| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssagen |
| |
| import ( |
| "bufio" |
| "bytes" |
| "cmd/compile/internal/abi" |
| "fmt" |
| "go/constant" |
| "html" |
| "internal/buildcfg" |
| "os" |
| "path/filepath" |
| "sort" |
| "strings" |
| |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| "cmd/compile/internal/liveness" |
| "cmd/compile/internal/objw" |
| "cmd/compile/internal/reflectdata" |
| "cmd/compile/internal/ssa" |
| "cmd/compile/internal/staticdata" |
| "cmd/compile/internal/typecheck" |
| "cmd/compile/internal/types" |
| "cmd/internal/obj" |
| "cmd/internal/obj/x86" |
| "cmd/internal/objabi" |
| "cmd/internal/src" |
| "cmd/internal/sys" |
| ) |
| |
| var ssaConfig *ssa.Config |
| var ssaCaches []ssa.Cache |
| |
| var ssaDump string // early copy of $GOSSAFUNC; the func name to dump output for |
| var ssaDir string // optional destination for ssa dump file |
| var ssaDumpStdout bool // whether to dump to stdout |
| var ssaDumpCFG string // generate CFGs for these phases |
| const ssaDumpFile = "ssa.html" |
| |
| // ssaDumpInlined holds all inlined functions when ssaDump contains a function name. |
| var ssaDumpInlined []*ir.Func |
| |
| func DumpInline(fn *ir.Func) { |
| if ssaDump != "" && ssaDump == ir.FuncName(fn) { |
| ssaDumpInlined = append(ssaDumpInlined, fn) |
| } |
| } |
| |
| func InitEnv() { |
| ssaDump = os.Getenv("GOSSAFUNC") |
| ssaDir = os.Getenv("GOSSADIR") |
| if ssaDump != "" { |
| if strings.HasSuffix(ssaDump, "+") { |
| ssaDump = ssaDump[:len(ssaDump)-1] |
| ssaDumpStdout = true |
| } |
| spl := strings.Split(ssaDump, ":") |
| if len(spl) > 1 { |
| ssaDump = spl[0] |
| ssaDumpCFG = spl[1] |
| } |
| } |
| } |
| |
| func InitConfig() { |
| types_ := ssa.NewTypes() |
| |
| if Arch.SoftFloat { |
| softfloatInit() |
| } |
| |
| // Generate a few pointer types that are uncommon in the frontend but common in the backend. |
| // Caching is disabled in the backend, so generating these here avoids allocations. |
| _ = types.NewPtr(types.Types[types.TINTER]) // *interface{} |
| _ = types.NewPtr(types.NewPtr(types.Types[types.TSTRING])) // **string |
| _ = types.NewPtr(types.NewSlice(types.Types[types.TINTER])) // *[]interface{} |
| _ = types.NewPtr(types.NewPtr(types.ByteType)) // **byte |
| _ = types.NewPtr(types.NewSlice(types.ByteType)) // *[]byte |
| _ = types.NewPtr(types.NewSlice(types.Types[types.TSTRING])) // *[]string |
| _ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[types.TUINT8]))) // ***uint8 |
| _ = types.NewPtr(types.Types[types.TINT16]) // *int16 |
| _ = types.NewPtr(types.Types[types.TINT64]) // *int64 |
| _ = types.NewPtr(types.ErrorType) // *error |
| types.NewPtrCacheEnabled = false |
| ssaConfig = ssa.NewConfig(base.Ctxt.Arch.Name, *types_, base.Ctxt, base.Flag.N == 0, Arch.SoftFloat) |
| ssaConfig.Race = base.Flag.Race |
| ssaCaches = make([]ssa.Cache, base.Flag.LowerC) |
| |
| // Set up some runtime functions we'll need to call. |
| ir.Syms.AssertE2I = typecheck.LookupRuntimeFunc("assertE2I") |
| ir.Syms.AssertE2I2 = typecheck.LookupRuntimeFunc("assertE2I2") |
| ir.Syms.AssertI2I = typecheck.LookupRuntimeFunc("assertI2I") |
| ir.Syms.AssertI2I2 = typecheck.LookupRuntimeFunc("assertI2I2") |
| ir.Syms.CheckPtrAlignment = typecheck.LookupRuntimeFunc("checkptrAlignment") |
| ir.Syms.Deferproc = typecheck.LookupRuntimeFunc("deferproc") |
| ir.Syms.DeferprocStack = typecheck.LookupRuntimeFunc("deferprocStack") |
| ir.Syms.Deferreturn = typecheck.LookupRuntimeFunc("deferreturn") |
| ir.Syms.Duffcopy = typecheck.LookupRuntimeFunc("duffcopy") |
| ir.Syms.Duffzero = typecheck.LookupRuntimeFunc("duffzero") |
| ir.Syms.GCWriteBarrier = typecheck.LookupRuntimeFunc("gcWriteBarrier") |
| ir.Syms.Goschedguarded = typecheck.LookupRuntimeFunc("goschedguarded") |
| ir.Syms.Growslice = typecheck.LookupRuntimeFunc("growslice") |
| ir.Syms.Msanread = typecheck.LookupRuntimeFunc("msanread") |
| ir.Syms.Msanwrite = typecheck.LookupRuntimeFunc("msanwrite") |
| ir.Syms.Msanmove = typecheck.LookupRuntimeFunc("msanmove") |
| ir.Syms.Asanread = typecheck.LookupRuntimeFunc("asanread") |
| ir.Syms.Asanwrite = typecheck.LookupRuntimeFunc("asanwrite") |
| ir.Syms.Newobject = typecheck.LookupRuntimeFunc("newobject") |
| ir.Syms.Newproc = typecheck.LookupRuntimeFunc("newproc") |
| ir.Syms.Panicdivide = typecheck.LookupRuntimeFunc("panicdivide") |
| ir.Syms.PanicdottypeE = typecheck.LookupRuntimeFunc("panicdottypeE") |
| ir.Syms.PanicdottypeI = typecheck.LookupRuntimeFunc("panicdottypeI") |
| ir.Syms.Panicnildottype = typecheck.LookupRuntimeFunc("panicnildottype") |
| ir.Syms.Panicoverflow = typecheck.LookupRuntimeFunc("panicoverflow") |
| ir.Syms.Panicshift = typecheck.LookupRuntimeFunc("panicshift") |
| ir.Syms.Raceread = typecheck.LookupRuntimeFunc("raceread") |
| ir.Syms.Racereadrange = typecheck.LookupRuntimeFunc("racereadrange") |
| ir.Syms.Racewrite = typecheck.LookupRuntimeFunc("racewrite") |
| ir.Syms.Racewriterange = typecheck.LookupRuntimeFunc("racewriterange") |
| ir.Syms.X86HasPOPCNT = typecheck.LookupRuntimeVar("x86HasPOPCNT") // bool |
| ir.Syms.X86HasSSE41 = typecheck.LookupRuntimeVar("x86HasSSE41") // bool |
| ir.Syms.X86HasFMA = typecheck.LookupRuntimeVar("x86HasFMA") // bool |
| ir.Syms.ARMHasVFPv4 = typecheck.LookupRuntimeVar("armHasVFPv4") // bool |
| ir.Syms.ARM64HasATOMICS = typecheck.LookupRuntimeVar("arm64HasATOMICS") // bool |
| ir.Syms.Staticuint64s = typecheck.LookupRuntimeVar("staticuint64s") |
| ir.Syms.Typedmemclr = typecheck.LookupRuntimeFunc("typedmemclr") |
| ir.Syms.Typedmemmove = typecheck.LookupRuntimeFunc("typedmemmove") |
| ir.Syms.Udiv = typecheck.LookupRuntimeVar("udiv") // asm func with special ABI |
| ir.Syms.WriteBarrier = typecheck.LookupRuntimeVar("writeBarrier") // struct { bool; ... } |
| ir.Syms.Zerobase = typecheck.LookupRuntimeVar("zerobase") |
| |
| // asm funcs with special ABI |
| if base.Ctxt.Arch.Name == "amd64" { |
| GCWriteBarrierReg = map[int16]*obj.LSym{ |
| x86.REG_AX: typecheck.LookupRuntimeFunc("gcWriteBarrier"), |
| x86.REG_CX: typecheck.LookupRuntimeFunc("gcWriteBarrierCX"), |
| x86.REG_DX: typecheck.LookupRuntimeFunc("gcWriteBarrierDX"), |
| x86.REG_BX: typecheck.LookupRuntimeFunc("gcWriteBarrierBX"), |
| x86.REG_BP: typecheck.LookupRuntimeFunc("gcWriteBarrierBP"), |
| x86.REG_SI: typecheck.LookupRuntimeFunc("gcWriteBarrierSI"), |
| x86.REG_R8: typecheck.LookupRuntimeFunc("gcWriteBarrierR8"), |
| x86.REG_R9: typecheck.LookupRuntimeFunc("gcWriteBarrierR9"), |
| } |
| } |
| |
| if Arch.LinkArch.Family == sys.Wasm { |
| BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("goPanicIndex") |
| BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("goPanicIndexU") |
| BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("goPanicSliceAlen") |
| BoundsCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeFunc("goPanicSliceAlenU") |
| BoundsCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeFunc("goPanicSliceAcap") |
| BoundsCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeFunc("goPanicSliceAcapU") |
| BoundsCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeFunc("goPanicSliceB") |
| BoundsCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeFunc("goPanicSliceBU") |
| BoundsCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeFunc("goPanicSlice3Alen") |
| BoundsCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeFunc("goPanicSlice3AlenU") |
| BoundsCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeFunc("goPanicSlice3Acap") |
| BoundsCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeFunc("goPanicSlice3AcapU") |
| BoundsCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeFunc("goPanicSlice3B") |
| BoundsCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeFunc("goPanicSlice3BU") |
| BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("goPanicSlice3C") |
| BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("goPanicSlice3CU") |
| BoundsCheckFunc[ssa.BoundsConvert] = typecheck.LookupRuntimeFunc("goPanicSliceConvert") |
| } else { |
| BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("panicIndex") |
| BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("panicIndexU") |
| BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("panicSliceAlen") |
| BoundsCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeFunc("panicSliceAlenU") |
| BoundsCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeFunc("panicSliceAcap") |
| BoundsCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeFunc("panicSliceAcapU") |
| BoundsCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeFunc("panicSliceB") |
| BoundsCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeFunc("panicSliceBU") |
| BoundsCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeFunc("panicSlice3Alen") |
| BoundsCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeFunc("panicSlice3AlenU") |
| BoundsCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeFunc("panicSlice3Acap") |
| BoundsCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeFunc("panicSlice3AcapU") |
| BoundsCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeFunc("panicSlice3B") |
| BoundsCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeFunc("panicSlice3BU") |
| BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("panicSlice3C") |
| BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("panicSlice3CU") |
| BoundsCheckFunc[ssa.BoundsConvert] = typecheck.LookupRuntimeFunc("panicSliceConvert") |
| } |
| if Arch.LinkArch.PtrSize == 4 { |
| ExtendCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeVar("panicExtendIndex") |
| ExtendCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeVar("panicExtendIndexU") |
| ExtendCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeVar("panicExtendSliceAlen") |
| ExtendCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeVar("panicExtendSliceAlenU") |
| ExtendCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeVar("panicExtendSliceAcap") |
| ExtendCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeVar("panicExtendSliceAcapU") |
| ExtendCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeVar("panicExtendSliceB") |
| ExtendCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeVar("panicExtendSliceBU") |
| ExtendCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeVar("panicExtendSlice3Alen") |
| ExtendCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeVar("panicExtendSlice3AlenU") |
| ExtendCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeVar("panicExtendSlice3Acap") |
| ExtendCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeVar("panicExtendSlice3AcapU") |
| ExtendCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeVar("panicExtendSlice3B") |
| ExtendCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeVar("panicExtendSlice3BU") |
| ExtendCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeVar("panicExtendSlice3C") |
| ExtendCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeVar("panicExtendSlice3CU") |
| } |
| |
| // Wasm (all asm funcs with special ABIs) |
| ir.Syms.WasmMove = typecheck.LookupRuntimeVar("wasmMove") |
| ir.Syms.WasmZero = typecheck.LookupRuntimeVar("wasmZero") |
| ir.Syms.WasmDiv = typecheck.LookupRuntimeVar("wasmDiv") |
| ir.Syms.WasmTruncS = typecheck.LookupRuntimeVar("wasmTruncS") |
| ir.Syms.WasmTruncU = typecheck.LookupRuntimeVar("wasmTruncU") |
| ir.Syms.SigPanic = typecheck.LookupRuntimeFunc("sigpanic") |
| } |
| |
| // AbiForBodylessFuncStackMap returns the ABI for a bodyless function's stack map. |
| // This is not necessarily the ABI used to call it. |
| // Currently (1.17 dev) such a stack map is always ABI0; |
| // any ABI wrapper that is present is nosplit, hence a precise |
| // stack map is not needed there (the parameters survive only long |
| // enough to call the wrapped assembly function). |
| // This always returns a freshly copied ABI. |
| func AbiForBodylessFuncStackMap(fn *ir.Func) *abi.ABIConfig { |
| return ssaConfig.ABI0.Copy() // No idea what races will result, be safe |
| } |
| |
| // abiForFunc implements ABI policy for a function, but does not return a copy of the ABI. |
| // Passing a nil function returns the default ABI based on experiment configuration. |
| func abiForFunc(fn *ir.Func, abi0, abi1 *abi.ABIConfig) *abi.ABIConfig { |
| if buildcfg.Experiment.RegabiArgs { |
| // Select the ABI based on the function's defining ABI. |
| if fn == nil { |
| return abi1 |
| } |
| switch fn.ABI { |
| case obj.ABI0: |
| return abi0 |
| case obj.ABIInternal: |
| // TODO(austin): Clean up the nomenclature here. |
| // It's not clear that "abi1" is ABIInternal. |
| return abi1 |
| } |
| base.Fatalf("function %v has unknown ABI %v", fn, fn.ABI) |
| panic("not reachable") |
| } |
| |
| a := abi0 |
| if fn != nil { |
| if fn.Pragma&ir.RegisterParams != 0 { // TODO(register args) remove after register abi is working |
| a = abi1 |
| } |
| } |
| return a |
| } |
| |
| // dvarint writes a varint v to the funcdata in symbol x and returns the new offset |
| func dvarint(x *obj.LSym, off int, v int64) int { |
| if v < 0 || v > 1e9 { |
| panic(fmt.Sprintf("dvarint: bad offset for funcdata - %v", v)) |
| } |
| if v < 1<<7 { |
| return objw.Uint8(x, off, uint8(v)) |
| } |
| off = objw.Uint8(x, off, uint8((v&127)|128)) |
| if v < 1<<14 { |
| return objw.Uint8(x, off, uint8(v>>7)) |
| } |
| off = objw.Uint8(x, off, uint8(((v>>7)&127)|128)) |
| if v < 1<<21 { |
| return objw.Uint8(x, off, uint8(v>>14)) |
| } |
| off = objw.Uint8(x, off, uint8(((v>>14)&127)|128)) |
| if v < 1<<28 { |
| return objw.Uint8(x, off, uint8(v>>21)) |
| } |
| off = objw.Uint8(x, off, uint8(((v>>21)&127)|128)) |
| return objw.Uint8(x, off, uint8(v>>28)) |
| } |
| |
| // emitOpenDeferInfo emits FUNCDATA information about the defers in a function |
| // that is using open-coded defers. This funcdata is used to determine the active |
| // defers in a function and execute those defers during panic processing. |
| // |
| // The funcdata is all encoded in varints (since values will almost always be less than |
| // 128, but stack offsets could potentially be up to 2Gbyte). All "locations" (offsets) |
| // for stack variables are specified as the number of bytes below varp (pointer to the |
| // top of the local variables) for their starting address. The format is: |
| // |
| // - Offset of the deferBits variable |
| // - Number of defers in the function |
| // - Information about each defer call, in reverse order of appearance in the function: |
| // - Offset of the closure value to call |
| func (s *state) emitOpenDeferInfo() { |
| x := base.Ctxt.Lookup(s.curfn.LSym.Name + ".opendefer") |
| x.Set(obj.AttrContentAddressable, true) |
| s.curfn.LSym.Func().OpenCodedDeferInfo = x |
| off := 0 |
| off = dvarint(x, off, -s.deferBitsTemp.FrameOffset()) |
| off = dvarint(x, off, int64(len(s.openDefers))) |
| |
| // Write in reverse-order, for ease of running in that order at runtime |
| for i := len(s.openDefers) - 1; i >= 0; i-- { |
| r := s.openDefers[i] |
| off = dvarint(x, off, -r.closureNode.FrameOffset()) |
| } |
| } |
| |
| func okOffset(offset int64) int64 { |
| if offset == types.BOGUS_FUNARG_OFFSET { |
| panic(fmt.Errorf("Bogus offset %d", offset)) |
| } |
| return offset |
| } |
| |
| // buildssa builds an SSA function for fn. |
| // worker indicates which of the backend workers is doing the processing. |
| func buildssa(fn *ir.Func, worker int) *ssa.Func { |
| name := ir.FuncName(fn) |
| printssa := false |
| if ssaDump != "" { // match either a simple name e.g. "(*Reader).Reset", package.name e.g. "compress/gzip.(*Reader).Reset", or subpackage name "gzip.(*Reader).Reset" |
| pkgDotName := base.Ctxt.Pkgpath + "." + name |
| printssa = name == ssaDump || |
| strings.HasSuffix(pkgDotName, ssaDump) && (pkgDotName == ssaDump || strings.HasSuffix(pkgDotName, "/"+ssaDump)) |
| } |
| var astBuf *bytes.Buffer |
| if printssa { |
| astBuf = &bytes.Buffer{} |
| ir.FDumpList(astBuf, "buildssa-enter", fn.Enter) |
| ir.FDumpList(astBuf, "buildssa-body", fn.Body) |
| ir.FDumpList(astBuf, "buildssa-exit", fn.Exit) |
| if ssaDumpStdout { |
| fmt.Println("generating SSA for", name) |
| fmt.Print(astBuf.String()) |
| } |
| } |
| |
| var s state |
| s.pushLine(fn.Pos()) |
| defer s.popLine() |
| |
| s.hasdefer = fn.HasDefer() |
| if fn.Pragma&ir.CgoUnsafeArgs != 0 { |
| s.cgoUnsafeArgs = true |
| } |
| s.checkPtrEnabled = ir.ShouldCheckPtr(fn, 1) |
| |
| fe := ssafn{ |
| curfn: fn, |
| log: printssa && ssaDumpStdout, |
| } |
| s.curfn = fn |
| |
| s.f = ssa.NewFunc(&fe) |
| s.config = ssaConfig |
| s.f.Type = fn.Type() |
| s.f.Config = ssaConfig |
| s.f.Cache = &ssaCaches[worker] |
| s.f.Cache.Reset() |
| s.f.Name = name |
| s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH") |
| s.f.PrintOrHtmlSSA = printssa |
| if fn.Pragma&ir.Nosplit != 0 { |
| s.f.NoSplit = true |
| } |
| s.f.ABI0 = ssaConfig.ABI0.Copy() // Make a copy to avoid racy map operations in type-register-width cache. |
