
| { |
| int i, et; |
| |
| if(t == T) |
| fatal("regalloc: t nil"); |
| et = simtype[t->etype]; |
| |
| switch(et) { |
| case TINT8: |
| case TUINT8: |
| case TINT16: |
| case TUINT16: |
| case TINT32: |
| case TUINT32: |
| case TINT64: |
| case TUINT64: |
| case TPTR32: |
| case TPTR64: |
| case TBOOL: |
| if(o != N && o->op == OREGISTER) { |
| i = o->val.u.reg; |
| if(i >= D_AX && i <= D_DI) |
| goto out; |
| } |
| for(i=D_AX; i<=D_DI; i++) |
| if(reg[i] == 0) |
| goto out; |
| |
| fprint(2, "registers allocated at\n"); |
| for(i=D_AX; i<=D_DI; i++) |
| fprint(2, "\t%R\t%#lux\n", i, regpc[i]); |
| yyerror("out of fixed registers"); |
| goto err; |
| |
| case TFLOAT32: |
| case TFLOAT64: |
| i = D_F0; |
| goto out; |
| } |
| yyerror("regalloc: unknown type %T", t); |
| |
| err: |
| nodreg(n, t, 0); |
| return; |
| |
| out: |
| if (i == D_SP) |
| print("alloc SP\n"); |
| if(reg[i] == 0) { |
| regpc[i] = (ulong)getcallerpc(&n); |
| if(i == D_AX || i == D_CX || i == D_DX || i == D_SP) { |
| dump("regalloc-o", o); |
| fatal("regalloc %R", i); |
| } |
| } |
| reg[i]++; |
| nodreg(n, t, i); |
| } |
| |
| void |
| regfree(Node *n) |
| { |
| int i; |
| |
| if(n->op == ONAME) |
| return; |
| if(n->op != OREGISTER && n->op != OINDREG) |
| fatal("regfree: not a register"); |
| i = n->val.u.reg; |
| if(i == D_SP) |
| return; |
| if(i < 0 || i >= sizeof(reg)) |
| fatal("regfree: reg out of range"); |
| if(reg[i] <= 0) |
| fatal("regfree: reg not allocated"); |
| reg[i]--; |
| if(reg[i] == 0 && (i == D_AX || i == D_CX || i == D_DX || i == D_SP)) |
| fatal("regfree %R", i); |
| } |
| |
| /* |
| * initialize n to be register r of type t. |
| */ |
| void |
| nodreg(Node *n, Type *t, int r) |
| { |
| if(t == T) |
| fatal("nodreg: t nil"); |
| |
| memset(n, 0, sizeof(*n)); |
| n->op = OREGISTER; |
| n->addable = 1; |
| ullmancalc(n); |
| n->val.u.reg = r; |
| n->type = t; |
| } |
| |
| /* |
| * initialize n to be indirect of register r; n is type t. |
| */ |
| void |
| nodindreg(Node *n, Type *t, int r) |
| { |
| nodreg(n, t, r); |
| n->op = OINDREG; |
| } |
| |
| Node* |
| nodarg(Type *t, int fp) |
| { |
| Node *n; |
| Type *first; |
| Iter savet; |
| |
| // entire argument struct, not just one arg |
| switch(t->etype) { |
| default: |
| fatal("nodarg %T", t); |
| |
| case TSTRUCT: |
| if(!t->funarg) |
| fatal("nodarg: TSTRUCT but not funarg"); |
| n = nod(ONAME, N, N); |
| n->sym = lookup(".args"); |
| n->type = t; |
| first = structfirst(&savet, &t); |
| if(first == nil) |
| fatal("nodarg: bad struct"); |
| if(first->width == BADWIDTH) |
| fatal("nodarg: offset not computed for %T", t); |
| n->xoffset = first->width; |
| n->addable = 1; |
| break; |
| |
| case TFIELD: |
| n = nod(ONAME, N, N); |
| n->type = t->type; |
| n->sym = t->sym; |
| if(t->width == BADWIDTH) |
| fatal("nodarg: offset not computed for %T", t); |
| n->xoffset = t->width; |
| n->addable = 1; |
| n->orig = t->nname; |
| break; |
| } |
| |
| switch(fp) { |
| default: |
| fatal("nodarg %T %d", t, fp); |
| |
| case 0: // output arg |
| n->op = OINDREG; |
| n->val.u.reg = D_SP; |
| break; |
| |
| case 1: // input arg |
| n->class = PPARAM; |
| break; |
| } |
| |
| n->typecheck = 1; |
| return n; |
| } |
| |
| /* |
| * generate |
