blob: d561225b3c36e15c3168e80468c5cfd87d59abab [file] [log] [blame]
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testing
import (
"errors"
"flag"
"fmt"
"io"
"os"
"path/filepath"
"reflect"
"runtime"
"strings"
"time"
)
func initFuzzFlags() {
matchFuzz = flag.String("test.fuzz", "", "run the fuzz test matching `regexp`")
flag.Var(&fuzzDuration, "test.fuzztime", "time to spend fuzzing; default is to run indefinitely")
flag.Var(&minimizeDuration, "test.fuzzminimizetime", "time to spend minimizing a value after finding a failing input")
fuzzCacheDir = flag.String("test.fuzzcachedir", "", "directory where interesting fuzzing inputs are stored (for use only by cmd/go)")
isFuzzWorker = flag.Bool("test.fuzzworker", false, "coordinate with the parent process to fuzz random values (for use only by cmd/go)")
}
var (
matchFuzz *string
fuzzDuration durationOrCountFlag
minimizeDuration = durationOrCountFlag{d: 60 * time.Second, allowZero: true}
fuzzCacheDir *string
isFuzzWorker *bool
// corpusDir is the parent directory of the fuzz test's seed corpus within
// the package.
corpusDir = "testdata/fuzz"
)
// fuzzWorkerExitCode is used as an exit code by fuzz worker processes after an
// internal error. This distinguishes internal errors from uncontrolled panics
// and other failures. Keep in sync with internal/fuzz.workerExitCode.
const fuzzWorkerExitCode = 70
// InternalFuzzTarget is an internal type but exported because it is
// cross-package; it is part of the implementation of the "go test" command.
type InternalFuzzTarget struct {
Name string
Fn func(f *F)
}
// F is a type passed to fuzz tests.
//
// Fuzz tests run generated inputs against a provided fuzz target, which can
// find and report potential bugs in the code being tested.
//
// A fuzz test runs the seed corpus by default, which includes entries provided
// by (*F).Add and entries in the testdata/fuzz/<FuzzTestName> directory. After
// any necessary setup and calls to (*F).Add, the fuzz test must then call
// (*F).Fuzz to provide the fuzz target. See the testing package documentation
// for an example, and see the [F.Fuzz] and [F.Add] method documentation for
// details.
//
// *F methods can only be called before (*F).Fuzz. Once the test is
// executing the fuzz target, only (*T) methods can be used. The only *F methods
// that are allowed in the (*F).Fuzz function are (*F).Failed and (*F).Name.
type F struct {
common
fuzzContext *fuzzContext
testContext *testContext
// inFuzzFn is true when the fuzz function is running. Most F methods cannot
// be called when inFuzzFn is true.
inFuzzFn bool
// corpus is a set of seed corpus entries, added with F.Add and loaded
// from testdata.
corpus []corpusEntry
result fuzzResult
fuzzCalled bool
}
var _ TB = (*F)(nil)
// corpusEntry is an alias to the same type as internal/fuzz.CorpusEntry.
// We use a type alias because we don't want to export this type, and we can't
// import internal/fuzz from testing.
type corpusEntry = struct {
Parent string
Path string
Data []byte
Values []any
Generation int
IsSeed bool
}
// Helper marks the calling function as a test helper function.
// When printing file and line information, that function will be skipped.
// Helper may be called simultaneously from multiple goroutines.
func (f *F) Helper() {
if f.inFuzzFn {
panic("testing: f.Helper was called inside the fuzz target, use t.Helper instead")
}
// common.Helper is inlined here.
