| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime_test |
| |
| import ( |
| "flag" |
| "fmt" |
| "io" |
| . "runtime" |
| "runtime/debug" |
| "sort" |
| "strings" |
| "sync" |
| "testing" |
| "time" |
| "unsafe" |
| ) |
| |
| // flagQuick is set by the -quick option to skip some relatively slow tests. |
| // This is used by the cmd/dist test runtime:cpu124. |
| // The cmd/dist test passes both -test.short and -quick; |
| // there are tests that only check testing.Short, and those tests will |
| // not be skipped if only -quick is used. |
| var flagQuick = flag.Bool("quick", false, "skip slow tests, for cmd/dist test runtime:cpu124") |
| |
| func init() { |
| // We're testing the runtime, so make tracebacks show things |
| // in the runtime. This only raises the level, so it won't |
| // override GOTRACEBACK=crash from the user. |
| SetTracebackEnv("system") |
| } |
| |
| var errf error |
| |
| func errfn() error { |
| return errf |
| } |
| |
| func errfn1() error { |
| return io.EOF |
| } |
| |
| func BenchmarkIfaceCmp100(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| for j := 0; j < 100; j++ { |
| if errfn() == io.EOF { |
| b.Fatal("bad comparison") |
| } |
| } |
| } |
| } |
| |
| func BenchmarkIfaceCmpNil100(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| for j := 0; j < 100; j++ { |
| if errfn1() == nil { |
| b.Fatal("bad comparison") |
| } |
| } |
| } |
| } |
| |
| var efaceCmp1 any |
| var efaceCmp2 any |
| |
| func BenchmarkEfaceCmpDiff(b *testing.B) { |
| x := 5 |
| efaceCmp1 = &x |
| y := 6 |
| efaceCmp2 = &y |
| for i := 0; i < b.N; i++ { |
| for j := 0; j < 100; j++ { |
| if efaceCmp1 == efaceCmp2 { |
| b.Fatal("bad comparison") |
| } |
| } |
| } |
| } |
| |
| func BenchmarkEfaceCmpDiffIndirect(b *testing.B) { |
| efaceCmp1 = [2]int{1, 2} |
| efaceCmp2 = [2]int{1, 2} |
| for i := 0; i < b.N; i++ { |
| for j := 0; j < 100; j++ { |
| if efaceCmp1 != efaceCmp2 { |
| b.Fatal("bad comparison") |
| } |
| } |
| } |
| } |
| |
| func BenchmarkDefer(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| defer1() |
| } |
| } |
| |
| func defer1() { |
| defer func(x, y, z int) { |
| if recover() != nil || x != 1 || y != 2 || z != 3 { |
| panic("bad recover") |
| } |
| }(1, 2, 3) |
| } |
| |
| func BenchmarkDefer10(b *testing.B) { |
| for i := 0; i < b.N/10; i++ { |
| defer2() |
| } |
| } |
| |
| func defer2() { |
| for i := 0; i < 10; i++ { |
| defer func(x, y, z int) { |
| if recover() != nil || x != 1 || y != 2 || z != 3 { |
| panic("bad recover") |
| } |
| }(1, 2, 3) |
| } |
| } |
| |
| func BenchmarkDeferMany(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| defer func(x, y, z int) { |
| if recover() != nil || x != 1 || y != 2 || z != 3 { |
| panic("bad recover") |
| } |
| }(1, 2, 3) |
| } |
| } |
| |
| func BenchmarkPanicRecover(b *testing.B) { |
| for i := 0; i < b.N; i++ { |
| defer3() |
| } |
| } |
| |
| func defer3() { |
| defer func(x, y, z int) { |
| if recover() == nil { |
| panic("failed recover") |
| } |
| }(1, 2, 3) |
| panic("hi") |
| } |
| |
| // golang.org/issue/7063 |
| func TestStopCPUProfilingWithProfilerOff(t *testing.T) { |
| SetCPUProfileRate(0) |
| } |
| |
| // Addresses to test for faulting behavior. |
| // This is less a test of SetPanicOnFault and more a check that |
| // the operating system and the runtime can process these faults |
