blob: 28eb8fb5ec1722f12abcbab63b5075c765e28d1e [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"internal/goarch"
"internal/runtime/atomic"
"runtime/internal/sys"
"unsafe"
)
const itabInitSize = 512
var (
itabLock mutex // lock for accessing itab table
itabTable = &itabTableInit // pointer to current table
itabTableInit = itabTableType{size: itabInitSize} // starter table
)
// Note: change the formula in the mallocgc call in itabAdd if you change these fields.
type itabTableType struct {
size uintptr // length of entries array. Always a power of 2.
count uintptr // current number of filled entries.
entries [itabInitSize]*itab // really [size] large
}
func itabHashFunc(inter *interfacetype, typ *_type) uintptr {
// compiler has provided some good hash codes for us.
return uintptr(inter.Type.Hash ^ typ.Hash)
}
func getitab(inter *interfacetype, typ *_type, canfail bool) *itab {
if len(inter.Methods) == 0 {
throw("internal error - misuse of itab")
}
// easy case
if typ.TFlag&abi.TFlagUncommon == 0 {
if canfail {
return nil
}
name := toRType(&inter.Type).nameOff(inter.Methods[0].Name)
panic(&TypeAssertionError{nil, typ, &inter.Type, name.Name()})
}
var m *itab
// First, look in the existing table to see if we can find the itab we need.
// This is by far the most common case, so do it without locks.
// Use atomic to ensure we see any previous writes done by the thread
// that updates the itabTable field (with atomic.Storep in itabAdd).
t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable)))
if m = t.find(inter, typ); m != nil {
goto finish
}
// Not found. Grab the lock and try again.
lock(&itabLock)
if m = itabTable.find(inter, typ); m != nil {
unlock(&itabLock)
goto finish
}
// Entry doesn't exist yet. Make a new entry & add it.
m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.Methods)-1)*goarch.PtrSize, 0, &memstats.other_sys))
m.Inter = inter
m.Type = typ
// The hash is used in type switches. However, compiler statically generates itab's
// for all interface/type pairs used in switches (which are added to itabTable
// in itabsinit). The dynamically-generated itab's never participate in type switches,
// and thus the hash is irrelevant.
// Note: m.Hash is _not_ the hash used for the runtime itabTable hash table.
m.Hash = 0
itabInit(m, true)
itabAdd(m)
unlock(&itabLock)
finish:
if m.Fun[0] != 0 {
return m
}
if canfail {
return nil
}
// this can only happen if the conversion
// was already done once using the , ok form
// and we have a cached negative result.
// The cached result doesn't record which
// interface function was missing, so initialize
// the itab again to get the missing function name.
panic(&TypeAssertionError{concrete: typ, asserted: &inter.Type, missingMethod: itabInit(m, false)})
}
// find finds the given interface/type pair in t.
// Returns nil if the given interface/type pair isn't present.
func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab {
// Implemented using quadratic probing.
// Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k.
// We're guaranteed to hit all table entries using this probe sequence.
mask := t.size - 1
h := itabHashFunc(inter, typ) & mask
for i := uintptr(1); ; i++ {
p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize))
// Use atomic read here so if we see m != nil, we also see
// the initializations of the fields of m.
// m := *p
m := (*itab)(atomic.Loadp(unsafe.Pointer(p)))
if m == nil {
return nil
}
if m.Inter == inter && m.Type == typ {
return m
}
h += i
h &= mask
}
}
// itabAdd adds the given itab to the itab hash table.
// itabLock must be held.
func itabAdd(m *itab) {
// Bugs can lead to calling this while mallocing is set,
// typically because this is called while panicking.
// Crash reliably, rather than only when we need to grow
// the hash table.
if getg().m.mallocing != 0 {
throw("malloc deadlock")
}
t := itabTable
if t.count >= 3*(t.size/4) { // 75% load factor
// Grow hash table.
// t2 = new(itabTableType) + some additional entries
// We lie and tell malloc we want pointer-free memory because
// all the pointed-to values are not in the heap.
t2 := (*itabTableType)(mallocgc((2+2*t.size)*goarch.PtrSize, nil, true))
t2.size = t.size * 2
// Copy over entries.