// If we called it, it would mark F.Helper as the helper
// instead of the caller.
f.mu.Lock()
defer f.mu.Unlock()
if f.helperPCs == nil {
f.helperPCs = make(map[uintptr]struct{})
}
// repeating code from callerName here to save walking a stack frame
var pc [1]uintptr
n := runtime.Callers(2, pc[:]) // skip runtime.Callers + Helper
if n == 0 {
panic("testing: zero callers found")
}
if _, found := f.helperPCs[pc[0]]; !found {
f.helperPCs[pc[0]] = struct{}{}
f.helperNames = nil // map will be recreated next time it is needed
}
}
// Fail marks the function as having failed but continues execution.
func (f *F) Fail() {
// (*F).Fail may be called by (*T).Fail, which we should allow. However, we
// shouldn't allow direct (*F).Fail calls from inside the (*F).Fuzz function.
if f.inFuzzFn {
panic("testing: f.Fail was called inside the fuzz target, use t.Fail instead")
}
f.common.Helper()
f.common.Fail()
}
// Skipped reports whether the test was skipped.
func (f *F) Skipped() bool {
// (*F).Skipped may be called by tRunner, which we should allow. However, we
// shouldn't allow direct (*F).Skipped calls from inside the (*F).Fuzz function.
if f.inFuzzFn {
panic("testing: f.Skipped was called inside the fuzz target, use t.Skipped instead")
}
f.common.Helper()
return f.common.Skipped()
}
// Add will add the arguments to the seed corpus for the fuzz test. This will be
// a no-op if called after or within the fuzz target, and args must match the
// arguments for the fuzz target.
func (f *F) Add(args ...any) {
var values []any
for i := range args {
if t := reflect.TypeOf(args[i]); !supportedTypes[t] {
panic(fmt.Sprintf("testing: unsupported type to Add %v", t))
}
values = append(values, args[i])
}
f.corpus = append(f.corpus, corpusEntry{Values: values, IsSeed: true, Path: fmt.Sprintf("seed#%d", len(f.corpus))})
}
// supportedTypes represents all of the supported types which can be fuzzed.
var supportedTypes = map[reflect.Type]bool{
reflect.TypeOf(([]byte)("")): true,
reflect.TypeOf((string)("")): true,
reflect.TypeOf((bool)(false)): true,
reflect.TypeOf((byte)(0)): true,
reflect.TypeOf((rune)(0)): true,
reflect.TypeOf((float32)(0)): true,
reflect.TypeOf((float64)(0)): true,
reflect.TypeOf((int)(0)): true,
reflect.TypeOf((int8)(0)): true,
reflect.TypeOf((int16)(0)): true,
reflect.TypeOf((int32)(0)): true,
reflect.TypeOf((int64)(0)): true,
reflect.TypeOf((uint)(0)): true,
reflect.TypeOf((uint8)(0)): true,
reflect.TypeOf((uint16)(0)): true,
reflect.TypeOf((uint32)(0)): true,
reflect.TypeOf((uint64)(0)): true,
}
// Fuzz runs the fuzz function, ff, for fuzz testing. If ff fails for a set of
// arguments, those arguments will be added to the seed corpus.
//
// ff must be a function with no return value whose first argument is *T and
// whose remaining arguments are the types to be fuzzed.
// For example:
//
// f.Fuzz(func(t *testing.T, b []byte, i int) { ... })
//
// The following types are allowed: []byte, string, bool, byte, rune, float32,
// float64, int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64.
// More types may be supported in the future.
//
// ff must not call any *F methods, e.g. (*F).Log, (*F).Error, (*F).Skip. Use
// the corresponding *T method instead. The only *F methods that are allowed in
// the (*F).Fuzz function are (*F).Failed and (*F).Name.
//
// This function should be fast and deterministic, and its behavior should not
// depend on shared state. No mutable input arguments, or pointers to them,
// should be retained between executions of the fuzz function, as the memory
// backing them may be mutated during a subsequent invocation. ff must not
// modify the underlying data of the arguments provided by the fuzzing engine.
//
// When fuzzing, F.Fuzz does not return until a problem is found, time runs out
// (set with -fuzztime), or the test process is interrupted by a signal. F.Fuzz
// should be called exactly once, unless F.Skip or [F.Fail] is called beforehand.
func (f *F) Fuzz(ff any) {
if f.fuzzCalled {
panic("testing: F.Fuzz called more than once")
}
f.fuzzCalled = true
if f.failed {
return
}
f.Helper()
// ff should be in the form func(*testing.T, ...interface{})
fn := reflect.ValueOf(ff)
fnType := fn.Type()
if fnType.Kind() != reflect.Func {
panic("testing: F.Fuzz must receive a function")
}
if fnType.NumIn() < 2 || fnType.In(0) != reflect.TypeOf((*T)(nil)) {
panic("testing: fuzz target must receive at least two arguments, where the first argument is a *T")
}
if fnType.NumOut() != 0 {
panic("testing: fuzz target must not return a value")
}
// Save the types of the function to compare against the corpus.