| s.f.ABI1 = ssaConfig.ABI1.Copy() |
| s.f.ABIDefault = abiForFunc(nil, s.f.ABI0, s.f.ABI1) |
| s.f.ABISelf = abiForFunc(fn, s.f.ABI0, s.f.ABI1) |
| |
| s.panics = map[funcLine]*ssa.Block{} |
| s.softFloat = s.config.SoftFloat |
| |
| // Allocate starting block |
| s.f.Entry = s.f.NewBlock(ssa.BlockPlain) |
| s.f.Entry.Pos = fn.Pos() |
| |
| if printssa { |
| ssaDF := ssaDumpFile |
| if ssaDir != "" { |
| ssaDF = filepath.Join(ssaDir, base.Ctxt.Pkgpath+"."+name+".html") |
| ssaD := filepath.Dir(ssaDF) |
| os.MkdirAll(ssaD, 0755) |
| } |
| s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDF, s.f, ssaDumpCFG) |
| // TODO: generate and print a mapping from nodes to values and blocks |
| dumpSourcesColumn(s.f.HTMLWriter, fn) |
| s.f.HTMLWriter.WriteAST("AST", astBuf) |
| } |
| |
| // Allocate starting values |
| s.labels = map[string]*ssaLabel{} |
| s.fwdVars = map[ir.Node]*ssa.Value{} |
| s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem) |
| |
| s.hasOpenDefers = base.Flag.N == 0 && s.hasdefer && !s.curfn.OpenCodedDeferDisallowed() |
| switch { |
| case base.Debug.NoOpenDefer != 0: |
| s.hasOpenDefers = false |
| case s.hasOpenDefers && (base.Ctxt.Flag_shared || base.Ctxt.Flag_dynlink) && base.Ctxt.Arch.Name == "386": |
| // Don't support open-coded defers for 386 ONLY when using shared |
| // libraries, because there is extra code (added by rewriteToUseGot()) |
| // preceding the deferreturn/ret code that we don't track correctly. |
| s.hasOpenDefers = false |
| } |
| if s.hasOpenDefers && len(s.curfn.Exit) > 0 { |
| // Skip doing open defers if there is any extra exit code (likely |
| // race detection), since we will not generate that code in the |
| // case of the extra deferreturn/ret segment. |
| s.hasOpenDefers = false |
| } |
| if s.hasOpenDefers { |
| // Similarly, skip if there are any heap-allocated result |
| // parameters that need to be copied back to their stack slots. |
| for _, f := range s.curfn.Type().Results().FieldSlice() { |
| if !f.Nname.(*ir.Name).OnStack() { |
| s.hasOpenDefers = false |
| break |
| } |
| } |
| } |
| if s.hasOpenDefers && |
| s.curfn.NumReturns*s.curfn.NumDefers > 15 { |
| // Since we are generating defer calls at every exit for |
| // open-coded defers, skip doing open-coded defers if there are |
| // too many returns (especially if there are multiple defers). |
| // Open-coded defers are most important for improving performance |
| // for smaller functions (which don't have many returns). |
| s.hasOpenDefers = false |
| } |
| |
| s.sp = s.entryNewValue0(ssa.OpSP, types.Types[types.TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead |
| s.sb = s.entryNewValue0(ssa.OpSB, types.Types[types.TUINTPTR]) |
| |
| s.startBlock(s.f.Entry) |
| s.vars[memVar] = s.startmem |
| if s.hasOpenDefers { |
| // Create the deferBits variable and stack slot. deferBits is a |
| // bitmask showing which of the open-coded defers in this function |
| // have been activated. |
| deferBitsTemp := typecheck.TempAt(src.NoXPos, s.curfn, types.Types[types.TUINT8]) |
| deferBitsTemp.SetAddrtaken(true) |
| s.deferBitsTemp = deferBitsTemp |
| // For this value, AuxInt is initialized to zero by default |
| startDeferBits := s.entryNewValue0(ssa.OpConst8, types.Types[types.TUINT8]) |
| s.vars[deferBitsVar] = startDeferBits |
| s.deferBitsAddr = s.addr(deferBitsTemp) |
| s.store(types.Types[types.TUINT8], s.deferBitsAddr, startDeferBits) |
| // Make sure that the deferBits stack slot is kept alive (for use |
| // by panics) and stores to deferBits are not eliminated, even if |
| // all checking code on deferBits in the function exit can be |
| // eliminated, because the defer statements were all |
| // unconditional. |
| s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, deferBitsTemp, s.mem(), false) |
| } |
| |
| var params *abi.ABIParamResultInfo |
| params = s.f.ABISelf.ABIAnalyze(fn.Type(), true) |
| |
| // The backend's stackframe pass prunes away entries from the fn's |
| // Dcl list, including PARAMOUT nodes that correspond to output |
| // params passed in registers. Walk the Dcl list and capture these |
| // nodes to a side list, so that we'll have them available during |
| // DWARF-gen later on. See issue 48573 for more details. |
| var debugInfo ssa.FuncDebug |
| for _, n := range fn.Dcl { |
| if n.Class == ir.PPARAMOUT && n.IsOutputParamInRegisters() { |
| debugInfo.RegOutputParams = append(debugInfo.RegOutputParams, n) |
| } |
| } |
| fn.DebugInfo = &debugInfo |
| |
| // Generate addresses of local declarations |
| s.decladdrs = map[*ir.Name]*ssa.Value{} |
| for _, n := range fn.Dcl { |
| switch n.Class { |
| case ir.PPARAM: |
| // Be aware that blank and unnamed input parameters will not appear here, but do appear in the type |
| s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type()), n, s.sp, s.startmem) |
| case ir.PPARAMOUT: |
| s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type()), n, s.sp, s.startmem) |
| case ir.PAUTO: |
| // processed at each use, to prevent Addr coming |
| // before the decl. |
| default: |
| s.Fatalf("local variable with class %v unimplemented", n.Class) |
| } |
| } |
| |
| s.f.OwnAux = ssa.OwnAuxCall(fn.LSym, params) |
| |
| // Populate SSAable arguments. |
| for _, n := range fn.Dcl { |
| if n.Class == ir.PPARAM { |
| if s.canSSA(n) { |
| v := s.newValue0A(ssa.OpArg, n.Type(), n) |
| s.vars[n] = v |
| s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself. |
| } else { // address was taken AND/OR too large for SSA |
| paramAssignment := ssa.ParamAssignmentForArgName(s.f, n) |
| if len(paramAssignment.Registers) > 0 { |
| if TypeOK(n.Type()) { // SSA-able type, so address was taken -- receive value in OpArg, DO NOT bind to var, store immediately to memory. |
| v := s.newValue0A(ssa.OpArg, n.Type(), n) |
| s.store(n.Type(), s.decladdrs[n], v) |
| } else { // Too big for SSA. |
| // Brute force, and early, do a bunch of stores from registers |
| // TODO fix the nasty storeArgOrLoad recursion in ssa/expand_calls.go so this Just Works with store of a big Arg. |
| s.storeParameterRegsToStack(s.f.ABISelf, paramAssignment, n, s.decladdrs[n], false) |
| } |
| } |
| } |
| } |
| } |
| |
| // Populate closure variables. |
| if fn.Needctxt() { |
| clo := s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr) |
| offset := int64(types.PtrSize) // PtrSize to skip past function entry PC field |
| for _, n := range fn.ClosureVars { |
| typ := n.Type() |
| if !n.Byval() { |
| typ = types.NewPtr(typ) |
| } |
| |
| offset = types.Rnd(offset, typ.Alignment()) |
| ptr := s.newValue1I(ssa.OpOffPtr, types.NewPtr(typ), offset, clo) |
| offset += typ.Size() |
| |
| // If n is a small variable captured by value, promote |
| // it to PAUTO so it can be converted to SSA. |
| // |
| // Note: While we never capture a variable by value if |
| // the user took its address, we may have generated |
| // runtime calls that did (#43701). Since we don't |
| // convert Addrtaken variables to SSA anyway, no point |
| // in promoting them either. |
| if n.Byval() && !n.Addrtaken() && TypeOK(n.Type()) { |
| n.Class = ir.PAUTO |
| fn.Dcl = append(fn.Dcl, n) |
| s.assign(n, s.load(n.Type(), ptr), false, 0) |
| continue |
| } |
| |
| if !n.Byval() { |
| ptr = s.load(typ, ptr) |
| } |
| s.setHeapaddr(fn.Pos(), n, ptr) |
| } |
| } |
| |
| // Convert the AST-based IR to the SSA-based IR |
| s.stmtList(fn.Enter) |
| s.zeroResults() |
| s.paramsToHeap() |
| s.stmtList(fn.Body) |
| |
| // fallthrough to exit |
| if s.curBlock != nil { |
| s.pushLine(fn.Endlineno) |
| s.exit() |
| s.popLine() |
| } |
| |
| for _, b := range s.f.Blocks { |
| if b.Pos != src.NoXPos { |
| s.updateUnsetPredPos(b) |
| } |
| } |
| |
| s.f.HTMLWriter.WritePhase("before insert phis", "before insert phis") |
| |
| s.insertPhis() |
| |
| // Main call to ssa package to compile function |
| ssa.Compile(s.f) |
| |
| if s.hasOpenDefers { |
| s.emitOpenDeferInfo() |
| } |
| |
| // Record incoming parameter spill information for morestack calls emitted in the assembler. |
| // This is done here, using all the parameters (used, partially used, and unused) because |
| // it mimics the behavior of the former ABI (everything stored) and because it's not 100% |
| // clear if naming conventions are respected in autogenerated code. |
| // TODO figure out exactly what's unused, don't spill it. Make liveness fine-grained, also. |
| for _, p := range params.InParams() { |
| typs, offs := p.RegisterTypesAndOffsets() |
| for i, t := range typs { |
| o := offs[i] // offset within parameter |
| fo := p.FrameOffset(params) // offset of parameter in frame |
| reg := ssa.ObjRegForAbiReg(p.Registers[i], s.f.Config) |
| s.f.RegArgs = append(s.f.RegArgs, ssa.Spill{Reg: reg, Offset: fo + o, Type: t}) |
| } |
| } |
| |
| return s.f |
| } |
| |
| func (s *state) storeParameterRegsToStack(abi *abi.ABIConfig, paramAssignment *abi.ABIParamAssignment, n *ir.Name, addr *ssa.Value, pointersOnly bool) { |
| typs, offs := paramAssignment.RegisterTypesAndOffsets() |
| for i, t := range typs { |
| if pointersOnly && !t.IsPtrShaped() { |
| continue |
| } |
| r := paramAssignment.Registers[i] |
| o := offs[i] |
| op, reg := ssa.ArgOpAndRegisterFor(r, abi) |
| aux := &ssa.AuxNameOffset{Name: n, Offset: o} |
| v := s.newValue0I(op, t, reg) |
| v.Aux = aux |
| p := s.newValue1I(ssa.OpOffPtr, types.NewPtr(t), o, addr) |
| s.store(t, p, v) |
| } |
| } |
| |
| // zeroResults zeros the return values at the start of the function. |
| // We need to do this very early in the function. Defer might stop a |
| // panic and show the return values as they exist at the time of |
| // panic. For precise stacks, the garbage collector assumes results |
| // are always live, so we need to zero them before any allocations, |
| // even allocations to move params/results to the heap. |
| func (s *state) zeroResults() { |
| for _, f := range s.curfn.Type().Results().FieldSlice() { |
| n := f.Nname.(*ir.Name) |
| if !n.OnStack() { |
| // The local which points to the return value is the |
| // thing that needs zeroing. This is already handled |
| // by a Needzero annotation in plive.go:(*liveness).epilogue. |
| continue |
| } |
| // Zero the stack location containing f. |
| if typ := n.Type(); TypeOK(typ) { |
| s.assign(n, s.zeroVal(typ), false, 0) |
| } else { |
| s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) |
| s.zero(n.Type(), s.decladdrs[n]) |
| } |
| } |
| } |
| |
| // paramsToHeap produces code to allocate memory for heap-escaped parameters |
| // and to copy non-result parameters' values from the stack. |
| func (s *state) paramsToHeap() { |
| do := func(params *types.Type) { |
| for _, f := range params.FieldSlice() { |
| if f.Nname == nil { |
| continue // anonymous or blank parameter |
| } |
| n := f.Nname.(*ir.Name) |
| if ir.IsBlank(n) || n.OnStack() { |
| continue |
| } |
| s.newHeapaddr(n) |
| if n.Class == ir.PPARAM { |
| s.move(n.Type(), s.expr(n.Heapaddr), s.decladdrs[n]) |
| } |
| } |
| } |
| |
| typ := s.curfn.Type() |
| do(typ.Recvs()) |
| do(typ.Params()) |
| do(typ.Results()) |
| } |
| |
| // newHeapaddr allocates heap memory for n and sets its heap address. |
| func (s *state) newHeapaddr(n *ir.Name) { |
| s.setHeapaddr(n.Pos(), n, s.newObject(n.Type())) |
| } |
| |
| // setHeapaddr allocates a new PAUTO variable to store ptr (which must be non-nil) |
| // and then sets it as n's heap address. |
| func (s *state) setHeapaddr(pos src.XPos, n *ir.Name, ptr *ssa.Value) { |
| if !ptr.Type.IsPtr() || !types.Identical(n.Type(), ptr.Type.Elem()) { |
| base.FatalfAt(n.Pos(), "setHeapaddr %L with type %v", n, ptr.Type) |
| } |
| |
| // Declare variable to hold address. |
| addr := ir.NewNameAt(pos, &types.Sym{Name: "&" + n.Sym().Name, Pkg: types.LocalPkg}) |
| addr.SetType(types.NewPtr(n.Type())) |
| addr.Class = ir.PAUTO |
| addr.SetUsed(true) |
| addr.Curfn = s.curfn |
| s.curfn.Dcl = append(s.curfn.Dcl, addr) |
| types.CalcSize(addr.Type()) |
| |
| if n.Class == ir.PPARAMOUT { |
| addr.SetIsOutputParamHeapAddr(true) |
| } |
| |
| n.Heapaddr = addr |
| s.assign(addr, ptr, false, 0) |
| } |
| |
| // newObject returns an SSA value denoting new(typ). |
| func (s *state) newObject(typ *types.Type) *ssa.Value { |
| if typ.Size() == 0 { |
| return s.newValue1A(ssa.OpAddr, types.NewPtr(typ), ir.Syms.Zerobase, s.sb) |
| } |
| return s.rtcall(ir.Syms.Newobject, true, []*types.Type{types.NewPtr(typ)}, s.reflectType(typ))[0] |
| } |
| |
| func (s *state) checkPtrAlignment(n *ir.ConvExpr, v *ssa.Value, count *ssa.Value) { |
| if !n.Type().IsPtr() { |
| s.Fatalf("expected pointer type: %v", n.Type()) |
| } |
| elem := n.Type().Elem() |
| if count != nil { |
| if !elem.IsArray() { |
| s.Fatalf("expected array type: %v", elem) |
| } |
| elem = elem.Elem() |
| } |
| size := elem.Size() |
| // Casting from larger type to smaller one is ok, so for smallest type, do nothing. |
| if elem.Alignment() == 1 && (size == 0 || size == 1 || count == nil) { |
| return |
| } |
| if count == nil { |
| count = s.constInt(types.Types[types.TUINTPTR], 1) |
| } |
| if count.Type.Size() != s.config.PtrSize { |
| s.Fatalf("expected count fit to an uintptr size, have: %d, want: %d", count.Type.Size(), s.config.PtrSize) |
| } |
| s.rtcall(ir.Syms.CheckPtrAlignment, true, nil, v, s.reflectType(elem), count) |
| } |
| |
| // reflectType returns an SSA value representing a pointer to typ's |
| // reflection type descriptor. |
| func (s *state) reflectType(typ *types.Type) *ssa.Value { |
| lsym := reflectdata.TypeLinksym(typ) |
| return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(types.Types[types.TUINT8]), lsym, s.sb) |
| } |
| |
| func dumpSourcesColumn(writer *ssa.HTMLWriter, fn *ir.Func) { |
| // Read sources of target function fn. |
| fname := base.Ctxt.PosTable.Pos(fn.Pos()).Filename() |
| targetFn, err := readFuncLines(fname, fn.Pos().Line(), fn.Endlineno.Line()) |
| if err != nil { |
| writer.Logf("cannot read sources for function %v: %v", fn, err) |
| } |
| |
| // Read sources of inlined functions. |
| var inlFns []*ssa.FuncLines |
| for _, fi := range ssaDumpInlined { |
| elno := fi.Endlineno |
| fname := base.Ctxt.PosTable.Pos(fi.Pos()).Filename() |
| fnLines, err := readFuncLines(fname, fi.Pos().Line(), elno.Line()) |
| if err != nil { |
| writer.Logf("cannot read sources for inlined function %v: %v", fi, err) |
| continue |
| } |
| inlFns = append(inlFns, fnLines) |
| } |
| |
| sort.Sort(ssa.ByTopo(inlFns)) |
| if targetFn != nil { |
| inlFns = append([]*ssa.FuncLines{targetFn}, inlFns...) |
| } |
| |
| writer.WriteSources("sources", inlFns) |
| } |
| |
| func readFuncLines(file string, start, end uint) (*ssa.FuncLines, error) { |
| f, err := os.Open(os.ExpandEnv(file)) |
| if err != nil { |
| return nil, err |
| } |
| defer f.Close() |
| var lines []string |
| ln := uint(1) |
| scanner := bufio.NewScanner(f) |
| for scanner.Scan() && ln <= end { |
| if ln >= start { |
| lines = append(lines, scanner.Text()) |
| } |
| ln++ |
| } |
| return &ssa.FuncLines{Filename: file, StartLineno: start, Lines: lines}, nil |
| } |
| |
| // updateUnsetPredPos propagates the earliest-value position information for b |
| // towards all of b's predecessors that need a position, and recurs on that |
| // predecessor if its position is updated. B should have a non-empty position. |
| func (s *state) updateUnsetPredPos(b *ssa.Block) { |
| if b.Pos == src.NoXPos { |
| s.Fatalf("Block %s should have a position", b) |
| } |
| bestPos := src.NoXPos |
| for _, e := range b.Preds { |
| p := e.Block() |
| if !p.LackingPos() { |
| continue |
| } |
| if bestPos == src.NoXPos { |
| bestPos = b.Pos |
| for _, v := range b.Values { |
| if v.LackingPos() { |
| continue |
| } |
| if v.Pos != src.NoXPos { |
| // Assume values are still in roughly textual order; |
| // TODO: could also seek minimum position? |
| bestPos = v.Pos |
| break |
| } |
| } |
| } |
| p.Pos = bestPos |
| s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay. |
| } |
| } |
| |
| // Information about each open-coded defer. |
| type openDeferInfo struct { |
| // The node representing the call of the defer |
| n *ir.CallExpr |
| // If defer call is closure call, the address of the argtmp where the |
| // closure is stored. |
| closure *ssa.Value |
| // The node representing the argtmp where the closure is stored - used for |
| // function, method, or interface call, to store a closure that panic |
| // processing can use for this defer. |
| closureNode *ir.Name |
| } |
| |
| type state struct { |
| // configuration (arch) information |
| config *ssa.Config |
| |
| // function we're building |
| f *ssa.Func |
| |
| // Node for function |
| curfn *ir.Func |
| |
| // labels in f |
| labels map[string]*ssaLabel |
| |
| // unlabeled break and continue statement tracking |
| breakTo *ssa.Block // current target for plain break statement |