| * as $c, reg |
| */ |
| void |
| gconreg(int as, vlong c, int reg) |
| { |
| Node n1, n2; |
| |
| nodconst(&n1, types[TINT64], c); |
| nodreg(&n2, types[TINT64], reg); |
| gins(as, &n1, &n2); |
| } |
| |
| /* |
| * swap node contents |
| */ |
| void |
| nswap(Node *a, Node *b) |
| { |
| Node t; |
| |
| t = *a; |
| *a = *b; |
| *b = t; |
| } |
| |
| /* |
| * return constant i node. |
| * overwritten by next call, but useful in calls to gins. |
| */ |
| Node* |
| ncon(uint32 i) |
| { |
| static Node n; |
| |
| if(n.type == T) |
| nodconst(&n, types[TUINT32], 0); |
| mpmovecfix(n.val.u.xval, i); |
| return &n; |
| } |
| |
| /* |
| * Is this node a memory operand? |
| */ |
| int |
| ismem(Node *n) |
| { |
| switch(n->op) { |
| case OLEN: |
| case OCAP: |
| case OINDREG: |
| case ONAME: |
| case OPARAM: |
| return 1; |
| } |
| return 0; |
| } |
| |
| Node sclean[10]; |
| int nsclean; |
| |
| /* |
| * n is a 64-bit value. fill in lo and hi to refer to its 32-bit halves. |
| */ |
| void |
| split64(Node *n, Node *lo, Node *hi) |
| { |
| Node n1; |
| int64 i; |
| |
| if(!is64(n->type)) |
| fatal("split64 %T", n->type); |
| |
| sclean[nsclean].op = OEMPTY; |
| if(nsclean >= nelem(sclean)) |
| fatal("split64 clean"); |
| nsclean++; |
| switch(n->op) { |
| default: |
| if(!dotaddable(n, &n1)) { |
| igen(n, &n1, N); |
| sclean[nsclean-1] = n1; |
| } |
| n = &n1; |
| goto common; |
| case ONAME: |
| if(n->class == PPARAMREF) { |
| cgen(n->heapaddr, &n1); |
| sclean[nsclean-1] = n1; |
| // fall through. |
| n = &n1; |
| } |
| goto common; |
| case OINDREG: |
| common: |
| *lo = *n; |
| *hi = *n; |
| lo->type = types[TUINT32]; |
| if(n->type->etype == TINT64) |
| hi->type = types[TINT32]; |
| else |
| hi->type = types[TUINT32]; |
| hi->xoffset += 4; |
| break; |
| |
| case OLITERAL: |
| convconst(&n1, n->type, &n->val); |
| i = mpgetfix(n1.val.u.xval); |
| nodconst(lo, types[TUINT32], (uint32)i); |
| i >>= 32; |
| if(n->type->etype == TINT64) |
| nodconst(hi, types[TINT32], (int32)i); |
| else |
| nodconst(hi, types[TUINT32], (uint32)i); |
| break; |
| } |
| } |
| |
| void |
| splitclean(void) |
| { |
| if(nsclean <= 0) |
| fatal("splitclean"); |
| nsclean--; |
| if(sclean[nsclean].op != OEMPTY) |
| regfree(&sclean[nsclean]); |
| } |
| |
| /* |
| * set up nodes representing fp constants |
| */ |
| Node zerof; |
| Node two64f; |
| Node two63f; |
| |
| void |
| bignodes(void) |
| { |
| static int did; |
| |
| if(did) |
| return; |
| did = 1; |
| |
| two64f = *ncon(0); |
| two64f.type = types[TFLOAT64]; |
| two64f.val.ctype = CTFLT; |
| two64f.val.u.fval = mal(sizeof *two64f.val.u.fval); |
| mpmovecflt(two64f.val.u.fval, 18446744073709551616.); |
| |
| two63f = two64f; |
| two63f.val.u.fval = mal(sizeof *two63f.val.u.fval); |
| mpmovecflt(two63f.val.u.fval, 9223372036854775808.); |
| |
| zerof = two64f; |
| zerof.val.u.fval = mal(sizeof *zerof.val.u.fval); |
| mpmovecflt(zerof.val.u.fval, 0); |
| } |
| |
| void |
| memname(Node *n, Type *t) |
| { |
| tempname(n, t); |
| strcpy(namebuf, n->sym->name); |
| namebuf[0] = '.'; // keep optimizer from registerizing |
| n->sym = lookup(namebuf); |
| n->orig->sym = n->sym; |
| } |
| |
| void |
| gmove(Node *f, Node *t) |
| { |
| int a, ft, tt; |
