|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package strconv | 
|  |  | 
|  | // decimal to binary floating point conversion. | 
|  | // Algorithm: | 
|  | //   1) Store input in multiprecision decimal. | 
|  | //   2) Multiply/divide decimal by powers of two until in range [0.5, 1) | 
|  | //   3) Multiply by 2^precision and round to get mantissa. | 
|  |  | 
|  | import "math" | 
|  |  | 
|  | var optimize = true // set to false to force slow-path conversions for testing | 
|  |  | 
|  | // commonPrefixLenIgnoreCase returns the length of the common | 
|  | // prefix of s and prefix, with the character case of s ignored. | 
|  | // The prefix argument must be all lower-case. | 
|  | func commonPrefixLenIgnoreCase(s, prefix string) int { | 
|  | n := min(len(prefix), len(s)) | 
|  | for i := 0; i < n; i++ { | 
|  | c := s[i] | 
|  | if 'A' <= c && c <= 'Z' { | 
|  | c += 'a' - 'A' | 
|  | } | 
|  | if c != prefix[i] { | 
|  | return i | 
|  | } | 
|  | } | 
|  | return n | 
|  | } | 
|  |  | 
|  | // special returns the floating-point value for the special, | 
|  | // possibly signed floating-point representations inf, infinity, | 
|  | // and NaN. The result is ok if a prefix of s contains one | 
|  | // of these representations and n is the length of that prefix. | 
|  | // The character case is ignored. | 
|  | func special(s string) (f float64, n int, ok bool) { | 
|  | if len(s) == 0 { | 
|  | return 0, 0, false | 
|  | } | 
|  | sign := 1 | 
|  | nsign := 0 | 
|  | switch s[0] { | 
|  | case '+', '-': | 
|  | if s[0] == '-' { | 
|  | sign = -1 | 
|  | } | 
|  | nsign = 1 | 
|  | s = s[1:] | 
|  | fallthrough | 
|  | case 'i', 'I': | 
|  | n := commonPrefixLenIgnoreCase(s, "infinity") | 
|  | // Anything longer than "inf" is ok, but if we | 
|  | // don't have "infinity", only consume "inf". | 
|  | if 3 < n && n < 8 { | 
|  | n = 3 | 
|  | } | 
|  | if n == 3 || n == 8 { | 
|  | return math.Inf(sign), nsign + n, true | 
|  | } | 
|  | case 'n', 'N': | 
|  | if commonPrefixLenIgnoreCase(s, "nan") == 3 { | 
|  | return math.NaN(), 3, true | 
|  | } | 
|  | } | 
|  | return 0, 0, false | 
|  | } | 
|  |  | 
|  | func (b *decimal) set(s string) (ok bool) { | 
|  | i := 0 | 
|  | b.neg = false | 
|  | b.trunc = false | 
|  |  | 
|  | // optional sign | 
|  | if i >= len(s) { | 
|  | return | 
|  | } | 
|  | switch s[i] { | 
|  | case '+': | 
|  | i++ | 
|  | case '-': | 
|  | i++ | 
|  | b.neg = true | 
|  | } | 
|  |  | 
|  | // digits | 
|  | sawdot := false | 
|  | sawdigits := false | 
|  | for ; i < len(s); i++ { | 
|  | switch { | 
|  | case s[i] == '_': | 
|  | // readFloat already checked underscores | 
|  | continue | 
|  | case s[i] == '.': | 
|  | if sawdot { | 
|  | return | 
|  | } | 
|  | sawdot = true | 
|  | b.dp = b.nd | 
|  | continue | 
|  |  | 
|  | case '0' <= s[i] && s[i] <= '9': | 
|  | sawdigits = true | 
|  | if s[i] == '0' && b.nd == 0 { // ignore leading zeros | 
|  | b.dp-- | 
|  | continue | 
|  | } | 
|  | if b.nd < len(b.d) { | 
|  | b.d[b.nd] = s[i] | 
|  | b.nd++ | 
|  | } else if s[i] != '0' { | 
|  | b.trunc = true | 
|  | } | 
|  | continue | 
|  | } | 
|  | break | 
|  | } | 
|  | if !sawdigits { | 
|  | return | 
|  | } | 
|  | if !sawdot { | 
|  | b.dp = b.nd | 
|  | } | 
|  |  | 
|  | // optional exponent moves decimal point. | 
|  | // if we read a very large, very long number, | 
|  | // just be sure to move the decimal point by | 