| continueTo *ssa.Block // current target for plain continue statement |
| |
| // current location where we're interpreting the AST |
| curBlock *ssa.Block |
| |
| // variable assignments in the current block (map from variable symbol to ssa value) |
| // *Node is the unique identifier (an ONAME Node) for the variable. |
| // TODO: keep a single varnum map, then make all of these maps slices instead? |
| vars map[ir.Node]*ssa.Value |
| |
| // fwdVars are variables that are used before they are defined in the current block. |
| // This map exists just to coalesce multiple references into a single FwdRef op. |
| // *Node is the unique identifier (an ONAME Node) for the variable. |
| fwdVars map[ir.Node]*ssa.Value |
| |
| // all defined variables at the end of each block. Indexed by block ID. |
| defvars []map[ir.Node]*ssa.Value |
| |
| // addresses of PPARAM and PPARAMOUT variables on the stack. |
| decladdrs map[*ir.Name]*ssa.Value |
| |
| // starting values. Memory, stack pointer, and globals pointer |
| startmem *ssa.Value |
| sp *ssa.Value |
| sb *ssa.Value |
| // value representing address of where deferBits autotmp is stored |
| deferBitsAddr *ssa.Value |
| deferBitsTemp *ir.Name |
| |
| // line number stack. The current line number is top of stack |
| line []src.XPos |
| // the last line number processed; it may have been popped |
| lastPos src.XPos |
| |
| // list of panic calls by function name and line number. |
| // Used to deduplicate panic calls. |
| panics map[funcLine]*ssa.Block |
| |
| cgoUnsafeArgs bool |
| hasdefer bool // whether the function contains a defer statement |
| softFloat bool |
| hasOpenDefers bool // whether we are doing open-coded defers |
| checkPtrEnabled bool // whether to insert checkptr instrumentation |
| |
| // If doing open-coded defers, list of info about the defer calls in |
| // scanning order. Hence, at exit we should run these defers in reverse |
| // order of this list |
| openDefers []*openDeferInfo |
| // For open-coded defers, this is the beginning and end blocks of the last |
| // defer exit code that we have generated so far. We use these to share |
| // code between exits if the shareDeferExits option (disabled by default) |
| // is on. |
| lastDeferExit *ssa.Block // Entry block of last defer exit code we generated |
| lastDeferFinalBlock *ssa.Block // Final block of last defer exit code we generated |
| lastDeferCount int // Number of defers encountered at that point |
| |
| prevCall *ssa.Value // the previous call; use this to tie results to the call op. |
| } |
| |
| type funcLine struct { |
| f *obj.LSym |
| base *src.PosBase |
| line uint |
| } |
| |
| type ssaLabel struct { |
| target *ssa.Block // block identified by this label |
| breakTarget *ssa.Block // block to break to in control flow node identified by this label |
| continueTarget *ssa.Block // block to continue to in control flow node identified by this label |
| } |
| |
| // label returns the label associated with sym, creating it if necessary. |
| func (s *state) label(sym *types.Sym) *ssaLabel { |
| lab := s.labels[sym.Name] |
| if lab == nil { |
| lab = new(ssaLabel) |
| s.labels[sym.Name] = lab |
| } |
| return lab |
| } |
| |
| func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) } |
| func (s *state) Log() bool { return s.f.Log() } |
| func (s *state) Fatalf(msg string, args ...interface{}) { |
| s.f.Frontend().Fatalf(s.peekPos(), msg, args...) |
| } |
| func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) } |
| func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() } |
| |
| func ssaMarker(name string) *ir.Name { |
| return typecheck.NewName(&types.Sym{Name: name}) |
| } |
| |
| var ( |
| // marker node for the memory variable |
| memVar = ssaMarker("mem") |
| |
| // marker nodes for temporary variables |
| ptrVar = ssaMarker("ptr") |
| lenVar = ssaMarker("len") |
| newlenVar = ssaMarker("newlen") |
| capVar = ssaMarker("cap") |
| typVar = ssaMarker("typ") |
| okVar = ssaMarker("ok") |
| deferBitsVar = ssaMarker("deferBits") |
| ) |
| |
| // startBlock sets the current block we're generating code in to b. |
| func (s *state) startBlock(b *ssa.Block) { |
| if s.curBlock != nil { |
| s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) |
| } |
| s.curBlock = b |
| s.vars = map[ir.Node]*ssa.Value{} |
| for n := range s.fwdVars { |
| delete(s.fwdVars, n) |
| } |
| } |
| |
| // endBlock marks the end of generating code for the current block. |
| // Returns the (former) current block. Returns nil if there is no current |
| // block, i.e. if no code flows to the current execution point. |
| func (s *state) endBlock() *ssa.Block { |
| b := s.curBlock |
| if b == nil { |
| return nil |
| } |
| for len(s.defvars) <= int(b.ID) { |
| s.defvars = append(s.defvars, nil) |
| } |
| s.defvars[b.ID] = s.vars |
| s.curBlock = nil |
| s.vars = nil |
| if b.LackingPos() { |
| // Empty plain blocks get the line of their successor (handled after all blocks created), |
| // except for increment blocks in For statements (handled in ssa conversion of OFOR), |
| // and for blocks ending in GOTO/BREAK/CONTINUE. |
| b.Pos = src.NoXPos |
| } else { |
| b.Pos = s.lastPos |
| } |
| return b |
| } |
| |
| // pushLine pushes a line number on the line number stack. |
| func (s *state) pushLine(line src.XPos) { |
| if !line.IsKnown() { |
| // the frontend may emit node with line number missing, |
| // use the parent line number in this case. |
| line = s.peekPos() |
| if base.Flag.K != 0 { |
| base.Warn("buildssa: unknown position (line 0)") |
| } |
| } else { |
| s.lastPos = line |
| } |
| |
| s.line = append(s.line, line) |
| } |
| |
| // popLine pops the top of the line number stack. |
| func (s *state) popLine() { |
| s.line = s.line[:len(s.line)-1] |
| } |
| |
| // peekPos peeks the top of the line number stack. |
| func (s *state) peekPos() src.XPos { |
| return s.line[len(s.line)-1] |
| } |
| |
| // newValue0 adds a new value with no arguments to the current block. |
| func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value { |
| return s.curBlock.NewValue0(s.peekPos(), op, t) |
| } |
| |
| // newValue0A adds a new value with no arguments and an aux value to the current block. |
| func (s *state) newValue0A(op ssa.Op, t *types.Type, aux ssa.Aux) *ssa.Value { |
| return s.curBlock.NewValue0A(s.peekPos(), op, t, aux) |
| } |
| |
| // newValue0I adds a new value with no arguments and an auxint value to the current block. |
| func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value { |
| return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint) |
| } |
| |
| // newValue1 adds a new value with one argument to the current block. |
| func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1(s.peekPos(), op, t, arg) |
| } |
| |
| // newValue1A adds a new value with one argument and an aux value to the current block. |
| func (s *state) newValue1A(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) |
| } |
| |
| // newValue1Apos adds a new value with one argument and an aux value to the current block. |
| // isStmt determines whether the created values may be a statement or not |
| // (i.e., false means never, yes means maybe). |
| func (s *state) newValue1Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value, isStmt bool) *ssa.Value { |
| if isStmt { |
| return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) |
| } |
| return s.curBlock.NewValue1A(s.peekPos().WithNotStmt(), op, t, aux, arg) |
| } |
| |
| // newValue1I adds a new value with one argument and an auxint value to the current block. |
| func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg) |
| } |
| |
| // newValue2 adds a new value with two arguments to the current block. |
| func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1) |
| } |
| |
| // newValue2A adds a new value with two arguments and an aux value to the current block. |
| func (s *state) newValue2A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1) |
| } |
| |
| // newValue2Apos adds a new value with two arguments and an aux value to the current block. |
| // isStmt determines whether the created values may be a statement or not |
| // (i.e., false means never, yes means maybe). |
| func (s *state) newValue2Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value, isStmt bool) *ssa.Value { |
| if isStmt { |
| return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1) |
| } |
| return s.curBlock.NewValue2A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1) |
| } |
| |
| // newValue2I adds a new value with two arguments and an auxint value to the current block. |
| func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1) |
| } |
| |
| // newValue3 adds a new value with three arguments to the current block. |
| func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2) |
| } |
| |
| // newValue3I adds a new value with three arguments and an auxint value to the current block. |
| func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2) |
| } |
| |
| // newValue3A adds a new value with three arguments and an aux value to the current block. |
| func (s *state) newValue3A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1, arg2 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) |
| } |
| |
| // newValue3Apos adds a new value with three arguments and an aux value to the current block. |
| // isStmt determines whether the created values may be a statement or not |
| // (i.e., false means never, yes means maybe). |
| func (s *state) newValue3Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1, arg2 *ssa.Value, isStmt bool) *ssa.Value { |
| if isStmt { |
| return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) |
| } |
| return s.curBlock.NewValue3A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1, arg2) |
| } |
| |
| // newValue4 adds a new value with four arguments to the current block. |
| func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3) |
| } |
| |
| // newValue4 adds a new value with four arguments and an auxint value to the current block. |
| func (s *state) newValue4I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue4I(s.peekPos(), op, t, aux, arg0, arg1, arg2, arg3) |
| } |
| |
| func (s *state) entryBlock() *ssa.Block { |
| b := s.f.Entry |
| if base.Flag.N > 0 && s.curBlock != nil { |
| // If optimizations are off, allocate in current block instead. Since with -N |
| // we're not doing the CSE or tighten passes, putting lots of stuff in the |
| // entry block leads to O(n^2) entries in the live value map during regalloc. |
| // See issue 45897. |
| b = s.curBlock |
| } |
| return b |
| } |
| |
| // entryNewValue0 adds a new value with no arguments to the entry block. |
| func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value { |
| return s.entryBlock().NewValue0(src.NoXPos, op, t) |
| } |
| |
| // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. |
| func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux ssa.Aux) *ssa.Value { |
| return s.entryBlock().NewValue0A(src.NoXPos, op, t, aux) |
| } |
| |
| // entryNewValue1 adds a new value with one argument to the entry block. |
| func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { |
| return s.entryBlock().NewValue1(src.NoXPos, op, t, arg) |
| } |
| |
| // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. |
| func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value { |
| return s.entryBlock().NewValue1I(src.NoXPos, op, t, auxint, arg) |
| } |
| |
| // entryNewValue1A adds a new value with one argument and an aux value to the entry block. |
| func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value) *ssa.Value { |
| return s.entryBlock().NewValue1A(src.NoXPos, op, t, aux, arg) |
| } |
| |
| // entryNewValue2 adds a new value with two arguments to the entry block. |
| func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.entryBlock().NewValue2(src.NoXPos, op, t, arg0, arg1) |
| } |
| |
| // entryNewValue2A adds a new value with two arguments and an aux value to the entry block. |
| func (s *state) entryNewValue2A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.entryBlock().NewValue2A(src.NoXPos, op, t, aux, arg0, arg1) |
| } |
| |
| // const* routines add a new const value to the entry block. |
| func (s *state) constSlice(t *types.Type) *ssa.Value { |
| return s.f.ConstSlice(t) |
| } |
| func (s *state) constInterface(t *types.Type) *ssa.Value { |
| return s.f.ConstInterface(t) |
| } |
| func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(t) } |
| func (s *state) constEmptyString(t *types.Type) *ssa.Value { |
| return s.f.ConstEmptyString(t) |
| } |
| func (s *state) constBool(c bool) *ssa.Value { |
| return s.f.ConstBool(types.Types[types.TBOOL], c) |
| } |
| func (s *state) constInt8(t *types.Type, c int8) *ssa.Value { |
| return s.f.ConstInt8(t, c) |
| } |
| func (s *state) constInt16(t *types.Type, c int16) *ssa.Value { |
| return s.f.ConstInt16(t, c) |
| } |
| func (s *state) constInt32(t *types.Type, c int32) *ssa.Value { |
| return s.f.ConstInt32(t, c) |
| } |
| func (s *state) constInt64(t *types.Type, c int64) *ssa.Value { |
| return s.f.ConstInt64(t, c) |
| } |
| func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value { |
| return s.f.ConstFloat32(t, c) |
| } |
| func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value { |
| return s.f.ConstFloat64(t, c) |
| } |
| func (s *state) constInt(t *types.Type, c int64) *ssa.Value { |
| if s.config.PtrSize == 8 { |
| return s.constInt64(t, c) |
| } |
| if int64(int32(c)) != c { |
| s.Fatalf("integer constant too big %d", c) |
| } |
| return s.constInt32(t, int32(c)) |
| } |
| func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value { |
| return s.f.ConstOffPtrSP(t, c, s.sp) |
| } |
| |
| // newValueOrSfCall* are wrappers around newValue*, which may create a call to a |
| // soft-float runtime function instead (when emitting soft-float code). |
| func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { |
| if s.softFloat { |
| if c, ok := s.sfcall(op, arg); ok { |
| return c |
| } |
| } |
| return s.newValue1(op, t, arg) |
| } |
| func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| if s.softFloat { |
| if c, ok := s.sfcall(op, arg0, arg1); ok { |
| return c |
| } |
| } |
| return s.newValue2(op, t, arg0, arg1) |
| } |
| |
| type instrumentKind uint8 |
| |
| const ( |
| instrumentRead = iota |
| instrumentWrite |
| instrumentMove |
| ) |
| |
| func (s *state) instrument(t *types.Type, addr *ssa.Value, kind instrumentKind) { |
| s.instrument2(t, addr, nil, kind) |
| } |
| |
| // instrumentFields instruments a read/write operation on addr. |
| // If it is instrumenting for MSAN or ASAN and t is a struct type, it instruments |
| // operation for each field, instead of for the whole struct. |
| func (s *state) instrumentFields(t *types.Type, addr *ssa.Value, kind instrumentKind) { |
| if !(base.Flag.MSan || base.Flag.ASan) || !t.IsStruct() { |
| s.instrument(t, addr, kind) |
| return |
| } |
| for _, f := range t.Fields().Slice() { |
| if f.Sym.IsBlank() { |
| continue |
| } |
| offptr := s.newValue1I(ssa.OpOffPtr, types.NewPtr(f.Type), f.Offset, addr) |
| s.instrumentFields(f.Type, offptr, kind) |
| } |
| } |
| |
| func (s *state) instrumentMove(t *types.Type, dst, src *ssa.Value) { |
| if base.Flag.MSan { |
| s.instrument2(t, dst, src, instrumentMove) |
| } else { |
| s.instrument(t, src, instrumentRead) |
| s.instrument(t, dst, instrumentWrite) |
| } |
| } |
| |
| func (s *state) instrument2(t *types.Type, addr, addr2 *ssa.Value, kind instrumentKind) { |
| if !s.curfn.InstrumentBody() { |
| return |
| } |
| |
| w := t.Size() |
| if w == 0 { |
| return // can't race on zero-sized things |
| } |
| |
| if ssa.IsSanitizerSafeAddr(addr) { |
| return |
| } |
| |
| var fn *obj.LSym |
| needWidth := false |
| |
| if addr2 != nil && kind != instrumentMove { |
| panic("instrument2: non-nil addr2 for non-move instrumentation") |
| } |
| |
| if base.Flag.MSan { |
| switch kind { |
| case instrumentRead: |
| fn = ir.Syms.Msanread |
| case instrumentWrite: |
| fn = ir.Syms.Msanwrite |
| case instrumentMove: |
| fn = ir.Syms.Msanmove |
| default: |
| panic("unreachable") |
| } |
| needWidth = true |
| } else if base.Flag.Race && t.NumComponents(types.CountBlankFields) > 1 { |
| // for composite objects we have to write every address |
| // because a write might happen to any subobject. |
| // composites with only one element don't have subobjects, though. |
| switch kind { |
| case instrumentRead: |
| fn = ir.Syms.Racereadrange |
| case instrumentWrite: |
| fn = ir.Syms.Racewriterange |
| default: |
| panic("unreachable") |
| } |
| needWidth = true |
| } else if base.Flag.Race { |
| // for non-composite objects we can write just the start |
| // address, as any write must write the first byte. |
| switch kind { |
| case instrumentRead: |
| fn = ir.Syms.Raceread |
| case instrumentWrite: |