// Note: while copying, other threads may look for an itab and
// fail to find it. That's ok, they will then try to get the itab lock
// and as a consequence wait until this copying is complete.
iterate_itabs(t2.add)
if t2.count != t.count {
throw("mismatched count during itab table copy")
}
// Publish new hash table. Use an atomic write: see comment in getitab.
atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2))
// Adopt the new table as our own.
t = itabTable
// Note: the old table can be GC'ed here.
}
t.add(m)
}
// add adds the given itab to itab table t.
// itabLock must be held.
func (t *itabTableType) add(m *itab) {
// See comment in find about the probe sequence.
// Insert new itab in the first empty spot in the probe sequence.
mask := t.size - 1
h := itabHashFunc(m.Inter, m.Type) & mask
for i := uintptr(1); ; i++ {
p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize))
m2 := *p
if m2 == m {
// A given itab may be used in more than one module
// and thanks to the way global symbol resolution works, the
// pointed-to itab may already have been inserted into the
// global 'hash'.
return
}
if m2 == nil {
// Use atomic write here so if a reader sees m, it also
// sees the correctly initialized fields of m.
// NoWB is ok because m is not in heap memory.
// *p = m
atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m))
t.count++
return
}
h += i
h &= mask
}
}
// itabInit fills in the m.Fun array with all the code pointers for
// the m.Inter/m.Type pair. If the type does not implement the interface,
// it sets m.Fun[0] to 0 and returns the name of an interface function that is missing.
// If !firstTime, itabInit will not write anything to m.Fun (see issue 65962).
// It is ok to call this multiple times on the same m, even concurrently
// (although it will only be called once with firstTime==true).
func itabInit(m *itab, firstTime bool) string {
inter := m.Inter
typ := m.Type
x := typ.Uncommon()
// both inter and typ have method sorted by name,
// and interface names are unique,
// so can iterate over both in lock step;
// the loop is O(ni+nt) not O(ni*nt).
ni := len(inter.Methods)
nt := int(x.Mcount)
xmhdr := (*[1 << 16]abi.Method)(add(unsafe.Pointer(x), uintptr(x.Moff)))[:nt:nt]
j := 0
methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.Fun[0]))[:ni:ni]
var fun0 unsafe.Pointer
imethods:
for k := 0; k < ni; k++ {
i := &inter.Methods[k]
itype := toRType(&inter.Type).typeOff(i.Typ)
name := toRType(&inter.Type).nameOff(i.Name)
iname := name.Name()
ipkg := pkgPath(name)
if ipkg == "" {
ipkg = inter.PkgPath.Name()
}
for ; j < nt; j++ {
t := &xmhdr[j]
rtyp := toRType(typ)
tname := rtyp.nameOff(t.Name)
if rtyp.typeOff(t.Mtyp) == itype && tname.Name() == iname {
pkgPath := pkgPath(tname)
if pkgPath == "" {
pkgPath = rtyp.nameOff(x.PkgPath).Name()
}
if tname.IsExported() || pkgPath == ipkg {
ifn := rtyp.textOff(t.Ifn)
if k == 0 {
fun0 = ifn // we'll set m.Fun[0] at the end
} else if firstTime {
methods[k] = ifn
}
continue imethods
}
}
}
// didn't find method
// Leaves m.Fun[0] set to 0.
return iname
}
if firstTime {
m.Fun[0] = uintptr(fun0)
}
return ""
}
func itabsinit() {
lockInit(&itabLock, lockRankItab)
lock(&itabLock)
for _, md := range activeModules() {
for _, i := range md.itablinks {
itabAdd(i)
}
}
unlock(&itabLock)
}
// panicdottypeE is called when doing an e.(T) conversion and the conversion fails.
// have = the dynamic type we have.
// want = the static type we're trying to convert to.
// iface = the static type we're converting from.
func panicdottypeE(have, want, iface *_type) {
panic(&TypeAssertionError{iface, have, want, ""})
}
// panicdottypeI is called when doing an i.(T) conversion and the conversion fails.
// Same args as panicdottypeE, but "have" is the dynamic itab we have.
func panicdottypeI(have *itab, want, iface *_type) {
var t *_type
if have != nil {
t = have.Type
}
panicdottypeE(t, want, iface)
}
// panicnildottype is called when doing an i.(T) conversion and the interface i is nil.