|  | // a lot (say, 100000).  it doesn't matter if it's | 
|  | // not the exact number. | 
|  | if i < len(s) && lower(s[i]) == 'e' { | 
|  | i++ | 
|  | if i >= len(s) { | 
|  | return | 
|  | } | 
|  | esign := 1 | 
|  | switch s[i] { | 
|  | case '+': | 
|  | i++ | 
|  | case '-': | 
|  | i++ | 
|  | esign = -1 | 
|  | } | 
|  | if i >= len(s) || s[i] < '0' || s[i] > '9' { | 
|  | return | 
|  | } | 
|  | e := 0 | 
|  | for ; i < len(s) && ('0' <= s[i] && s[i] <= '9' || s[i] == '_'); i++ { | 
|  | if s[i] == '_' { | 
|  | // readFloat already checked underscores | 
|  | continue | 
|  | } | 
|  | if e < 10000 { | 
|  | e = e*10 + int(s[i]) - '0' | 
|  | } | 
|  | } | 
|  | b.dp += e * esign | 
|  | } | 
|  |  | 
|  | if i != len(s) { | 
|  | return | 
|  | } | 
|  |  | 
|  | ok = true | 
|  | return | 
|  | } | 
|  |  | 
|  | // readFloat reads a decimal or hexadecimal mantissa and exponent from a float | 
|  | // string representation in s; the number may be followed by other characters. | 
|  | // readFloat reports the number of bytes consumed (i), and whether the number | 
|  | // is valid (ok). | 
|  | func readFloat(s string) (mantissa uint64, exp int, neg, trunc, hex bool, i int, ok bool) { | 
|  | underscores := false | 
|  |  | 
|  | // optional sign | 
|  | if i >= len(s) { | 
|  | return | 
|  | } | 
|  | switch s[i] { | 
|  | case '+': | 
|  | i++ | 
|  | case '-': | 
|  | i++ | 
|  | neg = true | 
|  | } | 
|  |  | 
|  | // digits | 
|  | base := uint64(10) | 
|  | maxMantDigits := 19 // 10^19 fits in uint64 | 
|  | expChar := byte('e') | 
|  | if i+2 < len(s) && s[i] == '0' && lower(s[i+1]) == 'x' { | 
|  | base = 16 | 
|  | maxMantDigits = 16 // 16^16 fits in uint64 | 
|  | i += 2 | 
|  | expChar = 'p' | 
|  | hex = true | 
|  | } | 
|  | sawdot := false | 
|  | sawdigits := false | 
|  | nd := 0 | 
|  | ndMant := 0 | 
|  | dp := 0 | 
|  | loop: | 
|  | for ; i < len(s); i++ { | 
|  | switch c := s[i]; true { | 
|  | case c == '_': | 
|  | underscores = true | 
|  | continue | 
|  |  | 
|  | case c == '.': | 
|  | if sawdot { | 
|  | break loop | 
|  | } | 
|  | sawdot = true | 
|  | dp = nd | 
|  | continue | 
|  |  | 
|  | case '0' <= c && c <= '9': | 
|  | sawdigits = true | 
|  | if c == '0' && nd == 0 { // ignore leading zeros | 
|  | dp-- | 
|  | continue | 
|  | } | 
|  | nd++ | 
|  | if ndMant < maxMantDigits { | 
|  | mantissa *= base | 
|  | mantissa += uint64(c - '0') | 
|  | ndMant++ | 
|  | } else if c != '0' { | 
|  | trunc = true | 
|  | } | 
|  | continue | 
|  |  | 
|  | case base == 16 && 'a' <= lower(c) && lower(c) <= 'f': | 
|  | sawdigits = true | 
|  | nd++ | 
|  | if ndMant < maxMantDigits { | 
|  | mantissa *= 16 | 
|  | mantissa += uint64(lower(c) - 'a' + 10) | 
|  | ndMant++ | 
|  | } else { | 
|  | trunc = true | 
|  | } | 
|  | continue | 
|  | } | 
|  | break | 
|  | } | 
|  | if !sawdigits { | 
|  | return | 
|  | } | 
|  | if !sawdot { | 
|  | dp = nd | 
|  | } | 
|  |  | 
|  | if base == 16 { | 
|  | dp *= 4 | 
|  | ndMant *= 4 | 
|  | } | 
|  |  | 
|  | // optional exponent moves decimal point. | 
|  | // if we read a very large, very long number, | 
|  | // just be sure to move the decimal point by | 
|  | // a lot (say, 100000).  it doesn't matter if it's | 
|  | // not the exact number. | 
|  | if i < len(s) && lower(s[i]) == expChar { | 
|  | i++ | 
|  | if i >= len(s) { | 
|  | return | 
|  | } | 
|  | esign := 1 | 