| fn = ir.Syms.Racewrite |
| default: |
| panic("unreachable") |
| } |
| } else if base.Flag.ASan { |
| switch kind { |
| case instrumentRead: |
| fn = ir.Syms.Asanread |
| case instrumentWrite: |
| fn = ir.Syms.Asanwrite |
| default: |
| panic("unreachable") |
| } |
| needWidth = true |
| } else { |
| panic("unreachable") |
| } |
| |
| args := []*ssa.Value{addr} |
| if addr2 != nil { |
| args = append(args, addr2) |
| } |
| if needWidth { |
| args = append(args, s.constInt(types.Types[types.TUINTPTR], w)) |
| } |
| s.rtcall(fn, true, nil, args...) |
| } |
| |
| func (s *state) load(t *types.Type, src *ssa.Value) *ssa.Value { |
| s.instrumentFields(t, src, instrumentRead) |
| return s.rawLoad(t, src) |
| } |
| |
| func (s *state) rawLoad(t *types.Type, src *ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpLoad, t, src, s.mem()) |
| } |
| |
| func (s *state) store(t *types.Type, dst, val *ssa.Value) { |
| s.vars[memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, dst, val, s.mem()) |
| } |
| |
| func (s *state) zero(t *types.Type, dst *ssa.Value) { |
| s.instrument(t, dst, instrumentWrite) |
| store := s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), dst, s.mem()) |
| store.Aux = t |
| s.vars[memVar] = store |
| } |
| |
| func (s *state) move(t *types.Type, dst, src *ssa.Value) { |
| s.instrumentMove(t, dst, src) |
| store := s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), dst, src, s.mem()) |
| store.Aux = t |
| s.vars[memVar] = store |
| } |
| |
| // stmtList converts the statement list n to SSA and adds it to s. |
| func (s *state) stmtList(l ir.Nodes) { |
| for _, n := range l { |
| s.stmt(n) |
| } |
| } |
| |
| // stmt converts the statement n to SSA and adds it to s. |
| func (s *state) stmt(n ir.Node) { |
| if !(n.Op() == ir.OVARKILL || n.Op() == ir.OVARLIVE || n.Op() == ir.OVARDEF) { |
| // OVARKILL, OVARLIVE, and OVARDEF are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging. |
| s.pushLine(n.Pos()) |
| defer s.popLine() |
| } |
| |
| // If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere), |
| // then this code is dead. Stop here. |
| if s.curBlock == nil && n.Op() != ir.OLABEL { |
| return |
| } |
| |
| s.stmtList(n.Init()) |
| switch n.Op() { |
| |
| case ir.OBLOCK: |
| n := n.(*ir.BlockStmt) |
| s.stmtList(n.List) |
| |
| // No-ops |
| case ir.ODCLCONST, ir.ODCLTYPE, ir.OFALL: |
| |
| // Expression statements |
| case ir.OCALLFUNC: |
| n := n.(*ir.CallExpr) |
| if ir.IsIntrinsicCall(n) { |
| s.intrinsicCall(n) |
| return |
| } |
| fallthrough |
| |
| case ir.OCALLINTER: |
| n := n.(*ir.CallExpr) |
| s.callResult(n, callNormal) |
| if n.Op() == ir.OCALLFUNC && n.X.Op() == ir.ONAME && n.X.(*ir.Name).Class == ir.PFUNC { |
| if fn := n.X.Sym().Name; base.Flag.CompilingRuntime && fn == "throw" || |
| n.X.Sym().Pkg == ir.Pkgs.Runtime && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block" || fn == "panicmakeslicelen" || fn == "panicmakeslicecap") { |
| m := s.mem() |
| b := s.endBlock() |
| b.Kind = ssa.BlockExit |
| b.SetControl(m) |
| // TODO: never rewrite OPANIC to OCALLFUNC in the |
| // first place. Need to wait until all backends |
| // go through SSA. |
| } |
| } |
| case ir.ODEFER: |
| n := n.(*ir.GoDeferStmt) |
| if base.Debug.Defer > 0 { |
| var defertype string |
| if s.hasOpenDefers { |
| defertype = "open-coded" |
| } else if n.Esc() == ir.EscNever { |
| defertype = "stack-allocated" |
| } else { |
| defertype = "heap-allocated" |
| } |
| base.WarnfAt(n.Pos(), "%s defer", defertype) |
| } |
| if s.hasOpenDefers { |
| s.openDeferRecord(n.Call.(*ir.CallExpr)) |
| } else { |
| d := callDefer |
| if n.Esc() == ir.EscNever { |
| d = callDeferStack |
| } |
| s.callResult(n.Call.(*ir.CallExpr), d) |
| } |
| case ir.OGO: |
| n := n.(*ir.GoDeferStmt) |
| s.callResult(n.Call.(*ir.CallExpr), callGo) |
| |
| case ir.OAS2DOTTYPE: |
| n := n.(*ir.AssignListStmt) |
| var res, resok *ssa.Value |
| if n.Rhs[0].Op() == ir.ODOTTYPE2 { |
| res, resok = s.dottype(n.Rhs[0].(*ir.TypeAssertExpr), true) |
| } else { |
| res, resok = s.dynamicDottype(n.Rhs[0].(*ir.DynamicTypeAssertExpr), true) |
| } |
| deref := false |
| if !TypeOK(n.Rhs[0].Type()) { |
| if res.Op != ssa.OpLoad { |
| s.Fatalf("dottype of non-load") |
| } |
| mem := s.mem() |
| if mem.Op == ssa.OpVarKill { |
| mem = mem.Args[0] |
| } |
| if res.Args[1] != mem { |
| s.Fatalf("memory no longer live from 2-result dottype load") |
| } |
| deref = true |
| res = res.Args[0] |
| } |
| s.assign(n.Lhs[0], res, deref, 0) |
| s.assign(n.Lhs[1], resok, false, 0) |
| return |
| |
| case ir.OAS2FUNC: |
| // We come here only when it is an intrinsic call returning two values. |
| n := n.(*ir.AssignListStmt) |
| call := n.Rhs[0].(*ir.CallExpr) |
| if !ir.IsIntrinsicCall(call) { |
| s.Fatalf("non-intrinsic AS2FUNC not expanded %v", call) |
| } |
| v := s.intrinsicCall(call) |
| v1 := s.newValue1(ssa.OpSelect0, n.Lhs[0].Type(), v) |
| v2 := s.newValue1(ssa.OpSelect1, n.Lhs[1].Type(), v) |
| s.assign(n.Lhs[0], v1, false, 0) |
| s.assign(n.Lhs[1], v2, false, 0) |
| return |
| |
| case ir.ODCL: |
| n := n.(*ir.Decl) |
| if v := n.X; v.Esc() == ir.EscHeap { |
| s.newHeapaddr(v) |
| } |
| |
| case ir.OLABEL: |
| n := n.(*ir.LabelStmt) |
| sym := n.Label |
| lab := s.label(sym) |
| |
| // The label might already have a target block via a goto. |
| if lab.target == nil { |
| lab.target = s.f.NewBlock(ssa.BlockPlain) |
| } |
| |
| // Go to that label. |
| // (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.) |
| if s.curBlock != nil { |
| b := s.endBlock() |
| b.AddEdgeTo(lab.target) |
| } |
| s.startBlock(lab.target) |
| |
| case ir.OGOTO: |
| n := n.(*ir.BranchStmt) |
| sym := n.Label |
| |
| lab := s.label(sym) |
| if lab.target == nil { |
| lab.target = s.f.NewBlock(ssa.BlockPlain) |
| } |
| |
| b := s.endBlock() |
| b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block. |
| b.AddEdgeTo(lab.target) |
| |
| case ir.OAS: |
| n := n.(*ir.AssignStmt) |
| if n.X == n.Y && n.X.Op() == ir.ONAME { |
| // An x=x assignment. No point in doing anything |
| // here. In addition, skipping this assignment |
| // prevents generating: |
| // VARDEF x |
| // COPY x -> x |
| // which is bad because x is incorrectly considered |
| // dead before the vardef. See issue #14904. |
| return |
| } |
| |
| // Evaluate RHS. |
| rhs := n.Y |
| if rhs != nil { |
| switch rhs.Op() { |
| case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT: |
| // All literals with nonzero fields have already been |
| // rewritten during walk. Any that remain are just T{} |
| // or equivalents. Use the zero value. |
| if !ir.IsZero(rhs) { |
| s.Fatalf("literal with nonzero value in SSA: %v", rhs) |
| } |
| rhs = nil |
| case ir.OAPPEND: |
| rhs := rhs.(*ir.CallExpr) |
| // Check whether we're writing the result of an append back to the same slice. |
| // If so, we handle it specially to avoid write barriers on the fast |
| // (non-growth) path. |
| if !ir.SameSafeExpr(n.X, rhs.Args[0]) || base.Flag.N != 0 { |
| break |
| } |
| // If the slice can be SSA'd, it'll be on the stack, |
| // so there will be no write barriers, |
| // so there's no need to attempt to prevent them. |
| if s.canSSA(n.X) { |
| if base.Debug.Append > 0 { // replicating old diagnostic message |
| base.WarnfAt(n.Pos(), "append: len-only update (in local slice)") |
| } |
| break |
| } |
| if base.Debug.Append > 0 { |
| base.WarnfAt(n.Pos(), "append: len-only update") |
| } |
| s.append(rhs, true) |
| return |
| } |
| } |
| |
| if ir.IsBlank(n.X) { |
| // _ = rhs |
| // Just evaluate rhs for side-effects. |
| if rhs != nil { |
| s.expr(rhs) |
| } |
| return |
| } |
| |
| var t *types.Type |
| if n.Y != nil { |
| t = n.Y.Type() |
| } else { |
| t = n.X.Type() |
| } |
| |
| var r *ssa.Value |
| deref := !TypeOK(t) |
| if deref { |
| if rhs == nil { |
| r = nil // Signal assign to use OpZero. |
| } else { |
| r = s.addr(rhs) |
| } |
| } else { |
| if rhs == nil { |
| r = s.zeroVal(t) |
| } else { |
| r = s.expr(rhs) |
| } |
| } |
| |
| var skip skipMask |
| if rhs != nil && (rhs.Op() == ir.OSLICE || rhs.Op() == ir.OSLICE3 || rhs.Op() == ir.OSLICESTR) && ir.SameSafeExpr(rhs.(*ir.SliceExpr).X, n.X) { |
| // We're assigning a slicing operation back to its source. |
| // Don't write back fields we aren't changing. See issue #14855. |
| rhs := rhs.(*ir.SliceExpr) |
| i, j, k := rhs.Low, rhs.High, rhs.Max |
| if i != nil && (i.Op() == ir.OLITERAL && i.Val().Kind() == constant.Int && ir.Int64Val(i) == 0) { |
| // [0:...] is the same as [:...] |
| i = nil |
| } |
| // TODO: detect defaults for len/cap also. |
| // Currently doesn't really work because (*p)[:len(*p)] appears here as: |
| // tmp = len(*p) |
| // (*p)[:tmp] |
| //if j != nil && (j.Op == OLEN && SameSafeExpr(j.Left, n.Left)) { |
| // j = nil |
| //} |
| //if k != nil && (k.Op == OCAP && SameSafeExpr(k.Left, n.Left)) { |
| // k = nil |
| //} |
| if i == nil { |
| skip |= skipPtr |
| if j == nil { |
| skip |= skipLen |
| } |
| if k == nil { |
| skip |= skipCap |
| } |
| } |
| } |
| |
| s.assign(n.X, r, deref, skip) |
| |
| case ir.OIF: |
| n := n.(*ir.IfStmt) |
| if ir.IsConst(n.Cond, constant.Bool) { |
| s.stmtList(n.Cond.Init()) |
| if ir.BoolVal(n.Cond) { |
| s.stmtList(n.Body) |
| } else { |
| s.stmtList(n.Else) |
| } |
| break |
| } |
| |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| var likely int8 |
| if n.Likely { |
| likely = 1 |
| } |
| var bThen *ssa.Block |
| if len(n.Body) != 0 { |
| bThen = s.f.NewBlock(ssa.BlockPlain) |
| } else { |
| bThen = bEnd |
| } |
| var bElse *ssa.Block |
| if len(n.Else) != 0 { |
| bElse = s.f.NewBlock(ssa.BlockPlain) |
| } else { |
| bElse = bEnd |
| } |
| s.condBranch(n.Cond, bThen, bElse, likely) |
| |
| if len(n.Body) != 0 { |
| s.startBlock(bThen) |
| s.stmtList(n.Body) |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bEnd) |
| } |
| } |
| if len(n.Else) != 0 { |
| s.startBlock(bElse) |
| s.stmtList(n.Else) |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bEnd) |
| } |
| } |
| s.startBlock(bEnd) |
| |
| case ir.ORETURN: |
| n := n.(*ir.ReturnStmt) |
| s.stmtList(n.Results) |
| b := s.exit() |
| b.Pos = s.lastPos.WithIsStmt() |
| |
| case ir.OTAILCALL: |
| n := n.(*ir.TailCallStmt) |
| s.callResult(n.Call, callTail) |
| call := s.mem() |
| b := s.endBlock() |
| b.Kind = ssa.BlockRetJmp // could use BlockExit. BlockRetJmp is mostly for clarity. |
| b.SetControl(call) |
| |
| case ir.OCONTINUE, ir.OBREAK: |
| n := n.(*ir.BranchStmt) |
| var to *ssa.Block |
| if n.Label == nil { |
| // plain break/continue |
| switch n.Op() { |
| case ir.OCONTINUE: |
| to = s.continueTo |
| case ir.OBREAK: |
| to = s.breakTo |
| } |
| } else { |
| // labeled break/continue; look up the target |
| sym := n.Label |
| lab := s.label(sym) |
| switch n.Op() { |
| case ir.OCONTINUE: |
| to = lab.continueTarget |
| case ir.OBREAK: |
| to = lab.breakTarget |
| } |
| } |
| |
| b := s.endBlock() |
| b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block. |
| b.AddEdgeTo(to) |
| |
| case ir.OFOR, ir.OFORUNTIL: |
| // OFOR: for Ninit; Left; Right { Nbody } |
| // cond (Left); body (Nbody); incr (Right) |
| // |
| // OFORUNTIL: for Ninit; Left; Right; List { Nbody } |
| // => body: { Nbody }; incr: Right; if Left { lateincr: List; goto body }; end: |
| n := n.(*ir.ForStmt) |
| bCond := s.f.NewBlock(ssa.BlockPlain) |
| bBody := s.f.NewBlock(ssa.BlockPlain) |
| bIncr := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| // ensure empty for loops have correct position; issue #30167 |
| bBody.Pos = n.Pos() |
| |
| // first, jump to condition test (OFOR) or body (OFORUNTIL) |
| b := s.endBlock() |
| if n.Op() == ir.OFOR { |
| b.AddEdgeTo(bCond) |
| // generate code to test condition |
| s.startBlock(bCond) |
| if n.Cond != nil { |
| s.condBranch(n.Cond, bBody, bEnd, 1) |
| } else { |
| b := s.endBlock() |
| b.Kind = ssa.BlockPlain |
| b.AddEdgeTo(bBody) |
| } |
| |
| } else { |
| b.AddEdgeTo(bBody) |
| } |
| |
| // set up for continue/break in body |
| prevContinue := s.continueTo |
| prevBreak := s.breakTo |
| s.continueTo = bIncr |
| s.breakTo = bEnd |
| var lab *ssaLabel |
| if sym := n.Label; sym != nil { |
| // labeled for loop |
| lab = s.label(sym) |
| lab.continueTarget = bIncr |
| lab.breakTarget = bEnd |
| } |
| |
| // generate body |
| s.startBlock(bBody) |
| s.stmtList(n.Body) |
| |
| // tear down continue/break |
| s.continueTo = prevContinue |
| s.breakTo = prevBreak |
| if lab != nil { |
| lab.continueTarget = nil |
| lab.breakTarget = nil |
| } |
| |
| // done with body, goto incr |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bIncr) |
| } |
| |
| // generate incr (and, for OFORUNTIL, condition) |
| s.startBlock(bIncr) |
| if n.Post != nil { |
| s.stmt(n.Post) |
| } |
| if n.Op() == ir.OFOR { |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bCond) |
| // It can happen that bIncr ends in a block containing only VARKILL, |
| // and that muddles the debugging experience. |
| if b.Pos == src.NoXPos { |
| b.Pos = bCond.Pos |
| } |
| } |
| } else { |
| // bCond is unused in OFORUNTIL, so repurpose it. |
| bLateIncr := bCond |
| // test condition |
| s.condBranch(n.Cond, bLateIncr, bEnd, 1) |
| // generate late increment |
| s.startBlock(bLateIncr) |
| s.stmtList(n.Late) |
| s.endBlock().AddEdgeTo(bBody) |
| } |
| |
| s.startBlock(bEnd) |
| |
| case ir.OSWITCH, ir.OSELECT: |
| // These have been mostly rewritten by the front end into their Nbody fields. |
| // Our main task is to correctly hook up any break statements. |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| prevBreak := s.breakTo |
| s.breakTo = bEnd |
| var sym *types.Sym |
| var body ir.Nodes |
| if n.Op() == ir.OSWITCH { |
| n := n.(*ir.SwitchStmt) |
| sym = n.Label |
| body = n.Compiled |
| } else { |
| n := n.(*ir.SelectStmt) |
| sym = n.Label |
| body = n.Compiled |
| } |
| |
| var lab *ssaLabel |
| if sym != nil { |
| // labeled |
| lab = s.label(sym) |
| lab.breakTarget = bEnd |
| } |
| |
| // generate body code |
| s.stmtList(body) |
| |
| s.breakTo = prevBreak |
| if lab != nil { |
| lab.breakTarget = nil |
| } |
| |
| // walk adds explicit OBREAK nodes to the end of all reachable code paths. |
| // If we still have a current block here, then mark it unreachable. |
| if s.curBlock != nil { |
| m := s.mem() |
| b := s.endBlock() |
| b.Kind = ssa.BlockExit |
| b.SetControl(m) |
| } |
| s.startBlock(bEnd) |
| |
| case ir.OJUMPTABLE: |
| n := n.(*ir.JumpTableStmt) |
| |
| // Make blocks we'll need. |
| jt := s.f.NewBlock(ssa.BlockJumpTable) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| // The only thing that needs evaluating is the index we're looking up. |
| idx := s.expr(n.Idx) |
| unsigned := idx.Type.IsUnsigned() |
| |
| // Extend so we can do everything in uintptr arithmetic. |
| t := types.Types[types.TUINTPTR] |
| idx = s.conv(nil, idx, idx.Type, t) |
| |
| // The ending condition for the current block decides whether we'll use |
| // the jump table at all. |
| // We check that min <= idx <= max and jump around the jump table |
| // if that test fails. |
| // We implement min <= idx <= max with 0 <= idx-min <= max-min, because |
| // we'll need idx-min anyway as the control value for the jump table. |
| var min, max uint64 |
| if unsigned { |
| min, _ = constant.Uint64Val(n.Cases[0]) |
| max, _ = constant.Uint64Val(n.Cases[len(n.Cases)-1]) |
| } else { |
| mn, _ := constant.Int64Val(n.Cases[0]) |
| mx, _ := constant.Int64Val(n.Cases[len(n.Cases)-1]) |
| min = uint64(mn) |
| max = uint64(mx) |
| } |
| // Compare idx-min with max-min, to see if we can use the jump table. |
| idx = s.newValue2(s.ssaOp(ir.OSUB, t), t, idx, s.uintptrConstant(min)) |
| width := s.uintptrConstant(max - min) |
| cmp := s.newValue2(s.ssaOp(ir.OLE, t), types.Types[types.TBOOL], idx, width) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.AddEdgeTo(jt) // in range - use jump table |
| b.AddEdgeTo(bEnd) // out of range - no case in the jump table will trigger |
| b.Likely = ssa.BranchLikely // TODO: assumes missing the table entirely is unlikely. True? |
| |
| // Build jump table block. |
| s.startBlock(jt) |
| jt.Pos = n.Pos() |
| if base.Flag.Cfg.SpectreIndex { |
| idx = s.newValue2(ssa.OpSpectreSliceIndex, t, idx, width) |
| } |
| jt.SetControl(idx) |
| |
| // Figure out where we should go for each index in the table. |
| table := make([]*ssa.Block, max-min+1) |
| for i := range table { |
| table[i] = bEnd // default target |
| } |
| for i := range n.Targets { |
| c := n.Cases[i] |
| lab := s.label(n.Targets[i]) |
| if lab.target == nil { |
| lab.target = s.f.NewBlock(ssa.BlockPlain) |
| } |
| var val uint64 |
| if unsigned { |
| val, _ = constant.Uint64Val(c) |
| } else { |
| vl, _ := constant.Int64Val(c) |
| val = uint64(vl) |
| } |
| // Overwrite the default target. |
| table[val-min] = lab.target |
| } |
| for _, t := range table { |
| jt.AddEdgeTo(t) |
| } |