var types []reflect.Type
for i := 1; i < fnType.NumIn(); i++ {
t := fnType.In(i)
if !supportedTypes[t] {
panic(fmt.Sprintf("testing: unsupported type for fuzzing %v", t))
}
types = append(types, t)
}
// Load the testdata seed corpus. Check types of entries in the testdata
// corpus and entries declared with F.Add.
//
// Don't load the seed corpus if this is a worker process; we won't use it.
if f.fuzzContext.mode != fuzzWorker {
for _, c := range f.corpus {
if err := f.fuzzContext.deps.CheckCorpus(c.Values, types); err != nil {
// TODO(#48302): Report the source location of the F.Add call.
f.Fatal(err)
}
}
// Load seed corpus
c, err := f.fuzzContext.deps.ReadCorpus(filepath.Join(corpusDir, f.name), types)
if err != nil {
f.Fatal(err)
}
for i := range c {
c[i].IsSeed = true // these are all seed corpus values
if f.fuzzContext.mode == fuzzCoordinator {
// If this is the coordinator process, zero the values, since we don't need
// to hold onto them.
c[i].Values = nil
}
}
f.corpus = append(f.corpus, c...)
}
// run calls fn on a given input, as a subtest with its own T.
// run is analogous to T.Run. The test filtering and cleanup works similarly.
// fn is called in its own goroutine.
run := func(captureOut io.Writer, e corpusEntry) (ok bool) {
if e.Values == nil {
// The corpusEntry must have non-nil Values in order to run the
// test. If Values is nil, it is a bug in our code.
panic(fmt.Sprintf("corpus file %q was not unmarshaled", e.Path))
}
if shouldFailFast() {
return true
}
testName := f.name
if e.Path != "" {
testName = fmt.Sprintf("%s/%s", testName, filepath.Base(e.Path))
}
if f.testContext.isFuzzing {
// Don't preserve subtest names while fuzzing. If fn calls T.Run,
// there will be a very large number of subtests with duplicate names,
// which will use a large amount of memory. The subtest names aren't
// useful since there's no way to re-run them deterministically.
f.testContext.match.clearSubNames()
}
// Record the stack trace at the point of this call so that if the subtest
// function - which runs in a separate stack - is marked as a helper, we can
// continue walking the stack into the parent test.
var pc [maxStackLen]uintptr
n := runtime.Callers(2, pc[:])
t := &T{
common: common{
barrier: make(chan bool),
signal: make(chan bool),
name: testName,
parent: &f.common,
level: f.level + 1,
creator: pc[:n],
chatty: f.chatty,
},
context: f.testContext,
}
if captureOut != nil {
// t.parent aliases f.common.
t.parent.w = captureOut
}
t.w = indenter{&t.common}
if t.chatty != nil {
t.chatty.Updatef(t.name, "=== RUN %s\n", t.name)
}
f.common.inFuzzFn, f.inFuzzFn = true, true
go tRunner(t, func(t *T) {
args := []reflect.Value{reflect.ValueOf(t)}
for _, v := range e.Values {
args = append(args, reflect.ValueOf(v))
}
// Before resetting the current coverage, defer the snapshot so that
// we make sure it is called right before the tRunner function
// exits, regardless of whether it was executed cleanly, panicked,
// or if the fuzzFn called t.Fatal.
if f.testContext.isFuzzing {
defer f.fuzzContext.deps.SnapshotCoverage()
f.fuzzContext.deps.ResetCoverage()
}
fn.Call(args)
})
<-t.signal
if t.chatty != nil && t.chatty.json {
t.chatty.Updatef(t.parent.name, "=== NAME %s\n", t.parent.name)
}
f.common.inFuzzFn, f.inFuzzFn = false, false
return !t.Failed()
}
switch f.fuzzContext.mode {
case fuzzCoordinator:
// Fuzzing is enabled, and this is the test process started by 'go test'.