| // correctly. That is, we're indirectly testing that without SetPanicOnFault |
| // these would manage to turn into ordinary crashes. |
| // Note that these are truncated on 32-bit systems, so the bottom 32 bits |
| // of the larger addresses must themselves be invalid addresses. |
| // We might get unlucky and the OS might have mapped one of these |
| // addresses, but probably not: they're all in the first page, very high |
| // addresses that normally an OS would reserve for itself, or malformed |
| // addresses. Even so, we might have to remove one or two on different |
| // systems. We will see. |
| |
| var faultAddrs = []uint64{ |
| // low addresses |
| 0, |
| 1, |
| 0xfff, |
| // high (kernel) addresses |
| // or else malformed. |
| 0xffffffffffffffff, |
| 0xfffffffffffff001, |
| 0xffffffffffff0001, |
| 0xfffffffffff00001, |
| 0xffffffffff000001, |
| 0xfffffffff0000001, |
| 0xffffffff00000001, |
| 0xfffffff000000001, |
| 0xffffff0000000001, |
| 0xfffff00000000001, |
| 0xffff000000000001, |
| 0xfff0000000000001, |
| 0xff00000000000001, |
| 0xf000000000000001, |
| 0x8000000000000001, |
| } |
| |
| func TestSetPanicOnFault(t *testing.T) { |
| old := debug.SetPanicOnFault(true) |
| defer debug.SetPanicOnFault(old) |
| |
| nfault := 0 |
| for _, addr := range faultAddrs { |
| testSetPanicOnFault(t, uintptr(addr), &nfault) |
| } |
| if nfault == 0 { |
| t.Fatalf("none of the addresses faulted") |
| } |
| } |
| |
| // testSetPanicOnFault tests one potentially faulting address. |
| // It deliberately constructs and uses an invalid pointer, |
| // so mark it as nocheckptr. |
| // |
| //go:nocheckptr |
| func testSetPanicOnFault(t *testing.T, addr uintptr, nfault *int) { |
| if GOOS == "js" { |
| t.Skip("js does not support catching faults") |
| } |
| |
| defer func() { |
| if err := recover(); err != nil { |
| *nfault++ |
| } |
| }() |
| |
| // The read should fault, except that sometimes we hit |
| // addresses that have had C or kernel pages mapped there |
| // readable by user code. So just log the content. |
| // If no addresses fault, we'll fail the test. |
| v := *(*byte)(unsafe.Pointer(addr)) |
| t.Logf("addr %#x: %#x\n", addr, v) |
| } |
| |
| func eqstring_generic(s1, s2 string) bool { |
| if len(s1) != len(s2) { |
| return false |
| } |
| // optimization in assembly versions: |
| // if s1.str == s2.str { return true } |
| for i := 0; i < len(s1); i++ { |
| if s1[i] != s2[i] { |
| return false |
| } |
| } |
| return true |
| } |
| |
| func TestEqString(t *testing.T) { |
| // This isn't really an exhaustive test of == on strings, it's |
| // just a convenient way of documenting (via eqstring_generic) |
| // what == does. |
| s := []string{ |
| "", |
| "a", |
| "c", |
| "aaa", |
| "ccc", |
| "cccc"[:3], // same contents, different string |
| "1234567890", |
| } |
| for _, s1 := range s { |
| for _, s2 := range s { |
| x := s1 == s2 |
| y := eqstring_generic(s1, s2) |
| if x != y { |
| t.Errorf(`("%s" == "%s") = %t, want %t`, s1, s2, x, y) |
| } |
| } |
| } |
| } |
| |
| func TestTrailingZero(t *testing.T) { |
| // make sure we add padding for structs with trailing zero-sized fields |
| type T1 struct { |
| n int32 |
| z [0]byte |
| } |
| if unsafe.Sizeof(T1{}) != 8 { |
| t.Errorf("sizeof(%#v)==%d, want 8", T1{}, unsafe.Sizeof(T1{})) |