| Type *cvt; |
| Node r1, r2, t1, t2, flo, fhi, tlo, thi, con, f0, f1, ax, dx, cx; |
| Prog *p1, *p2, *p3; |
| |
| if(debug['M']) |
| print("gmove %N -> %N\n", f, t); |
| |
| ft = simsimtype(f->type); |
| tt = simsimtype(t->type); |
| cvt = t->type; |
| |
| if(iscomplex[ft] || iscomplex[tt]) { |
| complexmove(f, t); |
| return; |
| } |
| |
| // cannot have two integer memory operands; |
| // except 64-bit, which always copies via registers anyway. |
| if(isint[ft] && isint[tt] && !is64(f->type) && !is64(t->type) && ismem(f) && ismem(t)) |
| goto hard; |
| |
| // convert constant to desired type |
| if(f->op == OLITERAL) { |
| if(tt == TFLOAT32) |
| convconst(&con, types[TFLOAT64], &f->val); |
| else |
| convconst(&con, t->type, &f->val); |
| f = &con; |
| ft = simsimtype(con.type); |
| |
| // some constants can't move directly to memory. |
| if(ismem(t)) { |
| // float constants come from memory. |
| if(isfloat[tt]) |
| goto hard; |
| } |
| } |
| |
| // value -> value copy, only one memory operand. |
| // figure out the instruction to use. |
| // break out of switch for one-instruction gins. |
| // goto rdst for "destination must be register". |
| // goto hard for "convert to cvt type first". |
| // otherwise handle and return. |
| |
| switch(CASE(ft, tt)) { |
| default: |
| goto fatal; |
| |
| /* |
| * integer copy and truncate |
| */ |
| case CASE(TINT8, TINT8): // same size |
| case CASE(TINT8, TUINT8): |
| case CASE(TUINT8, TINT8): |
| case CASE(TUINT8, TUINT8): |
| a = AMOVB; |
| break; |
| |
| case CASE(TINT16, TINT8): // truncate |
| case CASE(TUINT16, TINT8): |
| case CASE(TINT32, TINT8): |
| case CASE(TUINT32, TINT8): |
| case CASE(TINT16, TUINT8): |
| case CASE(TUINT16, TUINT8): |
| case CASE(TINT32, TUINT8): |
| case CASE(TUINT32, TUINT8): |
| a = AMOVB; |
| goto rsrc; |
| |
| case CASE(TINT64, TINT8): // truncate low word |
| case CASE(TUINT64, TINT8): |
| case CASE(TINT64, TUINT8): |
| case CASE(TUINT64, TUINT8): |
| split64(f, &flo, &fhi); |
| nodreg(&r1, t->type, D_AX); |
| gmove(&flo, &r1); |
| gins(AMOVB, &r1, t); |
| splitclean(); |
| return; |
| |
| case CASE(TINT16, TINT16): // same size |
| case CASE(TINT16, TUINT16): |
| case CASE(TUINT16, TINT16): |
| case CASE(TUINT16, TUINT16): |
| a = AMOVW; |
| break; |
| |
| case CASE(TINT32, TINT16): // truncate |
| case CASE(TUINT32, TINT16): |
| case CASE(TINT32, TUINT16): |
| case CASE(TUINT32, TUINT16): |
| a = AMOVW; |
| goto rsrc; |
| |
| case CASE(TINT64, TINT16): // truncate low word |
| case CASE(TUINT64, TINT16): |
| case CASE(TINT64, TUINT16): |
| case CASE(TUINT64, TUINT16): |
| split64(f, &flo, &fhi); |
| nodreg(&r1, t->type, D_AX); |
| gmove(&flo, &r1); |
| gins(AMOVW, &r1, t); |
| splitclean(); |
| return; |
| |
| case CASE(TINT32, TINT32): // same size |
| case CASE(TINT32, TUINT32): |
| case CASE(TUINT32, TINT32): |
| case CASE(TUINT32, TUINT32): |
| a = AMOVL; |
| break; |
| |
| case CASE(TINT64, TINT32): // truncate |
| case CASE(TUINT64, TINT32): |
| case CASE(TINT64, TUINT32): |
| case CASE(TUINT64, TUINT32): |
| split64(f, &flo, &fhi); |
| nodreg(&r1, t->type, D_AX); |
| gmove(&flo, &r1); |
| gins(AMOVL, &r1, t); |
| splitclean(); |
| return; |
| |
| case CASE(TINT64, TINT64): // same size |