// Act as the coordinator process, and coordinate workers to perform the
// actual fuzzing.
corpusTargetDir := filepath.Join(corpusDir, f.name)
cacheTargetDir := filepath.Join(*fuzzCacheDir, f.name)
err := f.fuzzContext.deps.CoordinateFuzzing(
fuzzDuration.d,
int64(fuzzDuration.n),
minimizeDuration.d,
int64(minimizeDuration.n),
*parallel,
f.corpus,
types,
corpusTargetDir,
cacheTargetDir)
if err != nil {
f.result = fuzzResult{Error: err}
f.Fail()
fmt.Fprintf(f.w, "%v\n", err)
if crashErr, ok := err.(fuzzCrashError); ok {
crashPath := crashErr.CrashPath()
fmt.Fprintf(f.w, "Failing input written to %s\n", crashPath)
testName := filepath.Base(crashPath)
fmt.Fprintf(f.w, "To re-run:\ngo test -run=%s/%s\n", f.name, testName)
}
}
// TODO(jayconrod,katiehockman): Aggregate statistics across workers
// and add to FuzzResult (ie. time taken, num iterations)
case fuzzWorker:
// Fuzzing is enabled, and this is a worker process. Follow instructions
// from the coordinator.
if err := f.fuzzContext.deps.RunFuzzWorker(func(e corpusEntry) error {
// Don't write to f.w (which points to Stdout) if running from a
// fuzz worker. This would become very verbose, particularly during
// minimization. Return the error instead, and let the caller deal
// with the output.
var buf strings.Builder
if ok := run(&buf, e); !ok {
return errors.New(buf.String())
}
return nil
}); err != nil {
// Internal errors are marked with f.Fail; user code may call this too, before F.Fuzz.
// The worker will exit with fuzzWorkerExitCode, indicating this is a failure
// (and 'go test' should exit non-zero) but a failing input should not be recorded.
f.Errorf("communicating with fuzzing coordinator: %v", err)
}
default:
// Fuzzing is not enabled, or will be done later. Only run the seed
// corpus now.
for _, e := range f.corpus {
name := fmt.Sprintf("%s/%s", f.name, filepath.Base(e.Path))
if _, ok, _ := f.testContext.match.fullName(nil, name); ok {
run(f.w, e)
}
}
}
}
func (f *F) report() {
if *isFuzzWorker || f.parent == nil {
return
}
dstr := fmtDuration(f.duration)
format := "--- %s: %s (%s)\n"
if f.Failed() {
f.flushToParent(f.name, format, "FAIL", f.name, dstr)
} else if f.chatty != nil {
if f.Skipped() {
f.flushToParent(f.name, format, "SKIP", f.name, dstr)
} else {
f.flushToParent(f.name, format, "PASS", f.name, dstr)
}
}
}
// fuzzResult contains the results of a fuzz run.
type fuzzResult struct {
N int // The number of iterations.
T time.Duration // The total time taken.
Error error // Error is the error from the failing input
}
func (r fuzzResult) String() string {
if r.Error == nil {
return ""
}
return r.Error.Error()
}
// fuzzCrashError is satisfied by a failing input detected while fuzzing.
// These errors are written to the seed corpus and can be re-run with 'go test'.
// Errors within the fuzzing framework (like I/O errors between coordinator
// and worker processes) don't satisfy this interface.
type fuzzCrashError interface {
error
Unwrap() error
// CrashPath returns the path of the subtest that corresponds to the saved
// crash input file in the seed corpus. The test can be re-run with go test
// -run=$test/$name $test is the fuzz test name, and $name is the
// filepath.Base of the string returned here.