// want = the static type we're trying to convert to.
func panicnildottype(want *_type) {
panic(&TypeAssertionError{nil, nil, want, ""})
// TODO: Add the static type we're converting from as well.
// It might generate a better error message.
// Just to match other nil conversion errors, we don't for now.
}
// The specialized convTx routines need a type descriptor to use when calling mallocgc.
// We don't need the type to be exact, just to have the correct size, alignment, and pointer-ness.
// However, when debugging, it'd be nice to have some indication in mallocgc where the types came from,
// so we use named types here.
// We then construct interface values of these types,
// and then extract the type word to use as needed.
type (
uint16InterfacePtr uint16
uint32InterfacePtr uint32
uint64InterfacePtr uint64
stringInterfacePtr string
sliceInterfacePtr []byte
)
var (
uint16Eface any = uint16InterfacePtr(0)
uint32Eface any = uint32InterfacePtr(0)
uint64Eface any = uint64InterfacePtr(0)
stringEface any = stringInterfacePtr("")
sliceEface any = sliceInterfacePtr(nil)
uint16Type *_type = efaceOf(&uint16Eface)._type
uint32Type *_type = efaceOf(&uint32Eface)._type
uint64Type *_type = efaceOf(&uint64Eface)._type
stringType *_type = efaceOf(&stringEface)._type
sliceType *_type = efaceOf(&sliceEface)._type
)
// The conv and assert functions below do very similar things.
// The convXXX functions are guaranteed by the compiler to succeed.
// The assertXXX functions may fail (either panicking or returning false,
// depending on whether they are 1-result or 2-result).
// The convXXX functions succeed on a nil input, whereas the assertXXX
// functions fail on a nil input.
// convT converts a value of type t, which is pointed to by v, to a pointer that can
// be used as the second word of an interface value.
func convT(t *_type, v unsafe.Pointer) unsafe.Pointer {
if raceenabled {
raceReadObjectPC(t, v, getcallerpc(), abi.FuncPCABIInternal(convT))
}
if msanenabled {
msanread(v, t.Size_)
}
if asanenabled {
asanread(v, t.Size_)
}
x := mallocgc(t.Size_, t, true)
typedmemmove(t, x, v)
return x
}
func convTnoptr(t *_type, v unsafe.Pointer) unsafe.Pointer {
// TODO: maybe take size instead of type?
if raceenabled {
raceReadObjectPC(t, v, getcallerpc(), abi.FuncPCABIInternal(convTnoptr))
}
if msanenabled {
msanread(v, t.Size_)
}
if asanenabled {
asanread(v, t.Size_)
}
x := mallocgc(t.Size_, t, false)
memmove(x, v, t.Size_)
return x
}
func convT16(val uint16) (x unsafe.Pointer) {
if val < uint16(len(staticuint64s)) {
x = unsafe.Pointer(&staticuint64s[val])
if goarch.BigEndian {
x = add(x, 6)
}
} else {
x = mallocgc(2, uint16Type, false)
*(*uint16)(x) = val
}
return
}
func convT32(val uint32) (x unsafe.Pointer) {
if val < uint32(len(staticuint64s)) {
x = unsafe.Pointer(&staticuint64s[val])
if goarch.BigEndian {
x = add(x, 4)
}
} else {
x = mallocgc(4, uint32Type, false)
*(*uint32)(x) = val
}
return
}
func convT64(val uint64) (x unsafe.Pointer) {
if val < uint64(len(staticuint64s)) {
x = unsafe.Pointer(&staticuint64s[val])
} else {
x = mallocgc(8, uint64Type, false)
*(*uint64)(x) = val
}
return
}
func convTstring(val string) (x unsafe.Pointer) {
if val == "" {
x = unsafe.Pointer(&abi.ZeroVal[0])
} else {
x = mallocgc(unsafe.Sizeof(val), stringType, true)
*(*string)(x) = val
}
return
}
func convTslice(val []byte) (x unsafe.Pointer) {
// Note: this must work for any element type, not just byte.
if (*slice)(unsafe.Pointer(&val)).array == nil {
x = unsafe.Pointer(&abi.ZeroVal[0])
} else {
x = mallocgc(unsafe.Sizeof(val), sliceType, true)
*(*[]byte)(x) = val
}
return
}
func assertE2I(inter *interfacetype, t *_type) *itab {
if t == nil {
// explicit conversions require non-nil interface value.