|  | switch s[i] { | 
|  | case '+': | 
|  | i++ | 
|  | case '-': | 
|  | i++ | 
|  | esign = -1 | 
|  | } | 
|  | if i >= len(s) || s[i] < '0' || s[i] > '9' { | 
|  | return | 
|  | } | 
|  | e := 0 | 
|  | for ; i < len(s) && ('0' <= s[i] && s[i] <= '9' || s[i] == '_'); i++ { | 
|  | if s[i] == '_' { | 
|  | underscores = true | 
|  | continue | 
|  | } | 
|  | if e < 10000 { | 
|  | e = e*10 + int(s[i]) - '0' | 
|  | } | 
|  | } | 
|  | dp += e * esign | 
|  | } else if base == 16 { | 
|  | // Must have exponent. | 
|  | return | 
|  | } | 
|  |  | 
|  | if mantissa != 0 { | 
|  | exp = dp - ndMant | 
|  | } | 
|  |  | 
|  | if underscores && !underscoreOK(s[:i]) { | 
|  | return | 
|  | } | 
|  |  | 
|  | ok = true | 
|  | return | 
|  | } | 
|  |  | 
|  | // decimal power of ten to binary power of two. | 
|  | var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26} | 
|  |  | 
|  | func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) { | 
|  | var exp int | 
|  | var mant uint64 | 
|  |  | 
|  | // Zero is always a special case. | 
|  | if d.nd == 0 { | 
|  | mant = 0 | 
|  | exp = flt.bias | 
|  | goto out | 
|  | } | 
|  |  | 
|  | // Obvious overflow/underflow. | 
|  | // These bounds are for 64-bit floats. | 
|  | // Will have to change if we want to support 80-bit floats in the future. | 
|  | if d.dp > 310 { | 
|  | goto overflow | 
|  | } | 
|  | if d.dp < -330 { | 
|  | // zero | 
|  | mant = 0 | 
|  | exp = flt.bias | 
|  | goto out | 
|  | } | 
|  |  | 
|  | // Scale by powers of two until in range [0.5, 1.0) | 
|  | exp = 0 | 
|  | for d.dp > 0 { | 
|  | var n int | 
|  | if d.dp >= len(powtab) { | 
|  | n = 27 | 
|  | } else { | 
|  | n = powtab[d.dp] | 
|  | } | 
|  | d.Shift(-n) | 
|  | exp += n | 
|  | } | 
|  | for d.dp < 0 || d.dp == 0 && d.d[0] < '5' { | 
|  | var n int | 
|  | if -d.dp >= len(powtab) { | 
|  | n = 27 | 
|  | } else { | 
|  | n = powtab[-d.dp] | 
|  | } | 
|  | d.Shift(n) | 
|  | exp -= n | 
|  | } | 
|  |  | 
|  | // Our range is [0.5,1) but floating point range is [1,2). | 
|  | exp-- | 
|  |  | 
|  | // Minimum representable exponent is flt.bias+1. | 
|  | // If the exponent is smaller, move it up and | 
|  | // adjust d accordingly. | 
|  | if exp < flt.bias+1 { | 
|  | n := flt.bias + 1 - exp | 
|  | d.Shift(-n) | 
|  | exp += n | 
|  | } | 
|  |  | 
|  | if exp-flt.bias >= 1<<flt.expbits-1 { | 
|  | goto overflow | 
|  | } | 
|  |  | 
|  | // Extract 1+flt.mantbits bits. | 
|  | d.Shift(int(1 + flt.mantbits)) | 
|  | mant = d.RoundedInteger() | 
|  |  | 
|  | // Rounding might have added a bit; shift down. | 
|  | if mant == 2<<flt.mantbits { | 
|  | mant >>= 1 | 
|  | exp++ | 
|  | if exp-flt.bias >= 1<<flt.expbits-1 { | 
|  | goto overflow | 
|  | } | 
|  | } | 
|  |  | 
|  | // Denormalized? | 
|  | if mant&(1<<flt.mantbits) == 0 { | 
|  | exp = flt.bias | 
|  | } | 
|  | goto out | 
|  |  | 
|  | overflow: | 
|  | // ±Inf | 
|  | mant = 0 | 
|  | exp = 1<<flt.expbits - 1 + flt.bias | 
|  | overflow = true | 
|  |  | 
|  | out: | 
|  | // Assemble bits. | 
|  | bits := mant & (uint64(1)<<flt.mantbits - 1) | 
|  | bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits | 
|  | if d.neg { | 
|  | bits |= 1 << flt.mantbits << flt.expbits | 
|  | } | 
|  | return bits, overflow | 
|  | } | 
|  |  | 
|  | // Exact powers of 10. | 
|  | var float64pow10 = []float64{ | 
|  | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | 