CrashPath() string
}
// fuzzContext holds fields common to all fuzz tests.
type fuzzContext struct {
deps testDeps
mode fuzzMode
}
type fuzzMode uint8
const (
seedCorpusOnly fuzzMode = iota
fuzzCoordinator
fuzzWorker
)
// runFuzzTests runs the fuzz tests matching the pattern for -run. This will
// only run the (*F).Fuzz function for each seed corpus without using the
// fuzzing engine to generate or mutate inputs.
func runFuzzTests(deps testDeps, fuzzTests []InternalFuzzTarget, deadline time.Time) (ran, ok bool) {
ok = true
if len(fuzzTests) == 0 || *isFuzzWorker {
return ran, ok
}
m := newMatcher(deps.MatchString, *match, "-test.run", *skip)
var mFuzz *matcher
if *matchFuzz != "" {
mFuzz = newMatcher(deps.MatchString, *matchFuzz, "-test.fuzz", *skip)
}
for _, procs := range cpuList {
runtime.GOMAXPROCS(procs)
for i := uint(0); i < *count; i++ {
if shouldFailFast() {
break
}
tctx := newTestContext(*parallel, m)
tctx.deadline = deadline
fctx := &fuzzContext{deps: deps, mode: seedCorpusOnly}
root := common{w: os.Stdout} // gather output in one place
if Verbose() {
root.chatty = newChattyPrinter(root.w)
}
for _, ft := range fuzzTests {
if shouldFailFast() {
break
}
testName, matched, _ := tctx.match.fullName(nil, ft.Name)
if !matched {
continue
}
if mFuzz != nil {
if _, fuzzMatched, _ := mFuzz.fullName(nil, ft.Name); fuzzMatched {
// If this will be fuzzed, then don't run the seed corpus
// right now. That will happen later.
continue
}
}
f := &F{
common: common{
signal: make(chan bool),
barrier: make(chan bool),
name: testName,
parent: &root,
level: root.level + 1,
chatty: root.chatty,
},
testContext: tctx,
fuzzContext: fctx,
}
f.w = indenter{&f.common}
if f.chatty != nil {
f.chatty.Updatef(f.name, "=== RUN %s\n", f.name)
}
go fRunner(f, ft.Fn)
<-f.signal
if f.chatty != nil && f.chatty.json {
f.chatty.Updatef(f.parent.name, "=== NAME %s\n", f.parent.name)
}
ok = ok && !f.Failed()
ran = ran || f.ran
}
if !ran {
// There were no tests to run on this iteration.
// This won't change, so no reason to keep trying.
break
}
}
}
return ran, ok
}
// runFuzzing runs the fuzz test matching the pattern for -fuzz. Only one such
// fuzz test must match. This will run the fuzzing engine to generate and
// mutate new inputs against the fuzz target.
//
// If fuzzing is disabled (-test.fuzz is not set), runFuzzing
// returns immediately.
func runFuzzing(deps testDeps, fuzzTests []InternalFuzzTarget) (ok bool) {
if len(fuzzTests) == 0 || *matchFuzz == "" {
return true
}
m := newMatcher(deps.MatchString, *matchFuzz, "-test.fuzz", *skip)
tctx := newTestContext(1, m)
tctx.isFuzzing = true
fctx := &fuzzContext{
deps: deps,
}
root := common{w: os.Stdout}
if *isFuzzWorker {
root.w = io.Discard
fctx.mode = fuzzWorker
} else {
fctx.mode = fuzzCoordinator
}
if Verbose() && !*isFuzzWorker {
root.chatty = newChattyPrinter(root.w)
}
var fuzzTest *InternalFuzzTarget
var testName string
var matched []string
for i := range fuzzTests {
name, ok, _ := tctx.match.fullName(nil, fuzzTests[i].Name)
if !ok {
continue
}
matched = append(matched, name)
fuzzTest = &fuzzTests[i]
testName = name
}
if len(matched) == 0 {
fmt.Fprintln(os.Stderr, "testing: warning: no fuzz tests to fuzz")
return true
}
if len(matched) > 1 {
fmt.Fprintf(os.Stderr, "testing: will not fuzz, -fuzz matches more than one fuzz test: %v\n", matched)
return false
}
f := &F{
common: common{
signal: make(chan bool),
barrier: nil, // T.Parallel has no effect when fuzzing.
name: testName,
parent: &root,
level: root.level + 1,
chatty: root.chatty,
},
fuzzContext: fctx,
testContext: tctx,
}
f.w = indenter{&f.common}
if f.chatty != nil {
f.chatty.Updatef(f.name, "=== RUN %s\n", f.name)
}
go fRunner(f, fuzzTest.Fn)
<-f.signal
if f.chatty != nil {
f.chatty.Updatef(f.parent.name, "=== NAME %s\n", f.parent.name)
}
return !f.failed
}
// fRunner wraps a call to a fuzz test and ensures that cleanup functions are
// called and status flags are set. fRunner should be called in its own
// goroutine. To wait for its completion, receive from f.signal.