| s.endBlock() |
| |
| s.startBlock(bEnd) |
| |
| case ir.OVARDEF: |
| n := n.(*ir.UnaryExpr) |
| if !s.canSSA(n.X) { |
| s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, n.X.(*ir.Name), s.mem(), false) |
| } |
| case ir.OVARKILL: |
| // Insert a varkill op to record that a variable is no longer live. |
| // We only care about liveness info at call sites, so putting the |
| // varkill in the store chain is enough to keep it correctly ordered |
| // with respect to call ops. |
| n := n.(*ir.UnaryExpr) |
| if !s.canSSA(n.X) { |
| s.vars[memVar] = s.newValue1Apos(ssa.OpVarKill, types.TypeMem, n.X.(*ir.Name), s.mem(), false) |
| } |
| |
| case ir.OVARLIVE: |
| // Insert a varlive op to record that a variable is still live. |
| n := n.(*ir.UnaryExpr) |
| v := n.X.(*ir.Name) |
| if !v.Addrtaken() { |
| s.Fatalf("VARLIVE variable %v must have Addrtaken set", v) |
| } |
| switch v.Class { |
| case ir.PAUTO, ir.PPARAM, ir.PPARAMOUT: |
| default: |
| s.Fatalf("VARLIVE variable %v must be Auto or Arg", v) |
| } |
| s.vars[memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, v, s.mem()) |
| |
| case ir.OCHECKNIL: |
| n := n.(*ir.UnaryExpr) |
| p := s.expr(n.X) |
| s.nilCheck(p) |
| |
| case ir.OINLMARK: |
| n := n.(*ir.InlineMarkStmt) |
| s.newValue1I(ssa.OpInlMark, types.TypeVoid, n.Index, s.mem()) |
| |
| default: |
| s.Fatalf("unhandled stmt %v", n.Op()) |
| } |
| } |
| |
| // If true, share as many open-coded defer exits as possible (with the downside of |
| // worse line-number information) |
| const shareDeferExits = false |
| |
| // exit processes any code that needs to be generated just before returning. |
| // It returns a BlockRet block that ends the control flow. Its control value |
| // will be set to the final memory state. |
| func (s *state) exit() *ssa.Block { |
| if s.hasdefer { |
| if s.hasOpenDefers { |
| if shareDeferExits && s.lastDeferExit != nil && len(s.openDefers) == s.lastDeferCount { |
| if s.curBlock.Kind != ssa.BlockPlain { |
| panic("Block for an exit should be BlockPlain") |
| } |
| s.curBlock.AddEdgeTo(s.lastDeferExit) |
| s.endBlock() |
| return s.lastDeferFinalBlock |
| } |
| s.openDeferExit() |
| } else { |
| s.rtcall(ir.Syms.Deferreturn, true, nil) |
| } |
| } |
| |
| var b *ssa.Block |
| var m *ssa.Value |
| // Do actual return. |
| // These currently turn into self-copies (in many cases). |
| resultFields := s.curfn.Type().Results().FieldSlice() |
| results := make([]*ssa.Value, len(resultFields)+1, len(resultFields)+1) |
| m = s.newValue0(ssa.OpMakeResult, s.f.OwnAux.LateExpansionResultType()) |
| // Store SSAable and heap-escaped PPARAMOUT variables back to stack locations. |
| for i, f := range resultFields { |
| n := f.Nname.(*ir.Name) |
| if s.canSSA(n) { // result is in some SSA variable |
| if !n.IsOutputParamInRegisters() { |
| // We are about to store to the result slot. |
| s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) |
| } |
| results[i] = s.variable(n, n.Type()) |
| } else if !n.OnStack() { // result is actually heap allocated |
| // We are about to copy the in-heap result to the result slot. |
| s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) |
| ha := s.expr(n.Heapaddr) |
| s.instrumentFields(n.Type(), ha, instrumentRead) |
| results[i] = s.newValue2(ssa.OpDereference, n.Type(), ha, s.mem()) |
| } else { // result is not SSA-able; not escaped, so not on heap, but too large for SSA. |
| // Before register ABI this ought to be a self-move, home=dest, |
| // With register ABI, it's still a self-move if parameter is on stack (i.e., too big or overflowed) |
| // No VarDef, as the result slot is already holding live value. |
| results[i] = s.newValue2(ssa.OpDereference, n.Type(), s.addr(n), s.mem()) |
| } |
| } |
| |
| // Run exit code. Today, this is just racefuncexit, in -race mode. |
| // TODO(register args) this seems risky here with a register-ABI, but not clear it is right to do it earlier either. |
| // Spills in register allocation might just fix it. |
| s.stmtList(s.curfn.Exit) |
| |
| results[len(results)-1] = s.mem() |
| m.AddArgs(results...) |
| |
| b = s.endBlock() |
| b.Kind = ssa.BlockRet |
| b.SetControl(m) |
| if s.hasdefer && s.hasOpenDefers { |
| s.lastDeferFinalBlock = b |
| } |
| return b |
| } |
| |
| type opAndType struct { |
| op ir.Op |
| etype types.Kind |
| } |
| |
| var opToSSA = map[opAndType]ssa.Op{ |
| opAndType{ir.OADD, types.TINT8}: ssa.OpAdd8, |
| opAndType{ir.OADD, types.TUINT8}: ssa.OpAdd8, |
| opAndType{ir.OADD, types.TINT16}: ssa.OpAdd16, |
| opAndType{ir.OADD, types.TUINT16}: ssa.OpAdd16, |
| opAndType{ir.OADD, types.TINT32}: ssa.OpAdd32, |
| opAndType{ir.OADD, types.TUINT32}: ssa.OpAdd32, |
| opAndType{ir.OADD, types.TINT64}: ssa.OpAdd64, |
| opAndType{ir.OADD, types.TUINT64}: ssa.OpAdd64, |
| opAndType{ir.OADD, types.TFLOAT32}: ssa.OpAdd32F, |
| opAndType{ir.OADD, types.TFLOAT64}: ssa.OpAdd64F, |
| |
| opAndType{ir.OSUB, types.TINT8}: ssa.OpSub8, |
| opAndType{ir.OSUB, types.TUINT8}: ssa.OpSub8, |
| opAndType{ir.OSUB, types.TINT16}: ssa.OpSub16, |
| opAndType{ir.OSUB, types.TUINT16}: ssa.OpSub16, |
| opAndType{ir.OSUB, types.TINT32}: ssa.OpSub32, |
| opAndType{ir.OSUB, types.TUINT32}: ssa.OpSub32, |
| opAndType{ir.OSUB, types.TINT64}: ssa.OpSub64, |
| opAndType{ir.OSUB, types.TUINT64}: ssa.OpSub64, |
| opAndType{ir.OSUB, types.TFLOAT32}: ssa.OpSub32F, |
| opAndType{ir.OSUB, types.TFLOAT64}: ssa.OpSub64F, |
| |
| opAndType{ir.ONOT, types.TBOOL}: ssa.OpNot, |
| |
| opAndType{ir.ONEG, types.TINT8}: ssa.OpNeg8, |
| opAndType{ir.ONEG, types.TUINT8}: ssa.OpNeg8, |
| opAndType{ir.ONEG, types.TINT16}: ssa.OpNeg16, |
| opAndType{ir.ONEG, types.TUINT16}: ssa.OpNeg16, |
| opAndType{ir.ONEG, types.TINT32}: ssa.OpNeg32, |
| opAndType{ir.ONEG, types.TUINT32}: ssa.OpNeg32, |
| opAndType{ir.ONEG, types.TINT64}: ssa.OpNeg64, |
| opAndType{ir.ONEG, types.TUINT64}: ssa.OpNeg64, |
| opAndType{ir.ONEG, types.TFLOAT32}: ssa.OpNeg32F, |
| opAndType{ir.ONEG, types.TFLOAT64}: ssa.OpNeg64F, |
| |
| opAndType{ir.OBITNOT, types.TINT8}: ssa.OpCom8, |
| opAndType{ir.OBITNOT, types.TUINT8}: ssa.OpCom8, |
| opAndType{ir.OBITNOT, types.TINT16}: ssa.OpCom16, |
| opAndType{ir.OBITNOT, types.TUINT16}: ssa.OpCom16, |
| opAndType{ir.OBITNOT, types.TINT32}: ssa.OpCom32, |
| opAndType{ir.OBITNOT, types.TUINT32}: ssa.OpCom32, |
| opAndType{ir.OBITNOT, types.TINT64}: ssa.OpCom64, |
| opAndType{ir.OBITNOT, types.TUINT64}: ssa.OpCom64, |
| |
| opAndType{ir.OIMAG, types.TCOMPLEX64}: ssa.OpComplexImag, |
| opAndType{ir.OIMAG, types.TCOMPLEX128}: ssa.OpComplexImag, |
| opAndType{ir.OREAL, types.TCOMPLEX64}: ssa.OpComplexReal, |
| opAndType{ir.OREAL, types.TCOMPLEX128}: ssa.OpComplexReal, |
| |
| opAndType{ir.OMUL, types.TINT8}: ssa.OpMul8, |
| opAndType{ir.OMUL, types.TUINT8}: ssa.OpMul8, |
| opAndType{ir.OMUL, types.TINT16}: ssa.OpMul16, |
| opAndType{ir.OMUL, types.TUINT16}: ssa.OpMul16, |
| opAndType{ir.OMUL, types.TINT32}: ssa.OpMul32, |
| opAndType{ir.OMUL, types.TUINT32}: ssa.OpMul32, |
| opAndType{ir.OMUL, types.TINT64}: ssa.OpMul64, |
| opAndType{ir.OMUL, types.TUINT64}: ssa.OpMul64, |
| opAndType{ir.OMUL, types.TFLOAT32}: ssa.OpMul32F, |
| opAndType{ir.OMUL, types.TFLOAT64}: ssa.OpMul64F, |
| |
| opAndType{ir.ODIV, types.TFLOAT32}: ssa.OpDiv32F, |
| opAndType{ir.ODIV, types.TFLOAT64}: ssa.OpDiv64F, |
| |
| opAndType{ir.ODIV, types.TINT8}: ssa.OpDiv8, |
| opAndType{ir.ODIV, types.TUINT8}: ssa.OpDiv8u, |
| opAndType{ir.ODIV, types.TINT16}: ssa.OpDiv16, |
| opAndType{ir.ODIV, types.TUINT16}: ssa.OpDiv16u, |
| opAndType{ir.ODIV, types.TINT32}: ssa.OpDiv32, |
| opAndType{ir.ODIV, types.TUINT32}: ssa.OpDiv32u, |
| opAndType{ir.ODIV, types.TINT64}: ssa.OpDiv64, |
| opAndType{ir.ODIV, types.TUINT64}: ssa.OpDiv64u, |
| |
| opAndType{ir.OMOD, types.TINT8}: ssa.OpMod8, |
| opAndType{ir.OMOD, types.TUINT8}: ssa.OpMod8u, |
| opAndType{ir.OMOD, types.TINT16}: ssa.OpMod16, |
| opAndType{ir.OMOD, types.TUINT16}: ssa.OpMod16u, |
| opAndType{ir.OMOD, types.TINT32}: ssa.OpMod32, |
| opAndType{ir.OMOD, types.TUINT32}: ssa.OpMod32u, |
| opAndType{ir.OMOD, types.TINT64}: ssa.OpMod64, |
| opAndType{ir.OMOD, types.TUINT64}: ssa.OpMod64u, |
| |
| opAndType{ir.OAND, types.TINT8}: ssa.OpAnd8, |
| opAndType{ir.OAND, types.TUINT8}: ssa.OpAnd8, |
| opAndType{ir.OAND, types.TINT16}: ssa.OpAnd16, |
| opAndType{ir.OAND, types.TUINT16}: ssa.OpAnd16, |
| opAndType{ir.OAND, types.TINT32}: ssa.OpAnd32, |
| opAndType{ir.OAND, types.TUINT32}: ssa.OpAnd32, |
| opAndType{ir.OAND, types.TINT64}: ssa.OpAnd64, |
| opAndType{ir.OAND, types.TUINT64}: ssa.OpAnd64, |
| |
| opAndType{ir.OOR, types.TINT8}: ssa.OpOr8, |
| opAndType{ir.OOR, types.TUINT8}: ssa.OpOr8, |
| opAndType{ir.OOR, types.TINT16}: ssa.OpOr16, |
| opAndType{ir.OOR, types.TUINT16}: ssa.OpOr16, |
| opAndType{ir.OOR, types.TINT32}: ssa.OpOr32, |
| opAndType{ir.OOR, types.TUINT32}: ssa.OpOr32, |
| opAndType{ir.OOR, types.TINT64}: ssa.OpOr64, |
| opAndType{ir.OOR, types.TUINT64}: ssa.OpOr64, |
| |
| opAndType{ir.OXOR, types.TINT8}: ssa.OpXor8, |
| opAndType{ir.OXOR, types.TUINT8}: ssa.OpXor8, |
| opAndType{ir.OXOR, types.TINT16}: ssa.OpXor16, |
| opAndType{ir.OXOR, types.TUINT16}: ssa.OpXor16, |
| opAndType{ir.OXOR, types.TINT32}: ssa.OpXor32, |
| opAndType{ir.OXOR, types.TUINT32}: ssa.OpXor32, |
| opAndType{ir.OXOR, types.TINT64}: ssa.OpXor64, |
| opAndType{ir.OXOR, types.TUINT64}: ssa.OpXor64, |
| |
| opAndType{ir.OEQ, types.TBOOL}: ssa.OpEqB, |
| opAndType{ir.OEQ, types.TINT8}: ssa.OpEq8, |
| opAndType{ir.OEQ, types.TUINT8}: ssa.OpEq8, |
| opAndType{ir.OEQ, types.TINT16}: ssa.OpEq16, |
| opAndType{ir.OEQ, types.TUINT16}: ssa.OpEq16, |
| opAndType{ir.OEQ, types.TINT32}: ssa.OpEq32, |
| opAndType{ir.OEQ, types.TUINT32}: ssa.OpEq32, |
| opAndType{ir.OEQ, types.TINT64}: ssa.OpEq64, |
| opAndType{ir.OEQ, types.TUINT64}: ssa.OpEq64, |
| opAndType{ir.OEQ, types.TINTER}: ssa.OpEqInter, |
| opAndType{ir.OEQ, types.TSLICE}: ssa.OpEqSlice, |
| opAndType{ir.OEQ, types.TFUNC}: ssa.OpEqPtr, |
| opAndType{ir.OEQ, types.TMAP}: ssa.OpEqPtr, |
| opAndType{ir.OEQ, types.TCHAN}: ssa.OpEqPtr, |
| opAndType{ir.OEQ, types.TPTR}: ssa.OpEqPtr, |
| opAndType{ir.OEQ, types.TUINTPTR}: ssa.OpEqPtr, |
| opAndType{ir.OEQ, types.TUNSAFEPTR}: ssa.OpEqPtr, |
| opAndType{ir.OEQ, types.TFLOAT64}: ssa.OpEq64F, |
| opAndType{ir.OEQ, types.TFLOAT32}: ssa.OpEq32F, |
| |
| opAndType{ir.ONE, types.TBOOL}: ssa.OpNeqB, |
| opAndType{ir.ONE, types.TINT8}: ssa.OpNeq8, |
| opAndType{ir.ONE, types.TUINT8}: ssa.OpNeq8, |
| opAndType{ir.ONE, types.TINT16}: ssa.OpNeq16, |
| opAndType{ir.ONE, types.TUINT16}: ssa.OpNeq16, |
| opAndType{ir.ONE, types.TINT32}: ssa.OpNeq32, |
| opAndType{ir.ONE, types.TUINT32}: ssa.OpNeq32, |
| opAndType{ir.ONE, types.TINT64}: ssa.OpNeq64, |
| opAndType{ir.ONE, types.TUINT64}: ssa.OpNeq64, |
| opAndType{ir.ONE, types.TINTER}: ssa.OpNeqInter, |
| opAndType{ir.ONE, types.TSLICE}: ssa.OpNeqSlice, |
| opAndType{ir.ONE, types.TFUNC}: ssa.OpNeqPtr, |
| opAndType{ir.ONE, types.TMAP}: ssa.OpNeqPtr, |
| opAndType{ir.ONE, types.TCHAN}: ssa.OpNeqPtr, |
| opAndType{ir.ONE, types.TPTR}: ssa.OpNeqPtr, |
| opAndType{ir.ONE, types.TUINTPTR}: ssa.OpNeqPtr, |
| opAndType{ir.ONE, types.TUNSAFEPTR}: ssa.OpNeqPtr, |
| opAndType{ir.ONE, types.TFLOAT64}: ssa.OpNeq64F, |
| opAndType{ir.ONE, types.TFLOAT32}: ssa.OpNeq32F, |
| |
| opAndType{ir.OLT, types.TINT8}: ssa.OpLess8, |
| opAndType{ir.OLT, types.TUINT8}: ssa.OpLess8U, |
| opAndType{ir.OLT, types.TINT16}: ssa.OpLess16, |
| opAndType{ir.OLT, types.TUINT16}: ssa.OpLess16U, |
| opAndType{ir.OLT, types.TINT32}: ssa.OpLess32, |
| opAndType{ir.OLT, types.TUINT32}: ssa.OpLess32U, |
| opAndType{ir.OLT, types.TINT64}: ssa.OpLess64, |
| opAndType{ir.OLT, types.TUINT64}: ssa.OpLess64U, |
| opAndType{ir.OLT, types.TFLOAT64}: ssa.OpLess64F, |
| opAndType{ir.OLT, types.TFLOAT32}: ssa.OpLess32F, |
| |
| opAndType{ir.OLE, types.TINT8}: ssa.OpLeq8, |
| opAndType{ir.OLE, types.TUINT8}: ssa.OpLeq8U, |
| opAndType{ir.OLE, types.TINT16}: ssa.OpLeq16, |
| opAndType{ir.OLE, types.TUINT16}: ssa.OpLeq16U, |
| opAndType{ir.OLE, types.TINT32}: ssa.OpLeq32, |
| opAndType{ir.OLE, types.TUINT32}: ssa.OpLeq32U, |
| opAndType{ir.OLE, types.TINT64}: ssa.OpLeq64, |
| opAndType{ir.OLE, types.TUINT64}: ssa.OpLeq64U, |
| opAndType{ir.OLE, types.TFLOAT64}: ssa.OpLeq64F, |
| opAndType{ir.OLE, types.TFLOAT32}: ssa.OpLeq32F, |
| } |
| |
| func (s *state) concreteEtype(t *types.Type) types.Kind { |
| e := t.Kind() |
| switch e { |
| default: |
| return e |
| case types.TINT: |
| if s.config.PtrSize == 8 { |
| return types.TINT64 |
| } |
| return types.TINT32 |
| case types.TUINT: |
| if s.config.PtrSize == 8 { |
| return types.TUINT64 |
| } |
| return types.TUINT32 |
| case types.TUINTPTR: |
| if s.config.PtrSize == 8 { |
| return types.TUINT64 |
| } |
| return types.TUINT32 |
| } |
| } |
| |
| func (s *state) ssaOp(op ir.Op, t *types.Type) ssa.Op { |
| etype := s.concreteEtype(t) |
| x, ok := opToSSA[opAndType{op, etype}] |
| if !ok { |
| s.Fatalf("unhandled binary op %v %s", op, etype) |
| } |
| return x |
| } |
| |
| type opAndTwoTypes struct { |
| op ir.Op |
| etype1 types.Kind |
| etype2 types.Kind |
| } |
| |
| type twoTypes struct { |
| etype1 types.Kind |
| etype2 types.Kind |
| } |
| |
| type twoOpsAndType struct { |
| op1 ssa.Op |
| op2 ssa.Op |
| intermediateType types.Kind |
| } |
| |
| var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ |
| |
| twoTypes{types.TINT8, types.TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, types.TINT32}, |
| twoTypes{types.TINT16, types.TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, types.TINT32}, |
| twoTypes{types.TINT32, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, types.TINT32}, |
| twoTypes{types.TINT64, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, types.TINT64}, |
| |
| twoTypes{types.TINT8, types.TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, types.TINT32}, |
| twoTypes{types.TINT16, types.TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, types.TINT32}, |
| twoTypes{types.TINT32, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, types.TINT32}, |
| twoTypes{types.TINT64, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, types.TINT64}, |
| |
| twoTypes{types.TFLOAT32, types.TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, types.TINT32}, |
| twoTypes{types.TFLOAT32, types.TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, types.TINT32}, |
| twoTypes{types.TFLOAT32, types.TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, types.TINT32}, |
| twoTypes{types.TFLOAT32, types.TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, types.TINT64}, |
| |
| twoTypes{types.TFLOAT64, types.TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, types.TINT32}, |
| twoTypes{types.TFLOAT64, types.TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, types.TINT32}, |
| twoTypes{types.TFLOAT64, types.TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, types.TINT32}, |
| twoTypes{types.TFLOAT64, types.TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, types.TINT64}, |
| // unsigned |
| twoTypes{types.TUINT8, types.TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, types.TINT32}, |
| twoTypes{types.TUINT16, types.TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, types.TINT32}, |
| twoTypes{types.TUINT32, types.TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, types.TINT64}, // go wide to dodge unsigned |
| twoTypes{types.TUINT64, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, types.TUINT64}, // Cvt64Uto32F, branchy code expansion instead |
| |
| twoTypes{types.TUINT8, types.TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, types.TINT32}, |
| twoTypes{types.TUINT16, types.TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, types.TINT32}, |
| twoTypes{types.TUINT32, types.TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, types.TINT64}, // go wide to dodge unsigned |
| twoTypes{types.TUINT64, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, types.TUINT64}, // Cvt64Uto64F, branchy code expansion instead |
| |
| twoTypes{types.TFLOAT32, types.TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, types.TINT32}, |
| twoTypes{types.TFLOAT32, types.TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, types.TINT32}, |
| twoTypes{types.TFLOAT32, types.TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, types.TINT64}, // go wide to dodge unsigned |
| twoTypes{types.TFLOAT32, types.TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, types.TUINT64}, // Cvt32Fto64U, branchy code expansion instead |
| |
| twoTypes{types.TFLOAT64, types.TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, types.TINT32}, |
| twoTypes{types.TFLOAT64, types.TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, types.TINT32}, |
| twoTypes{types.TFLOAT64, types.TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, types.TINT64}, // go wide to dodge unsigned |