| } |
| type T2 struct { |
| n int64 |
| z struct{} |
| } |
| if unsafe.Sizeof(T2{}) != 8+unsafe.Sizeof(uintptr(0)) { |
| t.Errorf("sizeof(%#v)==%d, want %d", T2{}, unsafe.Sizeof(T2{}), 8+unsafe.Sizeof(uintptr(0))) |
| } |
| type T3 struct { |
| n byte |
| z [4]struct{} |
| } |
| if unsafe.Sizeof(T3{}) != 2 { |
| t.Errorf("sizeof(%#v)==%d, want 2", T3{}, unsafe.Sizeof(T3{})) |
| } |
| // make sure padding can double for both zerosize and alignment |
| type T4 struct { |
| a int32 |
| b int16 |
| c int8 |
| z struct{} |
| } |
| if unsafe.Sizeof(T4{}) != 8 { |
| t.Errorf("sizeof(%#v)==%d, want 8", T4{}, unsafe.Sizeof(T4{})) |
| } |
| // make sure we don't pad a zero-sized thing |
| type T5 struct { |
| } |
| if unsafe.Sizeof(T5{}) != 0 { |
| t.Errorf("sizeof(%#v)==%d, want 0", T5{}, unsafe.Sizeof(T5{})) |
| } |
| } |
| |
| func TestAppendGrowth(t *testing.T) { |
| var x []int64 |
| check := func(want int) { |
| if cap(x) != want { |
| t.Errorf("len=%d, cap=%d, want cap=%d", len(x), cap(x), want) |
| } |
| } |
| |
| check(0) |
| want := 1 |
| for i := 1; i <= 100; i++ { |
| x = append(x, 1) |
| check(want) |
| if i&(i-1) == 0 { |
| want = 2 * i |
| } |
| } |
| } |
| |
| var One = []int64{1} |
| |
| func TestAppendSliceGrowth(t *testing.T) { |
| var x []int64 |
| check := func(want int) { |
| if cap(x) != want { |
| t.Errorf("len=%d, cap=%d, want cap=%d", len(x), cap(x), want) |
| } |
| } |
| |
| check(0) |
| want := 1 |
| for i := 1; i <= 100; i++ { |
| x = append(x, One...) |
| check(want) |
| if i&(i-1) == 0 { |
| want = 2 * i |
| } |
| } |
| } |
| |
| func TestGoroutineProfileTrivial(t *testing.T) { |
| // Calling GoroutineProfile twice in a row should find the same number of goroutines, |
| // but it's possible there are goroutines just about to exit, so we might end up |
| // with fewer in the second call. Try a few times; it should converge once those |
| // zombies are gone. |
| for i := 0; ; i++ { |
| n1, ok := GoroutineProfile(nil) // should fail, there's at least 1 goroutine |
| if n1 < 1 || ok { |
| t.Fatalf("GoroutineProfile(nil) = %d, %v, want >0, false", n1, ok) |
| } |
| n2, ok := GoroutineProfile(make([]StackRecord, n1)) |
| if n2 == n1 && ok { |
| break |
| } |
| t.Logf("GoroutineProfile(%d) = %d, %v, want %d, true", n1, n2, ok, n1) |
| if i >= 10 { |
| t.Fatalf("GoroutineProfile not converging") |
| } |
| } |
| } |
| |
| func BenchmarkGoroutineProfile(b *testing.B) { |
| run := func(fn func() bool) func(b *testing.B) { |
| runOne := func(b *testing.B) { |
| latencies := make([]time.Duration, 0, b.N) |
| |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| start := time.Now() |
| ok := fn() |
| if !ok { |
| b.Fatal("goroutine profile failed") |
| } |
| latencies = append(latencies, time.Since(start)) |
| } |
| b.StopTimer() |
| |
| // Sort latencies then report percentiles. |
| sort.Slice(latencies, func(i, j int) bool { |
| return latencies[i] < latencies[j] |
| }) |
| b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns") |
| b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns") |
| b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns") |
| } |
| return func(b *testing.B) { |
| b.Run("idle", runOne) |
| |
| b.Run("loaded", func(b *testing.B) { |
| stop := applyGCLoad(b) |
| runOne(b) |