//
// fRunner is analogous to tRunner, which wraps subtests started with T.Run.
// Unit tests and fuzz tests work a little differently, so for now, these
// functions aren't consolidated. In particular, because there are no F.Run and
// F.Parallel methods, i.e., no fuzz sub-tests or parallel fuzz tests, a few
// simplifications are made. We also require that F.Fuzz, F.Skip, or F.Fail is
// called.
func fRunner(f *F, fn func(*F)) {
// When this goroutine is done, either because runtime.Goexit was called, a
// panic started, or fn returned normally, record the duration and send
// t.signal, indicating the fuzz test is done.
defer func() {
// Detect whether the fuzz test panicked or called runtime.Goexit
// without calling F.Fuzz, F.Fail, or F.Skip. If it did, panic (possibly
// replacing a nil panic value). Nothing should recover after fRunner
// unwinds, so this should crash the process and print stack.
// Unfortunately, recovering here adds stack frames, but the location of
// the original panic should still be
// clear.
f.checkRaces()
if f.Failed() {
numFailed.Add(1)
}
err := recover()
if err == nil {
f.mu.RLock()
fuzzNotCalled := !f.fuzzCalled && !f.skipped && !f.failed
if !f.finished && !f.skipped && !f.failed {
err = errNilPanicOrGoexit
}
f.mu.RUnlock()
if fuzzNotCalled && err == nil {
f.Error("returned without calling F.Fuzz, F.Fail, or F.Skip")
}
}
// Use a deferred call to ensure that we report that the test is
// complete even if a cleanup function calls F.FailNow. See issue 41355.
didPanic := false
defer func() {
if !didPanic {
// Only report that the test is complete if it doesn't panic,
// as otherwise the test binary can exit before the panic is
// reported to the user. See issue 41479.
f.signal <- true
}
}()
// If we recovered a panic or inappropriate runtime.Goexit, fail the test,
// flush the output log up to the root, then panic.
doPanic := func(err any) {
f.Fail()
if r := f.runCleanup(recoverAndReturnPanic); r != nil {
f.Logf("cleanup panicked with %v", r)
}
for root := &f.common; root.parent != nil; root = root.parent {
root.mu.Lock()
root.duration += highPrecisionTimeSince(root.start)
d := root.duration
root.mu.Unlock()
root.flushToParent(root.name, "--- FAIL: %s (%s)\n", root.name, fmtDuration(d))
}
didPanic = true
panic(err)
}
if err != nil {
doPanic(err)
}
// No panic or inappropriate Goexit.
f.duration += highPrecisionTimeSince(f.start)
if len(f.sub) > 0 {
// Unblock inputs that called T.Parallel while running the seed corpus.
// This only affects fuzz tests run as normal tests.
// While fuzzing, T.Parallel has no effect, so f.sub is empty, and this
// branch is not taken. f.barrier is nil in that case.
f.testContext.release()
close(f.barrier)
// Wait for the subtests to complete.
for _, sub := range f.sub {
<-sub.signal
}
cleanupStart := highPrecisionTimeNow()
err := f.runCleanup(recoverAndReturnPanic)
f.duration += highPrecisionTimeSince(cleanupStart)
if err != nil {
doPanic(err)
}
}
// Report after all subtests have finished.
f.report()
f.done = true
f.setRan()
}()
defer func() {
if len(f.sub) == 0 {
f.runCleanup(normalPanic)
}
}()
f.start = highPrecisionTimeNow()
f.resetRaces()
fn(f)
// Code beyond this point will not be executed when FailNow or SkipNow
// is invoked.
f.mu.Lock()
f.finished = true
f.mu.Unlock()
}