| twoTypes{types.TFLOAT64, types.TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, types.TUINT64}, // Cvt64Fto64U, branchy code expansion instead |
| |
| // float |
| twoTypes{types.TFLOAT64, types.TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, types.TFLOAT32}, |
| twoTypes{types.TFLOAT64, types.TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, types.TFLOAT64}, |
| twoTypes{types.TFLOAT32, types.TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, types.TFLOAT32}, |
| twoTypes{types.TFLOAT32, types.TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, types.TFLOAT64}, |
| } |
| |
| // this map is used only for 32-bit arch, and only includes the difference |
| // on 32-bit arch, don't use int64<->float conversion for uint32 |
| var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{ |
| twoTypes{types.TUINT32, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, types.TUINT32}, |
| twoTypes{types.TUINT32, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, types.TUINT32}, |
| twoTypes{types.TFLOAT32, types.TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, types.TUINT32}, |
| twoTypes{types.TFLOAT64, types.TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, types.TUINT32}, |
| } |
| |
| // uint64<->float conversions, only on machines that have instructions for that |
| var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{ |
| twoTypes{types.TUINT64, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, types.TUINT64}, |
| twoTypes{types.TUINT64, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, types.TUINT64}, |
| twoTypes{types.TFLOAT32, types.TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, types.TUINT64}, |
| twoTypes{types.TFLOAT64, types.TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, types.TUINT64}, |
| } |
| |
| var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ |
| opAndTwoTypes{ir.OLSH, types.TINT8, types.TUINT8}: ssa.OpLsh8x8, |
| opAndTwoTypes{ir.OLSH, types.TUINT8, types.TUINT8}: ssa.OpLsh8x8, |
| opAndTwoTypes{ir.OLSH, types.TINT8, types.TUINT16}: ssa.OpLsh8x16, |
| opAndTwoTypes{ir.OLSH, types.TUINT8, types.TUINT16}: ssa.OpLsh8x16, |
| opAndTwoTypes{ir.OLSH, types.TINT8, types.TUINT32}: ssa.OpLsh8x32, |
| opAndTwoTypes{ir.OLSH, types.TUINT8, types.TUINT32}: ssa.OpLsh8x32, |
| opAndTwoTypes{ir.OLSH, types.TINT8, types.TUINT64}: ssa.OpLsh8x64, |
| opAndTwoTypes{ir.OLSH, types.TUINT8, types.TUINT64}: ssa.OpLsh8x64, |
| |
| opAndTwoTypes{ir.OLSH, types.TINT16, types.TUINT8}: ssa.OpLsh16x8, |
| opAndTwoTypes{ir.OLSH, types.TUINT16, types.TUINT8}: ssa.OpLsh16x8, |
| opAndTwoTypes{ir.OLSH, types.TINT16, types.TUINT16}: ssa.OpLsh16x16, |
| opAndTwoTypes{ir.OLSH, types.TUINT16, types.TUINT16}: ssa.OpLsh16x16, |
| opAndTwoTypes{ir.OLSH, types.TINT16, types.TUINT32}: ssa.OpLsh16x32, |
| opAndTwoTypes{ir.OLSH, types.TUINT16, types.TUINT32}: ssa.OpLsh16x32, |
| opAndTwoTypes{ir.OLSH, types.TINT16, types.TUINT64}: ssa.OpLsh16x64, |
| opAndTwoTypes{ir.OLSH, types.TUINT16, types.TUINT64}: ssa.OpLsh16x64, |
| |
| opAndTwoTypes{ir.OLSH, types.TINT32, types.TUINT8}: ssa.OpLsh32x8, |
| opAndTwoTypes{ir.OLSH, types.TUINT32, types.TUINT8}: ssa.OpLsh32x8, |
| opAndTwoTypes{ir.OLSH, types.TINT32, types.TUINT16}: ssa.OpLsh32x16, |
| opAndTwoTypes{ir.OLSH, types.TUINT32, types.TUINT16}: ssa.OpLsh32x16, |
| opAndTwoTypes{ir.OLSH, types.TINT32, types.TUINT32}: ssa.OpLsh32x32, |
| opAndTwoTypes{ir.OLSH, types.TUINT32, types.TUINT32}: ssa.OpLsh32x32, |
| opAndTwoTypes{ir.OLSH, types.TINT32, types.TUINT64}: ssa.OpLsh32x64, |
| opAndTwoTypes{ir.OLSH, types.TUINT32, types.TUINT64}: ssa.OpLsh32x64, |
| |
| opAndTwoTypes{ir.OLSH, types.TINT64, types.TUINT8}: ssa.OpLsh64x8, |
| opAndTwoTypes{ir.OLSH, types.TUINT64, types.TUINT8}: ssa.OpLsh64x8, |
| opAndTwoTypes{ir.OLSH, types.TINT64, types.TUINT16}: ssa.OpLsh64x16, |
| opAndTwoTypes{ir.OLSH, types.TUINT64, types.TUINT16}: ssa.OpLsh64x16, |
| opAndTwoTypes{ir.OLSH, types.TINT64, types.TUINT32}: ssa.OpLsh64x32, |
| opAndTwoTypes{ir.OLSH, types.TUINT64, types.TUINT32}: ssa.OpLsh64x32, |
| opAndTwoTypes{ir.OLSH, types.TINT64, types.TUINT64}: ssa.OpLsh64x64, |
| opAndTwoTypes{ir.OLSH, types.TUINT64, types.TUINT64}: ssa.OpLsh64x64, |
| |
| opAndTwoTypes{ir.ORSH, types.TINT8, types.TUINT8}: ssa.OpRsh8x8, |
| opAndTwoTypes{ir.ORSH, types.TUINT8, types.TUINT8}: ssa.OpRsh8Ux8, |
| opAndTwoTypes{ir.ORSH, types.TINT8, types.TUINT16}: ssa.OpRsh8x16, |
| opAndTwoTypes{ir.ORSH, types.TUINT8, types.TUINT16}: ssa.OpRsh8Ux16, |
| opAndTwoTypes{ir.ORSH, types.TINT8, types.TUINT32}: ssa.OpRsh8x32, |
| opAndTwoTypes{ir.ORSH, types.TUINT8, types.TUINT32}: ssa.OpRsh8Ux32, |
| opAndTwoTypes{ir.ORSH, types.TINT8, types.TUINT64}: ssa.OpRsh8x64, |
| opAndTwoTypes{ir.ORSH, types.TUINT8, types.TUINT64}: ssa.OpRsh8Ux64, |
| |
| opAndTwoTypes{ir.ORSH, types.TINT16, types.TUINT8}: ssa.OpRsh16x8, |
| opAndTwoTypes{ir.ORSH, types.TUINT16, types.TUINT8}: ssa.OpRsh16Ux8, |
| opAndTwoTypes{ir.ORSH, types.TINT16, types.TUINT16}: ssa.OpRsh16x16, |
| opAndTwoTypes{ir.ORSH, types.TUINT16, types.TUINT16}: ssa.OpRsh16Ux16, |
| opAndTwoTypes{ir.ORSH, types.TINT16, types.TUINT32}: ssa.OpRsh16x32, |
| opAndTwoTypes{ir.ORSH, types.TUINT16, types.TUINT32}: ssa.OpRsh16Ux32, |
| opAndTwoTypes{ir.ORSH, types.TINT16, types.TUINT64}: ssa.OpRsh16x64, |
| opAndTwoTypes{ir.ORSH, types.TUINT16, types.TUINT64}: ssa.OpRsh16Ux64, |
| |
| opAndTwoTypes{ir.ORSH, types.TINT32, types.TUINT8}: ssa.OpRsh32x8, |
| opAndTwoTypes{ir.ORSH, types.TUINT32, types.TUINT8}: ssa.OpRsh32Ux8, |
| opAndTwoTypes{ir.ORSH, types.TINT32, types.TUINT16}: ssa.OpRsh32x16, |
| opAndTwoTypes{ir.ORSH, types.TUINT32, types.TUINT16}: ssa.OpRsh32Ux16, |
| opAndTwoTypes{ir.ORSH, types.TINT32, types.TUINT32}: ssa.OpRsh32x32, |
| opAndTwoTypes{ir.ORSH, types.TUINT32, types.TUINT32}: ssa.OpRsh32Ux32, |
| opAndTwoTypes{ir.ORSH, types.TINT32, types.TUINT64}: ssa.OpRsh32x64, |
| opAndTwoTypes{ir.ORSH, types.TUINT32, types.TUINT64}: ssa.OpRsh32Ux64, |
| |
| opAndTwoTypes{ir.ORSH, types.TINT64, types.TUINT8}: ssa.OpRsh64x8, |
| opAndTwoTypes{ir.ORSH, types.TUINT64, types.TUINT8}: ssa.OpRsh64Ux8, |
| opAndTwoTypes{ir.ORSH, types.TINT64, types.TUINT16}: ssa.OpRsh64x16, |
| opAndTwoTypes{ir.ORSH, types.TUINT64, types.TUINT16}: ssa.OpRsh64Ux16, |
| opAndTwoTypes{ir.ORSH, types.TINT64, types.TUINT32}: ssa.OpRsh64x32, |
| opAndTwoTypes{ir.ORSH, types.TUINT64, types.TUINT32}: ssa.OpRsh64Ux32, |
| opAndTwoTypes{ir.ORSH, types.TINT64, types.TUINT64}: ssa.OpRsh64x64, |
| opAndTwoTypes{ir.ORSH, types.TUINT64, types.TUINT64}: ssa.OpRsh64Ux64, |
| } |
| |
| func (s *state) ssaShiftOp(op ir.Op, t *types.Type, u *types.Type) ssa.Op { |
| etype1 := s.concreteEtype(t) |
| etype2 := s.concreteEtype(u) |
| x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] |
| if !ok { |
| s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2) |
| } |
| return x |
| } |
| |
| func (s *state) uintptrConstant(v uint64) *ssa.Value { |
| if s.config.PtrSize == 4 { |
| return s.newValue0I(ssa.OpConst32, types.Types[types.TUINTPTR], int64(v)) |
| } |
| return s.newValue0I(ssa.OpConst64, types.Types[types.TUINTPTR], int64(v)) |
| } |
| |
| func (s *state) conv(n ir.Node, v *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| if ft.IsBoolean() && tt.IsKind(types.TUINT8) { |
| // Bool -> uint8 is generated internally when indexing into runtime.staticbyte. |
| return s.newValue1(ssa.OpCvtBoolToUint8, tt, v) |
| } |
| if ft.IsInteger() && tt.IsInteger() { |
| var op ssa.Op |
| if tt.Size() == ft.Size() { |
| op = ssa.OpCopy |
| } else if tt.Size() < ft.Size() { |
| // truncation |
| switch 10*ft.Size() + tt.Size() { |
| case 21: |
| op = ssa.OpTrunc16to8 |
| case 41: |
| op = ssa.OpTrunc32to8 |
| case 42: |
| op = ssa.OpTrunc32to16 |
| case 81: |
| op = ssa.OpTrunc64to8 |
| case 82: |
| op = ssa.OpTrunc64to16 |
| case 84: |
| op = ssa.OpTrunc64to32 |
| default: |
| s.Fatalf("weird integer truncation %v -> %v", ft, tt) |
| } |
| } else if ft.IsSigned() { |
| // sign extension |
| switch 10*ft.Size() + tt.Size() { |
| case 12: |
| op = ssa.OpSignExt8to16 |
| case 14: |
| op = ssa.OpSignExt8to32 |
| case 18: |
| op = ssa.OpSignExt8to64 |
| case 24: |
| op = ssa.OpSignExt16to32 |
| case 28: |
| op = ssa.OpSignExt16to64 |
| case 48: |
| op = ssa.OpSignExt32to64 |
| default: |
| s.Fatalf("bad integer sign extension %v -> %v", ft, tt) |
| } |
| } else { |
| // zero extension |
| switch 10*ft.Size() + tt.Size() { |
| case 12: |
| op = ssa.OpZeroExt8to16 |
| case 14: |
| op = ssa.OpZeroExt8to32 |
| case 18: |
| op = ssa.OpZeroExt8to64 |
| case 24: |
| op = ssa.OpZeroExt16to32 |
| case 28: |
| op = ssa.OpZeroExt16to64 |
| case 48: |
| op = ssa.OpZeroExt32to64 |
| default: |
| s.Fatalf("weird integer sign extension %v -> %v", ft, tt) |
| } |
| } |
| return s.newValue1(op, tt, v) |
| } |
| |
| if ft.IsComplex() && tt.IsComplex() { |
| var op ssa.Op |
| if ft.Size() == tt.Size() { |
| switch ft.Size() { |
| case 8: |
| op = ssa.OpRound32F |
| case 16: |
| op = ssa.OpRound64F |
| default: |
| s.Fatalf("weird complex conversion %v -> %v", ft, tt) |
| } |
| } else if ft.Size() == 8 && tt.Size() == 16 { |
| op = ssa.OpCvt32Fto64F |
| } else if ft.Size() == 16 && tt.Size() == 8 { |
| op = ssa.OpCvt64Fto32F |
| } else { |
| s.Fatalf("weird complex conversion %v -> %v", ft, tt) |
| } |
| ftp := types.FloatForComplex(ft) |
| ttp := types.FloatForComplex(tt) |
| return s.newValue2(ssa.OpComplexMake, tt, |
| s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, v)), |
| s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, v))) |
| } |
| |
| if tt.IsComplex() { // and ft is not complex |
| // Needed for generics support - can't happen in normal Go code. |
| et := types.FloatForComplex(tt) |
| v = s.conv(n, v, ft, et) |
| return s.newValue2(ssa.OpComplexMake, tt, v, s.zeroVal(et)) |
| } |
| |
| if ft.IsFloat() || tt.IsFloat() { |
| conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] |
| if s.config.RegSize == 4 && Arch.LinkArch.Family != sys.MIPS && !s.softFloat { |
| if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { |
| conv = conv1 |
| } |
| } |
| if Arch.LinkArch.Family == sys.ARM64 || Arch.LinkArch.Family == sys.Wasm || Arch.LinkArch.Family == sys.S390X || s.softFloat { |
| if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { |
| conv = conv1 |
| } |
| } |
| |
| if Arch.LinkArch.Family == sys.MIPS && !s.softFloat { |
| if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() { |
| // tt is float32 or float64, and ft is also unsigned |
| if tt.Size() == 4 { |
| return s.uint32Tofloat32(n, v, ft, tt) |
| } |
| if tt.Size() == 8 { |
| return s.uint32Tofloat64(n, v, ft, tt) |
| } |
| } else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() { |
| // ft is float32 or float64, and tt is unsigned integer |
| if ft.Size() == 4 { |
| return s.float32ToUint32(n, v, ft, tt) |
| } |
| if ft.Size() == 8 { |
| return s.float64ToUint32(n, v, ft, tt) |
| } |
| } |
| } |
| |
| if !ok { |
| s.Fatalf("weird float conversion %v -> %v", ft, tt) |
| } |
| op1, op2, it := conv.op1, conv.op2, conv.intermediateType |
| |
| if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { |
| // normal case, not tripping over unsigned 64 |
| if op1 == ssa.OpCopy { |
| if op2 == ssa.OpCopy { |
| return v |
| } |
| return s.newValueOrSfCall1(op2, tt, v) |
| } |
| if op2 == ssa.OpCopy { |
| return s.newValueOrSfCall1(op1, tt, v) |
| } |
| return s.newValueOrSfCall1(op2, tt, s.newValueOrSfCall1(op1, types.Types[it], v)) |
| } |
| // Tricky 64-bit unsigned cases. |
| if ft.IsInteger() { |
| // tt is float32 or float64, and ft is also unsigned |
| if tt.Size() == 4 { |
| return s.uint64Tofloat32(n, v, ft, tt) |
| } |
| if tt.Size() == 8 { |
| return s.uint64Tofloat64(n, v, ft, tt) |
| } |
| s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt) |
| } |
| // ft is float32 or float64, and tt is unsigned integer |
| if ft.Size() == 4 { |
| return s.float32ToUint64(n, v, ft, tt) |
| } |
| if ft.Size() == 8 { |
| return s.float64ToUint64(n, v, ft, tt) |
| } |
| s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt) |
| return nil |
| } |
| |
| s.Fatalf("unhandled OCONV %s -> %s", ft.Kind(), tt.Kind()) |
| return nil |
| } |
| |
| // expr converts the expression n to ssa, adds it to s and returns the ssa result. |
| func (s *state) expr(n ir.Node) *ssa.Value { |
| return s.exprCheckPtr(n, true) |
| } |
| |
| func (s *state) exprCheckPtr(n ir.Node, checkPtrOK bool) *ssa.Value { |
| if ir.HasUniquePos(n) { |
| // ONAMEs and named OLITERALs have the line number |
| // of the decl, not the use. See issue 14742. |
| s.pushLine(n.Pos()) |
| defer s.popLine() |
| } |
| |
| s.stmtList(n.Init()) |
| switch n.Op() { |
| case ir.OBYTES2STRTMP: |
| n := n.(*ir.ConvExpr) |
| slice := s.expr(n.X) |
| ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) |
| len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], slice) |
| return s.newValue2(ssa.OpStringMake, n.Type(), ptr, len) |
| case ir.OSTR2BYTESTMP: |
| n := n.(*ir.ConvExpr) |
| str := s.expr(n.X) |
| ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str) |
| len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], str) |
| return s.newValue3(ssa.OpSliceMake, n.Type(), ptr, len, len) |
| case ir.OCFUNC: |
| n := n.(*ir.UnaryExpr) |
| aux := n.X.(*ir.Name).Linksym() |
| // OCFUNC is used to build function values, which must |
| // always reference ABIInternal entry points. |
| if aux.ABI() != obj.ABIInternal { |
| s.Fatalf("expected ABIInternal: %v", aux.ABI()) |
| } |
| return s.entryNewValue1A(ssa.OpAddr, n.Type(), aux, s.sb) |
| case ir.ONAME: |
| n := n.(*ir.Name) |
| if n.Class == ir.PFUNC { |
| // "value" of a function is the address of the function's closure |
| sym := staticdata.FuncLinksym(n) |
| return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type()), sym, s.sb) |
| } |
| if s.canSSA(n) { |
| return s.variable(n, n.Type()) |
| } |
| return s.load(n.Type(), s.addr(n)) |
| case ir.OLINKSYMOFFSET: |
| n := n.(*ir.LinksymOffsetExpr) |
| return s.load(n.Type(), s.addr(n)) |
| case ir.ONIL: |
| n := n.(*ir.NilExpr) |
| t := n.Type() |
| switch { |
| case t.IsSlice(): |
| return s.constSlice(t) |
| case t.IsInterface(): |
| return s.constInterface(t) |
| default: |
| return s.constNil(t) |
| } |
| case ir.OLITERAL: |
| switch u := n.Val(); u.Kind() { |
| case constant.Int: |
| i := ir.IntVal(n.Type(), u) |
| switch n.Type().Size() { |
| case 1: |
| return s.constInt8(n.Type(), int8(i)) |
| case 2: |
| return s.constInt16(n.Type(), int16(i)) |
| case 4: |
| return s.constInt32(n.Type(), int32(i)) |
| case 8: |
| return s.constInt64(n.Type(), i) |
| default: |
| s.Fatalf("bad integer size %d", n.Type().Size()) |
| return nil |
| } |
| case constant.String: |
| i := constant.StringVal(u) |
| if i == "" { |
| return s.constEmptyString(n.Type()) |
| } |
| return s.entryNewValue0A(ssa.OpConstString, n.Type(), ssa.StringToAux(i)) |
| case constant.Bool: |
| return s.constBool(constant.BoolVal(u)) |
| case constant.Float: |
| f, _ := constant.Float64Val(u) |
| switch n.Type().Size() { |
| case 4: |
| return s.constFloat32(n.Type(), f) |
| case 8: |
| return s.constFloat64(n.Type(), f) |
| default: |
| s.Fatalf("bad float size %d", n.Type().Size()) |
| return nil |
| } |
| case constant.Complex: |
| re, _ := constant.Float64Val(constant.Real(u)) |
| im, _ := constant.Float64Val(constant.Imag(u)) |
| switch n.Type().Size() { |
| case 8: |
| pt := types.Types[types.TFLOAT32] |
| return s.newValue2(ssa.OpComplexMake, n.Type(), |
| s.constFloat32(pt, re), |
| s.constFloat32(pt, im)) |
| case 16: |
| pt := types.Types[types.TFLOAT64] |
| return s.newValue2(ssa.OpComplexMake, n.Type(), |
| s.constFloat64(pt, re), |
| s.constFloat64(pt, im)) |
| default: |
| s.Fatalf("bad complex size %d", n.Type().Size()) |
| return nil |
| } |
| default: |
| s.Fatalf("unhandled OLITERAL %v", u.Kind()) |
| return nil |
| } |
| case ir.OCONVNOP: |
| n := n.(*ir.ConvExpr) |
| to := n.Type() |
| from := n.X.Type() |
| |
| // Assume everything will work out, so set up our return value. |
| // Anything interesting that happens from here is a fatal. |
| x := s.expr(n.X) |
| if to == from { |
| return x |
| } |
| |
| // Special case for not confusing GC and liveness. |
| // We don't want pointers accidentally classified |
| // as not-pointers or vice-versa because of copy |
| // elision. |
| if to.IsPtrShaped() != from.IsPtrShaped() { |
| return s.newValue2(ssa.OpConvert, to, x, s.mem()) |
| } |
| |
| v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type |
| |
| // CONVNOP closure |
| if to.Kind() == types.TFUNC && from.IsPtrShaped() { |
| return v |
| } |
| |
| // named <--> unnamed type or typed <--> untyped const |
| if from.Kind() == to.Kind() { |
| return v |
| } |
| |
| // unsafe.Pointer <--> *T |
| if to.IsUnsafePtr() && from.IsPtrShaped() || from.IsUnsafePtr() && to.IsPtrShaped() { |