| case CASE(TINT64, TUINT64): |
| case CASE(TUINT64, TINT64): |
| case CASE(TUINT64, TUINT64): |
| split64(f, &flo, &fhi); |
| split64(t, &tlo, &thi); |
| if(f->op == OLITERAL) { |
| gins(AMOVL, &flo, &tlo); |
| gins(AMOVL, &fhi, &thi); |
| } else { |
| nodreg(&r1, t->type, D_AX); |
| nodreg(&r2, t->type, D_DX); |
| gins(AMOVL, &flo, &r1); |
| gins(AMOVL, &fhi, &r2); |
| gins(AMOVL, &r1, &tlo); |
| gins(AMOVL, &r2, &thi); |
| } |
| splitclean(); |
| splitclean(); |
| return; |
| |
| /* |
| * integer up-conversions |
| */ |
| case CASE(TINT8, TINT16): // sign extend int8 |
| case CASE(TINT8, TUINT16): |
| a = AMOVBWSX; |
| goto rdst; |
| case CASE(TINT8, TINT32): |
| case CASE(TINT8, TUINT32): |
| a = AMOVBLSX; |
| goto rdst; |
| case CASE(TINT8, TINT64): // convert via int32 |
| case CASE(TINT8, TUINT64): |
| cvt = types[TINT32]; |
| goto hard; |
| |
| case CASE(TUINT8, TINT16): // zero extend uint8 |
| case CASE(TUINT8, TUINT16): |
| a = AMOVBWZX; |
| goto rdst; |
| case CASE(TUINT8, TINT32): |
| case CASE(TUINT8, TUINT32): |
| a = AMOVBLZX; |
| goto rdst; |
| case CASE(TUINT8, TINT64): // convert via uint32 |
| case CASE(TUINT8, TUINT64): |
| cvt = types[TUINT32]; |
| goto hard; |
| |
| case CASE(TINT16, TINT32): // sign extend int16 |
| case CASE(TINT16, TUINT32): |
| a = AMOVWLSX; |
| goto rdst; |
| case CASE(TINT16, TINT64): // convert via int32 |
| case CASE(TINT16, TUINT64): |
| cvt = types[TINT32]; |
| goto hard; |
| |
| case CASE(TUINT16, TINT32): // zero extend uint16 |
| case CASE(TUINT16, TUINT32): |
| a = AMOVWLZX; |
| goto rdst; |
| case CASE(TUINT16, TINT64): // convert via uint32 |
| case CASE(TUINT16, TUINT64): |
| cvt = types[TUINT32]; |
| goto hard; |
| |
| case CASE(TINT32, TINT64): // sign extend int32 |
| case CASE(TINT32, TUINT64): |
| split64(t, &tlo, &thi); |
| nodreg(&flo, tlo.type, D_AX); |
| nodreg(&fhi, thi.type, D_DX); |
| gmove(f, &flo); |
| gins(ACDQ, N, N); |
| gins(AMOVL, &flo, &tlo); |
| gins(AMOVL, &fhi, &thi); |
| splitclean(); |
| return; |
| |
| case CASE(TUINT32, TINT64): // zero extend uint32 |
| case CASE(TUINT32, TUINT64): |
| split64(t, &tlo, &thi); |
| gmove(f, &tlo); |
| gins(AMOVL, ncon(0), &thi); |
| splitclean(); |
| return; |
| |
| /* |
| * float to integer |
| */ |
| case CASE(TFLOAT32, TINT16): |
| case CASE(TFLOAT32, TINT32): |
| case CASE(TFLOAT32, TINT64): |
| case CASE(TFLOAT64, TINT16): |
| case CASE(TFLOAT64, TINT32): |
| case CASE(TFLOAT64, TINT64): |
| if(t->op == OREGISTER) |
| goto hardmem; |
| nodreg(&r1, types[ft], D_F0); |
| if(f->op != OREGISTER) { |
| if(ft == TFLOAT32) |
| gins(AFMOVF, f, &r1); |
| else |
| gins(AFMOVD, f, &r1); |
| } |
| |
| // set round to zero mode during conversion |
| memname(&t1, types[TUINT16]); |
| memname(&t2, types[TUINT16]); |
| gins(AFSTCW, N, &t1); |
| gins(AMOVW, ncon(0xf7f), &t2); |
| gins(AFLDCW, &t2, N); |
| if(tt == TINT16) |
| gins(AFMOVWP, &r1, t); |
| else if(tt == TINT32) |
| gins(AFMOVLP, &r1, t); |
| else |
| gins(AFMOVVP, &r1, t); |
| gins(AFLDCW, &t1, N); |
| return; |
| |
| case CASE(TFLOAT32, TINT8): |
| case CASE(TFLOAT32, TUINT16): |
| case CASE(TFLOAT32, TUINT8): |
| case CASE(TFLOAT64, TINT8): |
| case CASE(TFLOAT64, TUINT16): |
| case CASE(TFLOAT64, TUINT8): |