|  | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | 
|  | 1e20, 1e21, 1e22, | 
|  | } | 
|  | var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10} | 
|  |  | 
|  | // If possible to convert decimal representation to 64-bit float f exactly, | 
|  | // entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits. | 
|  | // Three common cases: | 
|  | // | 
|  | //	value is exact integer | 
|  | //	value is exact integer * exact power of ten | 
|  | //	value is exact integer / exact power of ten | 
|  | // | 
|  | // These all produce potentially inexact but correctly rounded answers. | 
|  | func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) { | 
|  | if mantissa>>float64info.mantbits != 0 { | 
|  | return | 
|  | } | 
|  | f = float64(mantissa) | 
|  | if neg { | 
|  | f = -f | 
|  | } | 
|  | switch { | 
|  | case exp == 0: | 
|  | // an integer. | 
|  | return f, true | 
|  | // Exact integers are <= 10^15. | 
|  | // Exact powers of ten are <= 10^22. | 
|  | case exp > 0 && exp <= 15+22: // int * 10^k | 
|  | // If exponent is big but number of digits is not, | 
|  | // can move a few zeros into the integer part. | 
|  | if exp > 22 { | 
|  | f *= float64pow10[exp-22] | 
|  | exp = 22 | 
|  | } | 
|  | if f > 1e15 || f < -1e15 { | 
|  | // the exponent was really too large. | 
|  | return | 
|  | } | 
|  | return f * float64pow10[exp], true | 
|  | case exp < 0 && exp >= -22: // int / 10^k | 
|  | return f / float64pow10[-exp], true | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // If possible to compute mantissa*10^exp to 32-bit float f exactly, | 
|  | // entirely in floating-point math, do so, avoiding the machinery above. | 
|  | func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) { | 
|  | if mantissa>>float32info.mantbits != 0 { | 
|  | return | 
|  | } | 
|  | f = float32(mantissa) | 
|  | if neg { | 
|  | f = -f | 
|  | } | 
|  | switch { | 
|  | case exp == 0: | 
|  | return f, true | 
|  | // Exact integers are <= 10^7. | 
|  | // Exact powers of ten are <= 10^10. | 
|  | case exp > 0 && exp <= 7+10: // int * 10^k | 
|  | // If exponent is big but number of digits is not, | 
|  | // can move a few zeros into the integer part. | 
|  | if exp > 10 { | 
|  | f *= float32pow10[exp-10] | 
|  | exp = 10 | 
|  | } | 
|  | if f > 1e7 || f < -1e7 { | 
|  | // the exponent was really too large. | 
|  | return | 
|  | } | 
|  | return f * float32pow10[exp], true | 
|  | case exp < 0 && exp >= -10: // int / 10^k | 
|  | return f / float32pow10[-exp], true | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // atofHex converts the hex floating-point string s | 
|  | // to a rounded float32 or float64 value (depending on flt==&float32info or flt==&float64info) | 
|  | // and returns it as a float64. | 
|  | // The string s has already been parsed into a mantissa, exponent, and sign (neg==true for negative). | 
|  | // If trunc is true, trailing non-zero bits have been omitted from the mantissa. | 
|  | func atofHex(s string, flt *floatInfo, mantissa uint64, exp int, neg, trunc bool) (float64, error) { | 
|  | maxExp := 1<<flt.expbits + flt.bias - 2 | 
|  | minExp := flt.bias + 1 | 
|  | exp += int(flt.mantbits) // mantissa now implicitly divided by 2^mantbits. | 
|  |  | 
|  | // Shift mantissa and exponent to bring representation into float range. | 
|  | // Eventually we want a mantissa with a leading 1-bit followed by mantbits other bits. | 