| if s.checkPtrEnabled && checkPtrOK && to.IsPtr() && from.IsUnsafePtr() { |
| s.checkPtrAlignment(n, v, nil) |
| } |
| return v |
| } |
| |
| // map <--> *hmap |
| if to.Kind() == types.TMAP && from.IsPtr() && |
| to.MapType().Hmap == from.Elem() { |
| return v |
| } |
| |
| types.CalcSize(from) |
| types.CalcSize(to) |
| if from.Size() != to.Size() { |
| s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Size(), to, to.Size()) |
| return nil |
| } |
| if etypesign(from.Kind()) != etypesign(to.Kind()) { |
| s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Kind(), to, to.Kind()) |
| return nil |
| } |
| |
| if base.Flag.Cfg.Instrumenting { |
| // These appear to be fine, but they fail the |
| // integer constraint below, so okay them here. |
| // Sample non-integer conversion: map[string]string -> *uint8 |
| return v |
| } |
| |
| if etypesign(from.Kind()) == 0 { |
| s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) |
| return nil |
| } |
| |
| // integer, same width, same sign |
| return v |
| |
| case ir.OCONV: |
| n := n.(*ir.ConvExpr) |
| x := s.expr(n.X) |
| return s.conv(n, x, n.X.Type(), n.Type()) |
| |
| case ir.ODOTTYPE: |
| n := n.(*ir.TypeAssertExpr) |
| res, _ := s.dottype(n, false) |
| return res |
| |
| case ir.ODYNAMICDOTTYPE: |
| n := n.(*ir.DynamicTypeAssertExpr) |
| res, _ := s.dynamicDottype(n, false) |
| return res |
| |
| // binary ops |
| case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT: |
| n := n.(*ir.BinaryExpr) |
| a := s.expr(n.X) |
| b := s.expr(n.Y) |
| if n.X.Type().IsComplex() { |
| pt := types.FloatForComplex(n.X.Type()) |
| op := s.ssaOp(ir.OEQ, pt) |
| r := s.newValueOrSfCall2(op, types.Types[types.TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) |
| i := s.newValueOrSfCall2(op, types.Types[types.TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) |
| c := s.newValue2(ssa.OpAndB, types.Types[types.TBOOL], r, i) |
| switch n.Op() { |
| case ir.OEQ: |
| return c |
| case ir.ONE: |
| return s.newValue1(ssa.OpNot, types.Types[types.TBOOL], c) |
| default: |
| s.Fatalf("ordered complex compare %v", n.Op()) |
| } |
| } |
| |
| // Convert OGE and OGT into OLE and OLT. |
| op := n.Op() |
| switch op { |
| case ir.OGE: |
| op, a, b = ir.OLE, b, a |
| case ir.OGT: |
| op, a, b = ir.OLT, b, a |
| } |
| if n.X.Type().IsFloat() { |
| // float comparison |
| return s.newValueOrSfCall2(s.ssaOp(op, n.X.Type()), types.Types[types.TBOOL], a, b) |
| } |
| // integer comparison |
| return s.newValue2(s.ssaOp(op, n.X.Type()), types.Types[types.TBOOL], a, b) |
| case ir.OMUL: |
| n := n.(*ir.BinaryExpr) |
| a := s.expr(n.X) |
| b := s.expr(n.Y) |
| if n.Type().IsComplex() { |
| mulop := ssa.OpMul64F |
| addop := ssa.OpAdd64F |
| subop := ssa.OpSub64F |
| pt := types.FloatForComplex(n.Type()) // Could be Float32 or Float64 |
| wt := types.Types[types.TFLOAT64] // Compute in Float64 to minimize cancellation error |
| |
| areal := s.newValue1(ssa.OpComplexReal, pt, a) |
| breal := s.newValue1(ssa.OpComplexReal, pt, b) |
| aimag := s.newValue1(ssa.OpComplexImag, pt, a) |
| bimag := s.newValue1(ssa.OpComplexImag, pt, b) |
| |
| if pt != wt { // Widen for calculation |
| areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal) |
| breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal) |
| aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag) |
| bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag) |
| } |
| |
| xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag)) |
| ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal)) |
| |
| if pt != wt { // Narrow to store back |
| xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal) |
| ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag) |
| } |
| |
| return s.newValue2(ssa.OpComplexMake, n.Type(), xreal, ximag) |
| } |
| |
| if n.Type().IsFloat() { |
| return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) |
| } |
| |
| return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) |
| |
| case ir.ODIV: |
| n := n.(*ir.BinaryExpr) |
| a := s.expr(n.X) |
| b := s.expr(n.Y) |
| if n.Type().IsComplex() { |
| // TODO this is not executed because the front-end substitutes a runtime call. |
| // That probably ought to change; with modest optimization the widen/narrow |
| // conversions could all be elided in larger expression trees. |
| mulop := ssa.OpMul64F |
| addop := ssa.OpAdd64F |
| subop := ssa.OpSub64F |
| divop := ssa.OpDiv64F |
| pt := types.FloatForComplex(n.Type()) // Could be Float32 or Float64 |
| wt := types.Types[types.TFLOAT64] // Compute in Float64 to minimize cancellation error |
| |
| areal := s.newValue1(ssa.OpComplexReal, pt, a) |
| breal := s.newValue1(ssa.OpComplexReal, pt, b) |
| aimag := s.newValue1(ssa.OpComplexImag, pt, a) |
| bimag := s.newValue1(ssa.OpComplexImag, pt, b) |
| |
| if pt != wt { // Widen for calculation |
| areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal) |
| breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal) |
| aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag) |
| bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag) |
| } |
| |
| denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag)) |
| xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag)) |
| ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag)) |
| |
| // TODO not sure if this is best done in wide precision or narrow |
| // Double-rounding might be an issue. |
| // Note that the pre-SSA implementation does the entire calculation |
| // in wide format, so wide is compatible. |
| xreal = s.newValueOrSfCall2(divop, wt, xreal, denom) |
| ximag = s.newValueOrSfCall2(divop, wt, ximag, denom) |
| |
| if pt != wt { // Narrow to store back |
| xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal) |
| ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag) |
| } |
| return s.newValue2(ssa.OpComplexMake, n.Type(), xreal, ximag) |
| } |
| if n.Type().IsFloat() { |
| return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) |
| } |
| return s.intDivide(n, a, b) |
| case ir.OMOD: |
| n := n.(*ir.BinaryExpr) |
| a := s.expr(n.X) |
| b := s.expr(n.Y) |
| return s.intDivide(n, a, b) |
| case ir.OADD, ir.OSUB: |
| n := n.(*ir.BinaryExpr) |
| a := s.expr(n.X) |
| b := s.expr(n.Y) |
| if n.Type().IsComplex() { |
| pt := types.FloatForComplex(n.Type()) |
| op := s.ssaOp(n.Op(), pt) |
| return s.newValue2(ssa.OpComplexMake, n.Type(), |
| s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), |
| s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) |
| } |
| if n.Type().IsFloat() { |
| return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) |
| } |
| return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) |
| case ir.OAND, ir.OOR, ir.OXOR: |
| n := n.(*ir.BinaryExpr) |
| a := s.expr(n.X) |
| b := s.expr(n.Y) |
| return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) |
| case ir.OANDNOT: |
| n := n.(*ir.BinaryExpr) |
| a := s.expr(n.X) |
| b := s.expr(n.Y) |
| b = s.newValue1(s.ssaOp(ir.OBITNOT, b.Type), b.Type, b) |
| return s.newValue2(s.ssaOp(ir.OAND, n.Type()), a.Type, a, b) |
| case ir.OLSH, ir.ORSH: |
| n := n.(*ir.BinaryExpr) |
| a := s.expr(n.X) |
| b := s.expr(n.Y) |
| bt := b.Type |
| if bt.IsSigned() { |
| cmp := s.newValue2(s.ssaOp(ir.OLE, bt), types.Types[types.TBOOL], s.zeroVal(bt), b) |
| s.check(cmp, ir.Syms.Panicshift) |
| bt = bt.ToUnsigned() |
| } |
| return s.newValue2(s.ssaShiftOp(n.Op(), n.Type(), bt), a.Type, a, b) |
| case ir.OANDAND, ir.OOROR: |
| // To implement OANDAND (and OOROR), we introduce a |
| // new temporary variable to hold the result. The |
| // variable is associated with the OANDAND node in the |
| // s.vars table (normally variables are only |
| // associated with ONAME nodes). We convert |
| // A && B |
| // to |
| // var = A |
| // if var { |
| // var = B |
| // } |
| // Using var in the subsequent block introduces the |
| // necessary phi variable. |
| n := n.(*ir.LogicalExpr) |
| el := s.expr(n.X) |
| s.vars[n] = el |
| |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(el) |
| // In theory, we should set b.Likely here based on context. |
| // However, gc only gives us likeliness hints |
| // in a single place, for plain OIF statements, |
| // and passing around context is finnicky, so don't bother for now. |
| |
| bRight := s.f.NewBlock(ssa.BlockPlain) |
| bResult := s.f.NewBlock(ssa.BlockPlain) |
| if n.Op() == ir.OANDAND { |
| b.AddEdgeTo(bRight) |
| b.AddEdgeTo(bResult) |
| } else if n.Op() == ir.OOROR { |
| b.AddEdgeTo(bResult) |
| b.AddEdgeTo(bRight) |
| } |
| |
| s.startBlock(bRight) |
| er := s.expr(n.Y) |
| s.vars[n] = er |
| |
| b = s.endBlock() |
| b.AddEdgeTo(bResult) |
| |
| s.startBlock(bResult) |
| return s.variable(n, types.Types[types.TBOOL]) |
| case ir.OCOMPLEX: |
| n := n.(*ir.BinaryExpr) |
| r := s.expr(n.X) |
| i := s.expr(n.Y) |
| return s.newValue2(ssa.OpComplexMake, n.Type(), r, i) |
| |
| // unary ops |
| case ir.ONEG: |
| n := n.(*ir.UnaryExpr) |
| a := s.expr(n.X) |
| if n.Type().IsComplex() { |
| tp := types.FloatForComplex(n.Type()) |
| negop := s.ssaOp(n.Op(), tp) |
| return s.newValue2(ssa.OpComplexMake, n.Type(), |
| s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), |
| s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) |
| } |
| return s.newValue1(s.ssaOp(n.Op(), n.Type()), a.Type, a) |
| case ir.ONOT, ir.OBITNOT: |
| n := n.(*ir.UnaryExpr) |
| a := s.expr(n.X) |
| return s.newValue1(s.ssaOp(n.Op(), n.Type()), a.Type, a) |
| case ir.OIMAG, ir.OREAL: |
| n := n.(*ir.UnaryExpr) |
| a := s.expr(n.X) |
| return s.newValue1(s.ssaOp(n.Op(), n.X.Type()), n.Type(), a) |
| case ir.OPLUS: |
| n := n.(*ir.UnaryExpr) |
| return s.expr(n.X) |
| |
| case ir.OADDR: |
| n := n.(*ir.AddrExpr) |
| return s.addr(n.X) |
| |
| case ir.ORESULT: |
| n := n.(*ir.ResultExpr) |
| if s.prevCall == nil || s.prevCall.Op != ssa.OpStaticLECall && s.prevCall.Op != ssa.OpInterLECall && s.prevCall.Op != ssa.OpClosureLECall { |
| panic("Expected to see a previous call") |
| } |
| which := n.Index |
| if which == -1 { |
| panic(fmt.Errorf("ORESULT %v does not match call %s", n, s.prevCall)) |
| } |
| return s.resultOfCall(s.prevCall, which, n.Type()) |
| |
| case ir.ODEREF: |
| n := n.(*ir.StarExpr) |
| p := s.exprPtr(n.X, n.Bounded(), n.Pos()) |
| return s.load(n.Type(), p) |
| |
| case ir.ODOT: |
| n := n.(*ir.SelectorExpr) |
| if n.X.Op() == ir.OSTRUCTLIT { |
| // All literals with nonzero fields have already been |
| // rewritten during walk. Any that remain are just T{} |
| // or equivalents. Use the zero value. |
| if !ir.IsZero(n.X) { |
| s.Fatalf("literal with nonzero value in SSA: %v", n.X) |
| } |
| return s.zeroVal(n.Type()) |
| } |
| // If n is addressable and can't be represented in |
| // SSA, then load just the selected field. This |
| // prevents false memory dependencies in race/msan/asan |
| // instrumentation. |
| if ir.IsAddressable(n) && !s.canSSA(n) { |
| p := s.addr(n) |
| return s.load(n.Type(), p) |
| } |
| v := s.expr(n.X) |
| return s.newValue1I(ssa.OpStructSelect, n.Type(), int64(fieldIdx(n)), v) |
| |
| case ir.ODOTPTR: |
| n := n.(*ir.SelectorExpr) |
| p := s.exprPtr(n.X, n.Bounded(), n.Pos()) |
| p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type()), n.Offset(), p) |
| return s.load(n.Type(), p) |
| |
| case ir.OINDEX: |
| n := n.(*ir.IndexExpr) |
| switch { |
| case n.X.Type().IsString(): |
| if n.Bounded() && ir.IsConst(n.X, constant.String) && ir.IsConst(n.Index, constant.Int) { |
| // Replace "abc"[1] with 'b'. |
| // Delayed until now because "abc"[1] is not an ideal constant. |
| // See test/fixedbugs/issue11370.go. |
| return s.newValue0I(ssa.OpConst8, types.Types[types.TUINT8], int64(int8(ir.StringVal(n.X)[ir.Int64Val(n.Index)]))) |
| } |
| a := s.expr(n.X) |
| i := s.expr(n.Index) |
| len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], a) |
| i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) |
| ptrtyp := s.f.Config.Types.BytePtr |
| ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) |
| if ir.IsConst(n.Index, constant.Int) { |
| ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, ir.Int64Val(n.Index), ptr) |
| } else { |
| ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) |
| } |
| return s.load(types.Types[types.TUINT8], ptr) |
| case n.X.Type().IsSlice(): |
| p := s.addr(n) |
| return s.load(n.X.Type().Elem(), p) |
| case n.X.Type().IsArray(): |
| if TypeOK(n.X.Type()) { |
| // SSA can handle arrays of length at most 1. |
| bound := n.X.Type().NumElem() |
| a := s.expr(n.X) |
| i := s.expr(n.Index) |
| if bound == 0 { |
| // Bounds check will never succeed. Might as well |
| // use constants for the bounds check. |
| z := s.constInt(types.Types[types.TINT], 0) |
| s.boundsCheck(z, z, ssa.BoundsIndex, false) |
| // The return value won't be live, return junk. |
| // But not quite junk, in case bounds checks are turned off. See issue 48092. |
| return s.zeroVal(n.Type()) |
| } |
| len := s.constInt(types.Types[types.TINT], bound) |
| s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) // checks i == 0 |
| return s.newValue1I(ssa.OpArraySelect, n.Type(), 0, a) |
| } |
| p := s.addr(n) |
| return s.load(n.X.Type().Elem(), p) |
| default: |
| s.Fatalf("bad type for index %v", n.X.Type()) |
| return nil |
| } |
| |
| case ir.OLEN, ir.OCAP: |
| n := n.(*ir.UnaryExpr) |
| switch { |
| case n.X.Type().IsSlice(): |
| op := ssa.OpSliceLen |
| if n.Op() == ir.OCAP { |
| op = ssa.OpSliceCap |
| } |
| return s.newValue1(op, types.Types[types.TINT], s.expr(n.X)) |
| case n.X.Type().IsString(): // string; not reachable for OCAP |
| return s.newValue1(ssa.OpStringLen, types.Types[types.TINT], s.expr(n.X)) |
| case n.X.Type().IsMap(), n.X.Type().IsChan(): |
| return s.referenceTypeBuiltin(n, s.expr(n.X)) |
| default: // array |
| return s.constInt(types.Types[types.TINT], n.X.Type().NumElem()) |
| } |
| |
| case ir.OSPTR: |
| n := n.(*ir.UnaryExpr) |
| a := s.expr(n.X) |
| if n.X.Type().IsSlice() { |
| return s.newValue1(ssa.OpSlicePtr, n.Type(), a) |
| } else { |
| return s.newValue1(ssa.OpStringPtr, n.Type(), a) |
| } |
| |
| case ir.OITAB: |
| n := n.(*ir.UnaryExpr) |
| a := s.expr(n.X) |
| return s.newValue1(ssa.OpITab, n.Type(), a) |
| |
| case ir.OIDATA: |
| n := n.(*ir.UnaryExpr) |
| a := s.expr(n.X) |
| return s.newValue1(ssa.OpIData, n.Type(), a) |
| |
| case ir.OEFACE: |
| n := n.(*ir.BinaryExpr) |
| tab := s.expr(n.X) |
| data := s.expr(n.Y) |
| return s.newValue2(ssa.OpIMake, n.Type(), tab, data) |
| |
| case ir.OSLICEHEADER: |
| n := n.(*ir.SliceHeaderExpr) |
| p := s.expr(n.Ptr) |
| l := s.expr(n.Len) |
| c := s.expr(n.Cap) |
| return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c) |
| |
| case ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR: |
| n := n.(*ir.SliceExpr) |
| check := s.checkPtrEnabled && n.Op() == ir.OSLICE3ARR && n.X.Op() == ir.OCONVNOP && n.X.(*ir.ConvExpr).X.Type().IsUnsafePtr() |
| v := s.exprCheckPtr(n.X, !check) |
| var i, j, k *ssa.Value |
| if n.Low != nil { |
| i = s.expr(n.Low) |
| } |
| if n.High != nil { |
| j = s.expr(n.High) |
| } |
| if n.Max != nil { |
| k = s.expr(n.Max) |
| } |
| p, l, c := s.slice(v, i, j, k, n.Bounded()) |
| if check { |
| // Emit checkptr instrumentation after bound check to prevent false positive, see #46938. |
| s.checkPtrAlignment(n.X.(*ir.ConvExpr), v, s.conv(n.Max, k, k.Type, types.Types[types.TUINTPTR])) |
| } |
| return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c) |
| |
| case ir.OSLICESTR: |
| n := n.(*ir.SliceExpr) |
| v := s.expr(n.X) |
| var i, j *ssa.Value |
| if n.Low != nil { |
| i = s.expr(n.Low) |
| } |
| if n.High != nil { |
| j = s.expr(n.High) |
| } |
| p, l, _ := s.slice(v, i, j, nil, n.Bounded()) |
| return s.newValue2(ssa.OpStringMake, n.Type(), p, l) |
| |
| case ir.OSLICE2ARRPTR: |
| // if arrlen > slice.len { |
| // panic(...) |
| // } |
| // slice.ptr |
| n := n.(*ir.ConvExpr) |
| v := s.expr(n.X) |
| arrlen := s.constInt(types.Types[types.TINT], n.Type().Elem().NumElem()) |
| cap := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], v) |
| s.boundsCheck(arrlen, cap, ssa.BoundsConvert, false) |
| return s.newValue1(ssa.OpSlicePtrUnchecked, n.Type(), v) |
| |
| case ir.OCALLFUNC: |
| n := n.(*ir.CallExpr) |
| if ir.IsIntrinsicCall(n) { |
| return s.intrinsicCall(n) |
| } |
| fallthrough |
| |
| case ir.OCALLINTER: |
| n := n.(*ir.CallExpr) |
| return s.callResult(n, callNormal) |
| |
| case ir.OGETG: |
| n := n.(*ir.CallExpr) |
| return s.newValue1(ssa.OpGetG, n.Type(), s.mem()) |
| |
| case ir.OGETCALLERPC: |
| n := n.(*ir.CallExpr) |
| return s.newValue0(ssa.OpGetCallerPC, n.Type()) |
| |
| case ir.OGETCALLERSP: |
| n := n.(*ir.CallExpr) |
| return s.newValue0(ssa.OpGetCallerSP, n.Type()) |
| |
| case ir.OAPPEND: |
| return s.append(n.(*ir.CallExpr), false) |
| |
| case ir.OSTRUCTLIT, ir.OARRAYLIT: |
| // All literals with nonzero fields have already been |
| // rewritten during walk. Any that remain are just T{} |