| // Make sure to stop the timer before we wait! The load created above |
| // is very heavy-weight and not easy to stop, so we could end up |
| // confusing the benchmarking framework for small b.N. |
| b.StopTimer() |
| stop() |
| }) |
| } |
| } |
| |
| // Measure the cost of counting goroutines |
| b.Run("small-nil", run(func() bool { |
| GoroutineProfile(nil) |
| return true |
| })) |
| |
| // Measure the cost with a small set of goroutines |
| n := NumGoroutine() |
| p := make([]StackRecord, 2*n+2*GOMAXPROCS(0)) |
| b.Run("small", run(func() bool { |
| _, ok := GoroutineProfile(p) |
| return ok |
| })) |
| |
| // Measure the cost with a large set of goroutines |
| ch := make(chan int) |
| var ready, done sync.WaitGroup |
| for i := 0; i < 5000; i++ { |
| ready.Add(1) |
| done.Add(1) |
| go func() { ready.Done(); <-ch; done.Done() }() |
| } |
| ready.Wait() |
| |
| // Count goroutines with a large allgs list |
| b.Run("large-nil", run(func() bool { |
| GoroutineProfile(nil) |
| return true |
| })) |
| |
| n = NumGoroutine() |
| p = make([]StackRecord, 2*n+2*GOMAXPROCS(0)) |
| b.Run("large", run(func() bool { |
| _, ok := GoroutineProfile(p) |
| return ok |
| })) |
| |
| close(ch) |
| done.Wait() |
| |
| // Count goroutines with a large (but unused) allgs list |
| b.Run("sparse-nil", run(func() bool { |
| GoroutineProfile(nil) |
| return true |
| })) |
| |
| // Measure the cost of a large (but unused) allgs list |
| n = NumGoroutine() |
| p = make([]StackRecord, 2*n+2*GOMAXPROCS(0)) |
| b.Run("sparse", run(func() bool { |
| _, ok := GoroutineProfile(p) |
| return ok |
| })) |
| } |
| |
| func TestVersion(t *testing.T) { |
| // Test that version does not contain \r or \n. |
| vers := Version() |
| if strings.Contains(vers, "\r") || strings.Contains(vers, "\n") { |
| t.Fatalf("cr/nl in version: %q", vers) |
| } |
| } |
| |
| func TestTimediv(t *testing.T) { |
| for _, tc := range []struct { |
| num int64 |
| div int32 |
| ret int32 |
| rem int32 |
| }{ |
| { |
| num: 8, |
| div: 2, |
| ret: 4, |
| rem: 0, |
| }, |
| { |
| num: 9, |
| div: 2, |
| ret: 4, |
| rem: 1, |
| }, |
| { |
| // Used by runtime.check. |
| num: 12345*1000000000 + 54321, |
| div: 1000000000, |
| ret: 12345, |
| rem: 54321, |
| }, |
| { |
| num: 1<<32 - 1, |
| div: 2, |
| ret: 1<<31 - 1, // no overflow. |
| rem: 1, |
| }, |
| { |
| num: 1 << 32, |
| div: 2, |
| ret: 1<<31 - 1, // overflow. |
| rem: 0, |
| }, |
| { |
| num: 1 << 40, |
| div: 2, |
| ret: 1<<31 - 1, // overflow. |
| rem: 0, |
| }, |
| { |
| num: 1<<40 + 1, |
| div: 1 << 10, |
| ret: 1 << 30, |
| rem: 1, |
| }, |
| } { |
| name := fmt.Sprintf("%d div %d", tc.num, tc.div) |
| t.Run(name, func(t *testing.T) { |
| // Double check that the inputs make sense using |
| // standard 64-bit division. |
| ret64 := tc.num / int64(tc.div) |
| rem64 := tc.num % int64(tc.div) |
| if ret64 != int64(int32(ret64)) { |
| // Simulate timediv overflow value. |
| ret64 = 1<<31 - 1 |
| rem64 = 0 |
| } |
| if ret64 != int64(tc.ret) { |
| t.Errorf("%d / %d got ret %d rem %d want ret %d rem %d", tc.num, tc.div, ret64, rem64, tc.ret, tc.rem) |
| } |
| |
| var rem int32 |
| ret := Timediv(tc.num, tc.div, &rem) |
| if ret != tc.ret || rem != tc.rem { |
| t.Errorf("timediv %d / %d got ret %d rem %d want ret %d rem %d", tc.num, tc.div, ret, rem, tc.ret, tc.rem) |
| } |
| }) |
| } |
| } |