| // convert via int32. |
| tempname(&t1, types[TINT32]); |
| gmove(f, &t1); |
| switch(tt) { |
| default: |
| fatal("gmove %T", t); |
| case TINT8: |
| gins(ACMPL, &t1, ncon(-0x80)); |
| p1 = gbranch(optoas(OLT, types[TINT32]), T); |
| gins(ACMPL, &t1, ncon(0x7f)); |
| p2 = gbranch(optoas(OGT, types[TINT32]), T); |
| p3 = gbranch(AJMP, T); |
| patch(p1, pc); |
| patch(p2, pc); |
| gmove(ncon(-0x80), &t1); |
| patch(p3, pc); |
| gmove(&t1, t); |
| break; |
| case TUINT8: |
| gins(ATESTL, ncon(0xffffff00), &t1); |
| p1 = gbranch(AJEQ, T); |
| gins(AMOVL, ncon(0), &t1); |
| patch(p1, pc); |
| gmove(&t1, t); |
| break; |
| case TUINT16: |
| gins(ATESTL, ncon(0xffff0000), &t1); |
| p1 = gbranch(AJEQ, T); |
| gins(AMOVL, ncon(0), &t1); |
| patch(p1, pc); |
| gmove(&t1, t); |
| break; |
| } |
| return; |
| |
| case CASE(TFLOAT32, TUINT32): |
| case CASE(TFLOAT64, TUINT32): |
| // convert via int64. |
| tempname(&t1, types[TINT64]); |
| gmove(f, &t1); |
| split64(&t1, &tlo, &thi); |
| gins(ACMPL, &thi, ncon(0)); |
| p1 = gbranch(AJEQ, T); |
| gins(AMOVL, ncon(0), &tlo); |
| patch(p1, pc); |
| gmove(&tlo, t); |
| splitclean(); |
| return; |
| |
| case CASE(TFLOAT32, TUINT64): |
| case CASE(TFLOAT64, TUINT64): |
| bignodes(); |
| nodreg(&f0, types[ft], D_F0); |
| nodreg(&f1, types[ft], D_F0 + 1); |
| nodreg(&ax, types[TUINT16], D_AX); |
| |
| gmove(f, &f0); |
| |
| // if 0 > v { answer = 0 } |
| gmove(&zerof, &f0); |
| gins(AFUCOMIP, &f0, &f1); |
| p1 = gbranch(optoas(OGT, types[tt]), T); |
| // if 1<<64 <= v { answer = 0 too } |
| gmove(&two64f, &f0); |
| gins(AFUCOMIP, &f0, &f1); |
| p2 = gbranch(optoas(OGT, types[tt]), T); |
| patch(p1, pc); |
| gins(AFMOVVP, &f0, t); // don't care about t, but will pop the stack |
| split64(t, &tlo, &thi); |
| gins(AMOVL, ncon(0), &tlo); |
| gins(AMOVL, ncon(0), &thi); |
| splitclean(); |
| p1 = gbranch(AJMP, T); |
| patch(p2, pc); |
| |
| // in range; algorithm is: |
| // if small enough, use native float64 -> int64 conversion. |
| // otherwise, subtract 2^63, convert, and add it back. |
| |
| // set round to zero mode during conversion |
| memname(&t1, types[TUINT16]); |
| memname(&t2, types[TUINT16]); |
| gins(AFSTCW, N, &t1); |
| gins(AMOVW, ncon(0xf7f), &t2); |
| gins(AFLDCW, &t2, N); |
| |
| // actual work |
| gmove(&two63f, &f0); |
| gins(AFUCOMIP, &f0, &f1); |
| p2 = gbranch(optoas(OLE, types[tt]), T); |
| gins(AFMOVVP, &f0, t); |
| p3 = gbranch(AJMP, T); |
| patch(p2, pc); |
| gmove(&two63f, &f0); |
| gins(AFSUBDP, &f0, &f1); |
| gins(AFMOVVP, &f0, t); |
| split64(t, &tlo, &thi); |
| gins(AXORL, ncon(0x80000000), &thi); // + 2^63 |
| patch(p3, pc); |
| splitclean(); |
| // restore rounding mode |
| gins(AFLDCW, &t1, N); |
| |
| patch(p1, pc); |
| return; |
| |
| /* |
| * integer to float |
| */ |
| case CASE(TINT16, TFLOAT32): |
| case CASE(TINT16, TFLOAT64): |
| case CASE(TINT32, TFLOAT32): |
| case CASE(TINT32, TFLOAT64): |
| case CASE(TINT64, TFLOAT32): |
| case CASE(TINT64, TFLOAT64): |
| if(t->op != OREGISTER) |
| goto hard; |
| if(f->op == OREGISTER) { |
| cvt = f->type; |
| goto hardmem; |
| } |
| switch(ft) { |
| case TINT16: |
| a = AFMOVW; |
| break; |
| case TINT32: |
| a = AFMOVL; |
| break; |
| default: |
| a = AFMOVV; |