|  | // For rounding, we need two more, where the bottom bit represents | 
|  | // whether that bit or any later bit was non-zero. | 
|  | // (If the mantissa has already lost non-zero bits, trunc is true, | 
|  | // and we OR in a 1 below after shifting left appropriately.) | 
|  | for mantissa != 0 && mantissa>>(flt.mantbits+2) == 0 { | 
|  | mantissa <<= 1 | 
|  | exp-- | 
|  | } | 
|  | if trunc { | 
|  | mantissa |= 1 | 
|  | } | 
|  | for mantissa>>(1+flt.mantbits+2) != 0 { | 
|  | mantissa = mantissa>>1 | mantissa&1 | 
|  | exp++ | 
|  | } | 
|  |  | 
|  | // If exponent is too negative, | 
|  | // denormalize in hopes of making it representable. | 
|  | // (The -2 is for the rounding bits.) | 
|  | for mantissa > 1 && exp < minExp-2 { | 
|  | mantissa = mantissa>>1 | mantissa&1 | 
|  | exp++ | 
|  | } | 
|  |  | 
|  | // Round using two bottom bits. | 
|  | round := mantissa & 3 | 
|  | mantissa >>= 2 | 
|  | round |= mantissa & 1 // round to even (round up if mantissa is odd) | 
|  | exp += 2 | 
|  | if round == 3 { | 
|  | mantissa++ | 
|  | if mantissa == 1<<(1+flt.mantbits) { | 
|  | mantissa >>= 1 | 
|  | exp++ | 
|  | } | 
|  | } | 
|  |  | 
|  | if mantissa>>flt.mantbits == 0 { // Denormal or zero. | 
|  | exp = flt.bias | 
|  | } | 
|  | var err error | 
|  | if exp > maxExp { // infinity and range error | 
|  | mantissa = 1 << flt.mantbits | 
|  | exp = maxExp + 1 | 
|  | err = rangeError(fnParseFloat, s) | 
|  | } | 
|  |  | 
|  | bits := mantissa & (1<<flt.mantbits - 1) | 
|  | bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits | 
|  | if neg { | 
|  | bits |= 1 << flt.mantbits << flt.expbits | 
|  | } | 
|  | if flt == &float32info { | 
|  | return float64(math.Float32frombits(uint32(bits))), err | 
|  | } | 
|  | return math.Float64frombits(bits), err | 
|  | } | 
|  |  | 
|  | const fnParseFloat = "ParseFloat" | 
|  |  | 
|  | func atof32(s string) (f float32, n int, err error) { | 
|  | if val, n, ok := special(s); ok { | 
|  | return float32(val), n, nil | 
|  | } | 
|  |  | 
|  | mantissa, exp, neg, trunc, hex, n, ok := readFloat(s) | 
|  | if !ok { | 
|  | return 0, n, syntaxError(fnParseFloat, s) | 
|  | } | 
|  |  | 
|  | if hex { | 
|  | f, err := atofHex(s[:n], &float32info, mantissa, exp, neg, trunc) | 
|  | return float32(f), n, err | 
|  | } | 
|  |  | 
|  | if optimize { | 
|  | // Try pure floating-point arithmetic conversion, and if that fails, | 
|  | // the Eisel-Lemire algorithm. | 
|  | if !trunc { | 
|  | if f, ok := atof32exact(mantissa, exp, neg); ok { | 
|  | return f, n, nil | 
|  | } | 
|  | } | 
|  | f, ok := eiselLemire32(mantissa, exp, neg) | 
|  | if ok { | 
|  | if !trunc { | 
|  | return f, n, nil | 
|  | } | 
|  | // Even if the mantissa was truncated, we may | 
|  | // have found the correct result. Confirm by | 
|  | // converting the upper mantissa bound. | 
|  | fUp, ok := eiselLemire32(mantissa+1, exp, neg) | 
|  | if ok && f == fUp { | 
|  | return f, n, nil | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Slow fallback. | 
|  | var d decimal | 
|  | if !d.set(s[:n]) { | 
|  | return 0, n, syntaxError(fnParseFloat, s) | 
|  | } | 
|  | b, ovf := d.floatBits(&float32info) | 
|  | f = math.Float32frombits(uint32(b)) | 
|  | if ovf { | 
|  | err = rangeError(fnParseFloat, s) | 
|  | } | 
|  | return f, n, err | 
|  | } | 
|  |  | 
|  | func atof64(s string) (f float64, n int, err error) { | 