panic(&TypeAssertionError{nil, nil, &inter.Type, ""})
}
return getitab(inter, t, false)
}
func assertE2I2(inter *interfacetype, t *_type) *itab {
if t == nil {
return nil
}
return getitab(inter, t, true)
}
// typeAssert builds an itab for the concrete type t and the
// interface type s.Inter. If the conversion is not possible it
// panics if s.CanFail is false and returns nil if s.CanFail is true.
func typeAssert(s *abi.TypeAssert, t *_type) *itab {
var tab *itab
if t == nil {
if !s.CanFail {
panic(&TypeAssertionError{nil, nil, &s.Inter.Type, ""})
}
} else {
tab = getitab(s.Inter, t, s.CanFail)
}
if !abi.UseInterfaceSwitchCache(GOARCH) {
return tab
}
// Maybe update the cache, so the next time the generated code
// doesn't need to call into the runtime.
if cheaprand()&1023 != 0 {
// Only bother updating the cache ~1 in 1000 times.
return tab
}
// Load the current cache.
oldC := (*abi.TypeAssertCache)(atomic.Loadp(unsafe.Pointer(&s.Cache)))
if cheaprand()&uint32(oldC.Mask) != 0 {
// As cache gets larger, choose to update it less often
// so we can amortize the cost of building a new cache.
return tab
}
// Make a new cache.
newC := buildTypeAssertCache(oldC, t, tab)
// Update cache. Use compare-and-swap so if multiple threads
// are fighting to update the cache, at least one of their
// updates will stick.
atomic_casPointer((*unsafe.Pointer)(unsafe.Pointer(&s.Cache)), unsafe.Pointer(oldC), unsafe.Pointer(newC))
return tab
}
func buildTypeAssertCache(oldC *abi.TypeAssertCache, typ *_type, tab *itab) *abi.TypeAssertCache {
oldEntries := unsafe.Slice(&oldC.Entries[0], oldC.Mask+1)
// Count the number of entries we need.
n := 1
for _, e := range oldEntries {
if e.Typ != 0 {
n++
}
}
// Figure out how big a table we need.
// We need at least one more slot than the number of entries
// so that we are guaranteed an empty slot (for termination).
newN := n * 2 // make it at most 50% full
newN = 1 << sys.Len64(uint64(newN-1)) // round up to a power of 2
// Allocate the new table.
newSize := unsafe.Sizeof(abi.TypeAssertCache{}) + uintptr(newN-1)*unsafe.Sizeof(abi.TypeAssertCacheEntry{})
newC := (*abi.TypeAssertCache)(mallocgc(newSize, nil, true))
newC.Mask = uintptr(newN - 1)
newEntries := unsafe.Slice(&newC.Entries[0], newN)
// Fill the new table.
addEntry := func(typ *_type, tab *itab) {
h := int(typ.Hash) & (newN - 1)
for {
if newEntries[h].Typ == 0 {
newEntries[h].Typ = uintptr(unsafe.Pointer(typ))
newEntries[h].Itab = uintptr(unsafe.Pointer(tab))
return
}
h = (h + 1) & (newN - 1)
}
}
for _, e := range oldEntries {
if e.Typ != 0 {
addEntry((*_type)(unsafe.Pointer(e.Typ)), (*itab)(unsafe.Pointer(e.Itab)))
}
}
addEntry(typ, tab)
return newC
}
// Empty type assert cache. Contains one entry with a nil Typ (which
// causes a cache lookup to fail immediately.)
var emptyTypeAssertCache = abi.TypeAssertCache{Mask: 0}
// interfaceSwitch compares t against the list of cases in s.
// If t matches case i, interfaceSwitch returns the case index i and
// an itab for the pair <t, s.Cases[i]>.
// If there is no match, return N,nil, where N is the number
// of cases.
func interfaceSwitch(s *abi.InterfaceSwitch, t *_type) (int, *itab) {
cases := unsafe.Slice(&s.Cases[0], s.NCases)
// Results if we don't find a match.
case_ := len(cases)
var tab *itab
// Look through each case in order.
for i, c := range cases {
tab = getitab(c, t, true)
if tab != nil {
case_ = i
break
}
}
if !abi.UseInterfaceSwitchCache(GOARCH) {
return case_, tab
}
// Maybe update the cache, so the next time the generated code
// doesn't need to call into the runtime.
if cheaprand()&1023 != 0 {
// Only bother updating the cache ~1 in 1000 times.