| break; |
| } |
| break; |
| |
| case CASE(TINT8, TFLOAT32): |
| case CASE(TINT8, TFLOAT64): |
| case CASE(TUINT16, TFLOAT32): |
| case CASE(TUINT16, TFLOAT64): |
| case CASE(TUINT8, TFLOAT32): |
| case CASE(TUINT8, TFLOAT64): |
| // convert via int32 memory |
| cvt = types[TINT32]; |
| goto hardmem; |
| |
| case CASE(TUINT32, TFLOAT32): |
| case CASE(TUINT32, TFLOAT64): |
| // convert via int64 memory |
| cvt = types[TINT64]; |
| goto hardmem; |
| |
| case CASE(TUINT64, TFLOAT32): |
| case CASE(TUINT64, TFLOAT64): |
| // algorithm is: |
| // if small enough, use native int64 -> uint64 conversion. |
| // otherwise, halve (rounding to odd?), convert, and double. |
| nodreg(&ax, types[TUINT32], D_AX); |
| nodreg(&dx, types[TUINT32], D_DX); |
| nodreg(&cx, types[TUINT32], D_CX); |
| tempname(&t1, f->type); |
| split64(&t1, &tlo, &thi); |
| gmove(f, &t1); |
| gins(ACMPL, &thi, ncon(0)); |
| p1 = gbranch(AJLT, T); |
| // native |
| t1.type = types[TINT64]; |
| gmove(&t1, t); |
| p2 = gbranch(AJMP, T); |
| // simulated |
| patch(p1, pc); |
| gmove(&tlo, &ax); |
| gmove(&thi, &dx); |
| p1 = gins(ASHRL, ncon(1), &ax); |
| p1->from.index = D_DX; // double-width shift DX -> AX |
| p1->from.scale = 0; |
| gins(ASETCC, N, &cx); |
| gins(AORB, &cx, &ax); |
| gins(ASHRL, ncon(1), &dx); |
| gmove(&dx, &thi); |
| gmove(&ax, &tlo); |
| nodreg(&r1, types[tt], D_F0); |
| nodreg(&r2, types[tt], D_F0 + 1); |
| gmove(&t1, &r1); // t1.type is TINT64 now, set above |
| gins(AFMOVD, &r1, &r1); |
| gins(AFADDDP, &r1, &r2); |
| gmove(&r1, t); |
| patch(p2, pc); |
| splitclean(); |
| return; |
| |
| /* |
| * float to float |
| */ |
| case CASE(TFLOAT32, TFLOAT32): |
| case CASE(TFLOAT64, TFLOAT64): |
| // The way the code generator uses floating-point |
| // registers, a move from F0 to F0 is intended as a no-op. |
| // On the x86, it's not: it pushes a second copy of F0 |
| // on the floating point stack. So toss it away here. |
| // Also, F0 is the *only* register we ever evaluate |
| // into, so we should only see register/register as F0/F0. |
| if(ismem(f) && ismem(t)) |
| goto hard; |
| if(f->op == OREGISTER && t->op == OREGISTER) { |
| if(f->val.u.reg != D_F0 || t->val.u.reg != D_F0) |
| goto fatal; |
| return; |
| } |
| a = AFMOVF; |
| if(ft == TFLOAT64) |
| a = AFMOVD; |
| if(ismem(t)) { |
| if(f->op != OREGISTER || f->val.u.reg != D_F0) |
| fatal("gmove %N", f); |
| a = AFMOVFP; |
| if(ft == TFLOAT64) |
| a = AFMOVDP; |
| } |
| break; |
| |
| case CASE(TFLOAT32, TFLOAT64): |
| if(ismem(f) && ismem(t)) |
| goto hard; |
| if(f->op == OREGISTER && t->op == OREGISTER) { |
| if(f->val.u.reg != D_F0 || t->val.u.reg != D_F0) |
| goto fatal; |
| return; |
| } |
| if(f->op == OREGISTER) |
| gins(AFMOVDP, f, t); |
| else |
| gins(AFMOVF, f, t); |
| return; |
| |
| case CASE(TFLOAT64, TFLOAT32): |
| if(ismem(f) && ismem(t)) |
| goto hard; |
| if(f->op == OREGISTER && t->op == OREGISTER) { |
| tempname(&r1, types[TFLOAT32]); |
| gins(AFMOVFP, f, &r1); |
| gins(AFMOVF, &r1, t); |
| return; |
| } |
| if(f->op == OREGISTER) |
| gins(AFMOVFP, f, t); |
| else |
| gins(AFMOVD, f, t); |
| return; |
| } |
| |
| gins(a, f, t); |
| return; |
| |
| rsrc: |
| // requires register source |
| regalloc(&r1, f->type, t); |