|  | if val, n, ok := special(s); ok { | 
|  | return val, n, nil | 
|  | } | 
|  |  | 
|  | mantissa, exp, neg, trunc, hex, n, ok := readFloat(s) | 
|  | if !ok { | 
|  | return 0, n, syntaxError(fnParseFloat, s) | 
|  | } | 
|  |  | 
|  | if hex { | 
|  | f, err := atofHex(s[:n], &float64info, mantissa, exp, neg, trunc) | 
|  | return f, n, err | 
|  | } | 
|  |  | 
|  | if optimize { | 
|  | // Try pure floating-point arithmetic conversion, and if that fails, | 
|  | // the Eisel-Lemire algorithm. | 
|  | if !trunc { | 
|  | if f, ok := atof64exact(mantissa, exp, neg); ok { | 
|  | return f, n, nil | 
|  | } | 
|  | } | 
|  | f, ok := eiselLemire64(mantissa, exp, neg) | 
|  | if ok { | 
|  | if !trunc { | 
|  | return f, n, nil | 
|  | } | 
|  | // Even if the mantissa was truncated, we may | 
|  | // have found the correct result. Confirm by | 
|  | // converting the upper mantissa bound. | 
|  | fUp, ok := eiselLemire64(mantissa+1, exp, neg) | 
|  | if ok && f == fUp { | 
|  | return f, n, nil | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Slow fallback. | 
|  | var d decimal | 
|  | if !d.set(s[:n]) { | 
|  | return 0, n, syntaxError(fnParseFloat, s) | 
|  | } | 
|  | b, ovf := d.floatBits(&float64info) | 
|  | f = math.Float64frombits(b) | 
|  | if ovf { | 
|  | err = rangeError(fnParseFloat, s) | 
|  | } | 
|  | return f, n, err | 
|  | } | 
|  |  | 
|  | // ParseFloat converts the string s to a floating-point number | 
|  | // with the precision specified by bitSize: 32 for float32, or 64 for float64. | 
|  | // When bitSize=32, the result still has type float64, but it will be | 
|  | // convertible to float32 without changing its value. | 
|  | // | 
|  | // ParseFloat accepts decimal and hexadecimal floating-point numbers | 
|  | // as defined by the Go syntax for [floating-point literals]. | 
|  | // If s is well-formed and near a valid floating-point number, | 
|  | // ParseFloat returns the nearest floating-point number rounded | 
|  | // using IEEE754 unbiased rounding. | 
|  | // (Parsing a hexadecimal floating-point value only rounds when | 
|  | // there are more bits in the hexadecimal representation than | 
|  | // will fit in the mantissa.) | 
|  | // | 
|  | // The errors that ParseFloat returns have concrete type *NumError | 
|  | // and include err.Num = s. | 
|  | // | 
|  | // If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax. | 
|  | // | 
|  | // If s is syntactically well-formed but is more than 1/2 ULP | 
|  | // away from the largest floating point number of the given size, | 
|  | // ParseFloat returns f = ±Inf, err.Err = ErrRange. | 
|  | // | 
|  | // ParseFloat recognizes the string "NaN", and the (possibly signed) strings "Inf" and "Infinity" | 
|  | // as their respective special floating point values. It ignores case when matching. | 
|  | // | 
|  | // [floating-point literals]: https://go.dev/ref/spec#Floating-point_literals | 
|  | func ParseFloat(s string, bitSize int) (float64, error) { | 
|  | f, n, err := parseFloatPrefix(s, bitSize) | 
|  | if n != len(s) && (err == nil || err.(*NumError).Err != ErrSyntax) { | 
|  | return 0, syntaxError(fnParseFloat, s) | 
|  | } | 
|  | return f, err | 
|  | } | 
|  |  | 
|  | func parseFloatPrefix(s string, bitSize int) (float64, int, error) { | 
|  | if bitSize == 32 { | 
|  | f, n, err := atof32(s) | 
|  | return float64(f), n, err | 
|  | } | 
|  | return atof64(s) | 
|  | } |