// This ensures we don't waste memory on switches, or
// switch arguments, that only happen a few times.
return case_, tab
}
// Load the current cache.
oldC := (*abi.InterfaceSwitchCache)(atomic.Loadp(unsafe.Pointer(&s.Cache)))
if cheaprand()&uint32(oldC.Mask) != 0 {
// As cache gets larger, choose to update it less often
// so we can amortize the cost of building a new cache
// (that cost is linear in oldc.Mask).
return case_, tab
}
// Make a new cache.
newC := buildInterfaceSwitchCache(oldC, t, case_, tab)
// Update cache. Use compare-and-swap so if multiple threads
// are fighting to update the cache, at least one of their
// updates will stick.
atomic_casPointer((*unsafe.Pointer)(unsafe.Pointer(&s.Cache)), unsafe.Pointer(oldC), unsafe.Pointer(newC))
return case_, tab
}
// buildInterfaceSwitchCache constructs an interface switch cache
// containing all the entries from oldC plus the new entry
// (typ,case_,tab).
func buildInterfaceSwitchCache(oldC *abi.InterfaceSwitchCache, typ *_type, case_ int, tab *itab) *abi.InterfaceSwitchCache {
oldEntries := unsafe.Slice(&oldC.Entries[0], oldC.Mask+1)
// Count the number of entries we need.
n := 1
for _, e := range oldEntries {
if e.Typ != 0 {
n++
}
}
// Figure out how big a table we need.
// We need at least one more slot than the number of entries
// so that we are guaranteed an empty slot (for termination).
newN := n * 2 // make it at most 50% full
newN = 1 << sys.Len64(uint64(newN-1)) // round up to a power of 2
// Allocate the new table.
newSize := unsafe.Sizeof(abi.InterfaceSwitchCache{}) + uintptr(newN-1)*unsafe.Sizeof(abi.InterfaceSwitchCacheEntry{})
newC := (*abi.InterfaceSwitchCache)(mallocgc(newSize, nil, true))
newC.Mask = uintptr(newN - 1)
newEntries := unsafe.Slice(&newC.Entries[0], newN)
// Fill the new table.
addEntry := func(typ *_type, case_ int, tab *itab) {
h := int(typ.Hash) & (newN - 1)
for {
if newEntries[h].Typ == 0 {
newEntries[h].Typ = uintptr(unsafe.Pointer(typ))
newEntries[h].Case = case_
newEntries[h].Itab = uintptr(unsafe.Pointer(tab))
return
}
h = (h + 1) & (newN - 1)
}
}
for _, e := range oldEntries {
if e.Typ != 0 {
addEntry((*_type)(unsafe.Pointer(e.Typ)), e.Case, (*itab)(unsafe.Pointer(e.Itab)))
}
}
addEntry(typ, case_, tab)
return newC
}
// Empty interface switch cache. Contains one entry with a nil Typ (which
// causes a cache lookup to fail immediately.)
var emptyInterfaceSwitchCache = abi.InterfaceSwitchCache{Mask: 0}
//go:linkname reflect_ifaceE2I reflect.ifaceE2I
func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
*dst = iface{assertE2I(inter, e._type), e.data}
}
//go:linkname reflectlite_ifaceE2I internal/reflectlite.ifaceE2I
func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
*dst = iface{assertE2I(inter, e._type), e.data}
}
func iterate_itabs(fn func(*itab)) {
// Note: only runs during stop the world or with itabLock held,
// so no other locks/atomics needed.
t := itabTable
for i := uintptr(0); i < t.size; i++ {
m := *(**itab)(add(unsafe.Pointer(&t.entries), i*goarch.PtrSize))
if m != nil {
fn(m)
}
}
}
// staticuint64s is used to avoid allocating in convTx for small integer values.
var staticuint64s = [...]uint64{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
}
// The linker redirects a reference of a method that it determined
// unreachable to a reference to this function, so it will throw if
// ever called.
func unreachableMethod() {
throw("unreachable method called. linker bug?")
}