| gmove(f, &r1); |
| gins(a, &r1, t); |
| regfree(&r1); |
| return; |
| |
| rdst: |
| // requires register destination |
| regalloc(&r1, t->type, t); |
| gins(a, f, &r1); |
| gmove(&r1, t); |
| regfree(&r1); |
| return; |
| |
| hard: |
| // requires register intermediate |
| regalloc(&r1, cvt, t); |
| gmove(f, &r1); |
| gmove(&r1, t); |
| regfree(&r1); |
| return; |
| |
| hardmem: |
| // requires memory intermediate |
| tempname(&r1, cvt); |
| gmove(f, &r1); |
| gmove(&r1, t); |
| return; |
| |
| fatal: |
| // should not happen |
| fatal("gmove %N -> %N", f, t); |
| } |
| |
| int |
| samaddr(Node *f, Node *t) |
| { |
| |
| if(f->op != t->op) |
| return 0; |
| |
| switch(f->op) { |
| case OREGISTER: |
| if(f->val.u.reg != t->val.u.reg) |
| break; |
| return 1; |
| } |
| return 0; |
| } |
| /* |
| * generate one instruction: |
| * as f, t |
| */ |
| Prog* |
| gins(int as, Node *f, Node *t) |
| { |
| Prog *p; |
| Addr af, at; |
| int w; |
| |
| if(as == AFMOVF && f && f->op == OREGISTER && t && t->op == OREGISTER) |
| fatal("gins MOVF reg, reg"); |
| |
| switch(as) { |
| case AMOVB: |
| case AMOVW: |
| case AMOVL: |
| if(f != N && t != N && samaddr(f, t)) |
| return nil; |
| } |
| |
| memset(&af, 0, sizeof af); |
| memset(&at, 0, sizeof at); |
| if(f != N) |
| naddr(f, &af, 1); |
| if(t != N) |
| naddr(t, &at, 1); |
| p = prog(as); |
| if(f != N) |
| p->from = af; |
| if(t != N) |
| p->to = at; |
| if(debug['g']) |
| print("%P\n", p); |
| |
| w = 0; |
| switch(as) { |
| case AMOVB: |
| w = 1; |
| break; |
| case AMOVW: |
| w = 2; |
| break; |
| case AMOVL: |
| w = 4; |
| break; |
| } |
| |
| if(1 && w != 0 && f != N && (af.width > w || at.width > w)) { |
| dump("bad width from:", f); |
| dump("bad width to:", t); |
| fatal("bad width: %P (%d, %d)\n", p, af.width, at.width); |
| } |
| |
| return p; |
| } |
| |
| static void |
| checkoffset(Addr *a, int canemitcode) |
| { |
| Prog *p; |
| |
| if(a->offset < unmappedzero) |
| return; |
| if(!canemitcode) |
| fatal("checkoffset %#x, cannot emit code", a->offset); |
| |
| // cannot rely on unmapped nil page at 0 to catch |
| // reference with large offset. instead, emit explicit |
| // test of 0(reg). |
| p = gins(ATESTB, nodintconst(0), N); |
| p->to = *a; |
| p->to.offset = 0; |
| } |
| |
| /* |
| * generate code to compute n; |
| * make a refer to result. |
| */ |
| void |
| naddr(Node *n, Addr *a, int canemitcode) |
| { |
| a->scale = 0; |
| a->index = D_NONE; |
| a->type = D_NONE; |
| a->gotype = S; |
| a->node = N; |
| if(n == N) |
| return; |
| |
| switch(n->op) { |
| default: |
| fatal("naddr: bad %O %D", n->op, a); |
| break; |
| |
| case OREGISTER: |
| a->type = n->val.u.reg; |
| a->sym = S; |
| break; |
| |
| case OINDREG: |
| a->type = n->val.u.reg+D_INDIR; |
| a->sym = n->sym; |
| a->offset = n->xoffset; |
| break; |
| |
| case OPARAM: |
| // n->left is PHEAP ONAME for stack parameter. |
| // compute address of actual parameter on stack. |
| a->etype = n->left->type->etype; |
| a->width = n->left->type->width; |
| a->offset = n->xoffset; |
| a->sym = n->left->sym; |
| a->type = D_PARAM; |
| a->node = n->left->orig; |
| break; |
| |
| case ONAME: |
| a->etype = 0; |
| a->width = 0; |
| if(n->type != T) { |
| a->etype = simtype[n->type->etype]; |
| a->width = n->type->width; |
| a->gotype = ngotype(n); |
| } |
| a->offset = n->xoffset; |
| a->sym = n->sym; |
| a->node = n->orig; |
| //if(a->node >= (Node*)&n) |
| // fatal("stack node"); |
| if(a->sym == S) |
| a->sym = lookup(".noname"); |
| if(n->method) { |
| if(n->type != T) |
| if(n->type->sym != S) |
| if(n->type->sym->pkg != nil) |
| a->sym = pkglookup(a->sym->name, n->type->sym->pkg); |
| } |
| |
| switch(n->class) { |
| default: |
| fatal("naddr: ONAME class %S %d\n", n->sym, n->class); |
| case PEXTERN: |
| a->type = D_EXTERN; |
| break; |
| case PAUTO: |
| a->type = D_AUTO; |
| break; |
| case PPARAM: |
| case PPARAMOUT: |
| a->type = D_PARAM; |
| break; |
| case PFUNC: |
| a->index = D_EXTERN; |
| a->type = D_ADDR; |
| break; |
| } |
| break; |
| |
| case OLITERAL: |
| switch(n->val.ctype) { |
| default: |
| fatal("naddr: const %lT", n->type); |
| break; |
| case CTFLT: |
| a->type = D_FCONST; |
| a->dval = mpgetflt(n->val.u.fval); |
| break; |
| case CTINT: |
| a->sym = S; |
| a->type = D_CONST; |
| a->offset = mpgetfix(n->val.u.xval); |
| break; |
| case CTSTR: |
| datagostring(n->val.u.sval, a); |
| break; |
| case CTBOOL: |
| a->sym = S; |
| a->type = D_CONST; |
| a->offset = n->val.u.bval; |
| break; |
| case CTNIL: |
| a->sym = S; |
| a->type = D_CONST; |
| a->offset = 0; |
| break; |
| } |
| break; |
| |
| case OADDR: |
| naddr(n->left, a, canemitcode); |
| if(a->type >= D_INDIR) { |
| a->type -= D_INDIR; |
| break; |
| } |
| if(a->type == D_EXTERN || a->type == D_STATIC || |
| a->type == D_AUTO || a->type == D_PARAM) |
| if(a->index == D_NONE) { |
| a->index = a->type; |
| a->type = D_ADDR; |
| break; |
| } |
| fatal("naddr: OADDR\n"); |
| |
| case OLEN: |
| // len of string or slice |
| naddr(n->left, a, canemitcode); |
| if(a->type == D_CONST && a->offset == 0) |
| break; // len(nil) |
| a->etype = TUINT32; |
| a->offset += Array_nel; |
| a->width = 4; |
| if(a->offset >= unmappedzero && a->offset-Array_nel < unmappedzero) |
| checkoffset(a, canemitcode); |
| break; |
| |
| case OCAP: |
| // cap of string or slice |
| naddr(n->left, a, canemitcode); |
| if(a->type == D_CONST && a->offset == 0) |
| break; // cap(nil) |
| a->etype = TUINT32; |
| a->offset += Array_cap; |
| a->width = 4; |
| if(a->offset >= unmappedzero && a->offset-Array_nel < unmappedzero) |
| checkoffset(a, canemitcode); |
| break; |
| |
| // case OADD: |
| // if(n->right->op == OLITERAL) { |
| // v = n->right->vconst; |
| // naddr(n->left, a, canemitcode); |
| // } else |
| // if(n->left->op == OLITERAL) { |
| // v = n->left->vconst; |
| // naddr(n->right, a, canemitcode); |
| // } else |
| // goto bad; |
| // a->offset += v; |
| // break; |
| |
| } |
| } |
| |
| int |
| dotaddable(Node *n, Node *n1) |
| { |
| int o, oary[10]; |
| Node *nn; |
| |
| if(n->op != ODOT) |
| return 0; |
| |
| o = dotoffset(n, oary, &nn); |
| if(nn != N && nn->addable && o == 1 && oary[0] >= 0) { |
| *n1 = *nn; |
| n1->type = n->type; |
| n1->xoffset += oary[0]; |
| return 1; |
| } |
| return 0; |
| } |
| |
| void |
| sudoclean(void) |
| { |
| } |
| |
| int |
| sudoaddable(int as, Node *n, Addr *a) |
| { |
| USED(as); |
| USED(n); |
| USED(a); |
| |
| return 0; |
| } |