| // or equivalents. Use the zero value. |
| n := n.(*ir.CompLitExpr) |
| if !ir.IsZero(n) { |
| s.Fatalf("literal with nonzero value in SSA: %v", n) |
| } |
| return s.zeroVal(n.Type()) |
| |
| case ir.ONEW: |
| n := n.(*ir.UnaryExpr) |
| return s.newObject(n.Type().Elem()) |
| |
| case ir.OUNSAFEADD: |
| n := n.(*ir.BinaryExpr) |
| ptr := s.expr(n.X) |
| len := s.expr(n.Y) |
| |
| // Force len to uintptr to prevent misuse of garbage bits in the |
| // upper part of the register (#48536). |
| len = s.conv(n, len, len.Type, types.Types[types.TUINTPTR]) |
| |
| return s.newValue2(ssa.OpAddPtr, n.Type(), ptr, len) |
| |
| default: |
| s.Fatalf("unhandled expr %v", n.Op()) |
| return nil |
| } |
| } |
| |
| func (s *state) resultOfCall(c *ssa.Value, which int64, t *types.Type) *ssa.Value { |
| aux := c.Aux.(*ssa.AuxCall) |
| pa := aux.ParamAssignmentForResult(which) |
| // TODO(register args) determine if in-memory TypeOK is better loaded early from SelectNAddr or later when SelectN is expanded. |
| // SelectN is better for pattern-matching and possible call-aware analysis we might want to do in the future. |
| if len(pa.Registers) == 0 && !TypeOK(t) { |
| addr := s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), which, c) |
| return s.rawLoad(t, addr) |
| } |
| return s.newValue1I(ssa.OpSelectN, t, which, c) |
| } |
| |
| func (s *state) resultAddrOfCall(c *ssa.Value, which int64, t *types.Type) *ssa.Value { |
| aux := c.Aux.(*ssa.AuxCall) |
| pa := aux.ParamAssignmentForResult(which) |
| if len(pa.Registers) == 0 { |
| return s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), which, c) |
| } |
| _, addr := s.temp(c.Pos, t) |
| rval := s.newValue1I(ssa.OpSelectN, t, which, c) |
| s.vars[memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, addr, rval, s.mem(), false) |
| return addr |
| } |
| |
| // append converts an OAPPEND node to SSA. |
| // If inplace is false, it converts the OAPPEND expression n to an ssa.Value, |
| // adds it to s, and returns the Value. |
| // If inplace is true, it writes the result of the OAPPEND expression n |
| // back to the slice being appended to, and returns nil. |
| // inplace MUST be set to false if the slice can be SSA'd. |
| func (s *state) append(n *ir.CallExpr, inplace bool) *ssa.Value { |
| // If inplace is false, process as expression "append(s, e1, e2, e3)": |
| // |
| // ptr, len, cap := s |
| // newlen := len + 3 |
| // if newlen > cap { |
| // ptr, len, cap = growslice(s, newlen) |
| // newlen = len + 3 // recalculate to avoid a spill |
| // } |
| // // with write barriers, if needed: |
| // *(ptr+len) = e1 |
| // *(ptr+len+1) = e2 |
| // *(ptr+len+2) = e3 |
| // return makeslice(ptr, newlen, cap) |
| // |
| // |
| // If inplace is true, process as statement "s = append(s, e1, e2, e3)": |
| // |
| // a := &s |
| // ptr, len, cap := s |
| // newlen := len + 3 |
| // if uint(newlen) > uint(cap) { |
| // newptr, len, newcap = growslice(ptr, len, cap, newlen) |
| // vardef(a) // if necessary, advise liveness we are writing a new a |
| // *a.cap = newcap // write before ptr to avoid a spill |
| // *a.ptr = newptr // with write barrier |
| // } |
| // newlen = len + 3 // recalculate to avoid a spill |
| // *a.len = newlen |
| // // with write barriers, if needed: |
| // *(ptr+len) = e1 |
| // *(ptr+len+1) = e2 |
| // *(ptr+len+2) = e3 |
| |
| et := n.Type().Elem() |
| pt := types.NewPtr(et) |
| |
| // Evaluate slice |
| sn := n.Args[0] // the slice node is the first in the list |
| |
| var slice, addr *ssa.Value |
| if inplace { |
| addr = s.addr(sn) |
| slice = s.load(n.Type(), addr) |
| } else { |
| slice = s.expr(sn) |
| } |
| |
| // Allocate new blocks |
| grow := s.f.NewBlock(ssa.BlockPlain) |
| assign := s.f.NewBlock(ssa.BlockPlain) |
| |
| // Decide if we need to grow |
| nargs := int64(len(n.Args) - 1) |
| p := s.newValue1(ssa.OpSlicePtr, pt, slice) |
| l := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], slice) |
| c := s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], slice) |
| nl := s.newValue2(s.ssaOp(ir.OADD, types.Types[types.TINT]), types.Types[types.TINT], l, s.constInt(types.Types[types.TINT], nargs)) |
| |
| cmp := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT]), types.Types[types.TBOOL], c, nl) |
| s.vars[ptrVar] = p |
| |
| if !inplace { |
| s.vars[newlenVar] = nl |
| s.vars[capVar] = c |
| } else { |
| s.vars[lenVar] = l |
| } |
| |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Likely = ssa.BranchUnlikely |
| b.SetControl(cmp) |
| b.AddEdgeTo(grow) |
| b.AddEdgeTo(assign) |
| |
| // Call growslice |
| s.startBlock(grow) |
| taddr := s.expr(n.X) |
| r := s.rtcall(ir.Syms.Growslice, true, []*types.Type{pt, types.Types[types.TINT], types.Types[types.TINT]}, taddr, p, l, c, nl) |
| |
| if inplace { |
| if sn.Op() == ir.ONAME { |
| sn := sn.(*ir.Name) |
| if sn.Class != ir.PEXTERN { |
| // Tell liveness we're about to build a new slice |
| s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem()) |
| } |
| } |
| capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, types.SliceCapOffset, addr) |
| s.store(types.Types[types.TINT], capaddr, r[2]) |
| s.store(pt, addr, r[0]) |
| // load the value we just stored to avoid having to spill it |
| s.vars[ptrVar] = s.load(pt, addr) |
| s.vars[lenVar] = r[1] // avoid a spill in the fast path |
| } else { |
| s.vars[ptrVar] = r[0] |
| s.vars[newlenVar] = s.newValue2(s.ssaOp(ir.OADD, types.Types[types.TINT]), types.Types[types.TINT], r[1], s.constInt(types.Types[types.TINT], nargs)) |
| s.vars[capVar] = r[2] |
| } |
| |
| b = s.endBlock() |
| b.AddEdgeTo(assign) |
| |
| // assign new elements to slots |
| s.startBlock(assign) |
| |
| if inplace { |
| l = s.variable(lenVar, types.Types[types.TINT]) // generates phi for len |
| nl = s.newValue2(s.ssaOp(ir.OADD, types.Types[types.TINT]), types.Types[types.TINT], l, s.constInt(types.Types[types.TINT], nargs)) |
| lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, types.SliceLenOffset, addr) |
| s.store(types.Types[types.TINT], lenaddr, nl) |
| } |
| |
| // Evaluate args |
| type argRec struct { |
| // if store is true, we're appending the value v. If false, we're appending the |
| // value at *v. |
| v *ssa.Value |
| store bool |
| } |
| args := make([]argRec, 0, nargs) |
| for _, n := range n.Args[1:] { |
| if TypeOK(n.Type()) { |
| args = append(args, argRec{v: s.expr(n), store: true}) |
| } else { |
| v := s.addr(n) |
| args = append(args, argRec{v: v}) |
| } |
| } |
| |
| p = s.variable(ptrVar, pt) // generates phi for ptr |
| if !inplace { |
| nl = s.variable(newlenVar, types.Types[types.TINT]) // generates phi for nl |
| c = s.variable(capVar, types.Types[types.TINT]) // generates phi for cap |
| } |
| p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l) |
| for i, arg := range args { |
| addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[types.TINT], int64(i))) |
| if arg.store { |
| s.storeType(et, addr, arg.v, 0, true) |
| } else { |
| s.move(et, addr, arg.v) |
| } |
| } |
| |
| delete(s.vars, ptrVar) |
| if inplace { |
| delete(s.vars, lenVar) |
| return nil |
| } |
| delete(s.vars, newlenVar) |
| delete(s.vars, capVar) |
| // make result |
| return s.newValue3(ssa.OpSliceMake, n.Type(), p, nl, c) |
| } |
| |
| // condBranch evaluates the boolean expression cond and branches to yes |
| // if cond is true and no if cond is false. |
| // This function is intended to handle && and || better than just calling |
| // s.expr(cond) and branching on the result. |
| func (s *state) condBranch(cond ir.Node, yes, no *ssa.Block, likely int8) { |
| switch cond.Op() { |
| case ir.OANDAND: |
| cond := cond.(*ir.LogicalExpr) |
| mid := s.f.NewBlock(ssa.BlockPlain) |
| s.stmtList(cond.Init()) |
| s.condBranch(cond.X, mid, no, max8(likely, 0)) |
| s.startBlock(mid) |
| s.condBranch(cond.Y, yes, no, likely) |
| return |
| // Note: if likely==1, then both recursive calls pass 1. |
| // If likely==-1, then we don't have enough information to decide |
| // whether the first branch is likely or not. So we pass 0 for |
| // the likeliness of the first branch. |
| // TODO: have the frontend give us branch prediction hints for |
| // OANDAND and OOROR nodes (if it ever has such info). |
| case ir.OOROR: |
| cond := cond.(*ir.LogicalExpr) |
| mid := s.f.NewBlock(ssa.BlockPlain) |
| s.stmtList(cond.Init()) |
| s.condBranch(cond.X, yes, mid, min8(likely, 0)) |
| s.startBlock(mid) |
| s.condBranch(cond.Y, yes, no, likely) |
| return |
| // Note: if likely==-1, then both recursive calls pass -1. |
| // If likely==1, then we don't have enough info to decide |
| // the likelihood of the first branch. |
| case ir.ONOT: |
| cond := cond.(*ir.UnaryExpr) |
| s.stmtList(cond.Init()) |
| s.condBranch(cond.X, no, yes, -likely) |
| return |
| case ir.OCONVNOP: |
| cond := cond.(*ir.ConvExpr) |
| s.stmtList(cond.Init()) |
| s.condBranch(cond.X, yes, no, likely) |
| return |
| } |
| c := s.expr(cond) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(c) |
| b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness |
| b.AddEdgeTo(yes) |
| b.AddEdgeTo(no) |
| } |
| |
| type skipMask uint8 |
| |
| const ( |
| skipPtr skipMask = 1 << iota |
| skipLen |
| skipCap |
| ) |
| |
| // assign does left = right. |
| // Right has already been evaluated to ssa, left has not. |
| // If deref is true, then we do left = *right instead (and right has already been nil-checked). |
| // If deref is true and right == nil, just do left = 0. |
| // skip indicates assignments (at the top level) that can be avoided. |
| func (s *state) assign(left ir.Node, right *ssa.Value, deref bool, skip skipMask) { |
| if left.Op() == ir.ONAME && ir.IsBlank(left) { |
| return |
| } |
| t := left.Type() |
| types.CalcSize(t) |
| if s.canSSA(left) { |
| if deref { |
| s.Fatalf("can SSA LHS %v but not RHS %s", left, right) |
| } |
| if left.Op() == ir.ODOT { |
| // We're assigning to a field of an ssa-able value. |
| // We need to build a new structure with the new value for the |
| // field we're assigning and the old values for the other fields. |
| // For instance: |
| // type T struct {a, b, c int} |
| // var T x |
| // x.b = 5 |
| // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} |
| |
| // Grab information about the structure type. |
| left := left.(*ir.SelectorExpr) |
| t := left.X.Type() |
| nf := t.NumFields() |
| idx := fieldIdx(left) |
| |
| // Grab old value of structure. |
| old := s.expr(left.X) |
| |
| // Make new structure. |
| new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) |
| |
| // Add fields as args. |
| for i := 0; i < nf; i++ { |
| if i == idx { |
| new.AddArg(right) |
| } else { |
| new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) |
| } |
| } |
| |
| // Recursively assign the new value we've made to the base of the dot op. |
| s.assign(left.X, new, false, 0) |
| // TODO: do we need to update named values here? |
| return |
| } |
| if left.Op() == ir.OINDEX && left.(*ir.IndexExpr).X.Type().IsArray() { |
| left := left.(*ir.IndexExpr) |
| s.pushLine(left.Pos()) |
| defer s.popLine() |
| // We're assigning to an element of an ssa-able array. |
| // a[i] = v |
| t := left.X.Type() |
| n := t.NumElem() |
| |
| i := s.expr(left.Index) // index |
| if n == 0 { |
| // The bounds check must fail. Might as well |
| // ignore the actual index and just use zeros. |
| z := s.constInt(types.Types[types.TINT], 0) |
| s.boundsCheck(z, z, ssa.BoundsIndex, false) |
| return |
| } |
| if n != 1 { |
| s.Fatalf("assigning to non-1-length array") |
| } |
| // Rewrite to a = [1]{v} |
| len := s.constInt(types.Types[types.TINT], 1) |
| s.boundsCheck(i, len, ssa.BoundsIndex, false) // checks i == 0 |
| v := s.newValue1(ssa.OpArrayMake1, t, right) |
| s.assign(left.X, v, false, 0) |
| return |
| } |
| left := left.(*ir.Name) |
| // Update variable assignment. |
| s.vars[left] = right |
| s.addNamedValue(left, right) |
| return |
| } |
| |
| // If this assignment clobbers an entire local variable, then emit |
| // OpVarDef so liveness analysis knows the variable is redefined. |
| if base, ok := clobberBase(left).(*ir.Name); ok && base.OnStack() && skip == 0 { |
| s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, base, s.mem(), !ir.IsAutoTmp(base)) |
| } |
| |
| // Left is not ssa-able. Compute its address. |
| addr := s.addr(left) |
| if ir.IsReflectHeaderDataField(left) { |
| // Package unsafe's documentation says storing pointers into |
| // reflect.SliceHeader and reflect.StringHeader's Data fields |
| // is valid, even though they have type uintptr (#19168). |
| // Mark it pointer type to signal the writebarrier pass to |
| // insert a write barrier. |
| t = types.Types[types.TUNSAFEPTR] |
| } |
| if deref { |
| // Treat as a mem->mem move. |
| if right == nil { |
| s.zero(t, addr) |
| } else { |
| s.move(t, addr, right) |
| } |
| return |
| } |
| // Treat as a store. |
| s.storeType(t, addr, right, skip, !ir.IsAutoTmp(left)) |
| } |
| |
| // zeroVal returns the zero value for type t. |
| func (s *state) zeroVal(t *types.Type) *ssa.Value { |
| switch { |
| case t.IsInteger(): |
| switch t.Size() { |
| case 1: |
| return s.constInt8(t, 0) |
| case 2: |
| return s.constInt16(t, 0) |
| case 4: |
| return s.constInt32(t, 0) |
| case 8: |
| return s.constInt64(t, 0) |
| default: |
| s.Fatalf("bad sized integer type %v", t) |
| } |
| case t.IsFloat(): |
| switch t.Size() { |
| case 4: |
| return s.constFloat32(t, 0) |
| case 8: |
| return s.constFloat64(t, 0) |
| default: |
| s.Fatalf("bad sized float type %v", t) |
| } |
| case t.IsComplex(): |
| switch t.Size() { |
| case 8: |
| z := s.constFloat32(types.Types[types.TFLOAT32], 0) |
| return s.entryNewValue2(ssa.OpComplexMake, t, z, z) |
| case 16: |
| z := s.constFloat64(types.Types[types.TFLOAT64], 0) |
| return s.entryNewValue2(ssa.OpComplexMake, t, z, z) |
| default: |
| s.Fatalf("bad sized complex type %v", t) |
| } |
| |
| case t.IsString(): |
| return s.constEmptyString(t) |
| case t.IsPtrShaped(): |
| return s.constNil(t) |
| case t.IsBoolean(): |
| return s.constBool(false) |
| case t.IsInterface(): |
| return s.constInterface(t) |
| case t.IsSlice(): |
| return s.constSlice(t) |
| case t.IsStruct(): |
| n := t.NumFields() |
| v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) |
| for i := 0; i < n; i++ { |
| v.AddArg(s.zeroVal(t.FieldType(i))) |
| } |
| return v |
| case t.IsArray(): |
| switch t.NumElem() { |
| case 0: |
| return s.entryNewValue0(ssa.OpArrayMake0, t) |
| case 1: |
| return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem())) |
| } |
| } |
| s.Fatalf("zero for type %v not implemented", t) |
| return nil |
| } |
| |
| type callKind int8 |
| |
| const ( |
| callNormal callKind = iota |
| callDefer |
| callDeferStack |
| callGo |
| callTail |
| ) |
| |
| type sfRtCallDef struct { |
| rtfn *obj.LSym |
| rtype types.Kind |
| } |
| |
| var softFloatOps map[ssa.Op]sfRtCallDef |
| |
| func softfloatInit() { |
| // Some of these operations get transformed by sfcall. |
| softFloatOps = map[ssa.Op]sfRtCallDef{ |
| ssa.OpAdd32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fadd32"), types.TFLOAT32}, |
| ssa.OpAdd64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fadd64"), types.TFLOAT64}, |
| ssa.OpSub32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fadd32"), types.TFLOAT32}, |
| ssa.OpSub64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fadd64"), types.TFLOAT64}, |
| ssa.OpMul32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fmul32"), types.TFLOAT32}, |
| ssa.OpMul64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fmul64"), types.TFLOAT64}, |
| ssa.OpDiv32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fdiv32"), types.TFLOAT32}, |
| ssa.OpDiv64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fdiv64"), types.TFLOAT64}, |
| |
| ssa.OpEq64F: sfRtCallDef{typecheck.LookupRuntimeFunc("feq64"), types.TBOOL}, |
| ssa.OpEq32F: sfRtCallDef{typecheck.LookupRuntimeFunc("feq32"), types.TBOOL}, |
| ssa.OpNeq64F: sfRtCallDef{typecheck.LookupRuntimeFunc("feq64"), types.TBOOL}, |
| ssa.OpNeq32F: sfRtCallDef{typecheck.LookupRuntimeFunc("feq32"), types.TBOOL}, |
| ssa.OpLess64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fgt64"), types.TBOOL}, |
| ssa.OpLess32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fgt32"), types.TBOOL}, |
| ssa.OpLeq64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fge64"), types.TBOOL}, |
| ssa.OpLeq32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fge32"), types.TBOOL}, |
| |
| ssa.OpCvt32to32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fint32to32"), types.TFLOAT32}, |
| ssa.OpCvt32Fto32: sfRtCallDef{typecheck.LookupRuntimeFunc("f32toint32"), types.TINT32}, |
| ssa.OpCvt64to32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fint64to32"), types.TFLOAT32}, |
| ssa.OpCvt32Fto64: sfRtCallDef{typecheck.LookupRuntimeFunc("f32toint64"), types.TINT64}, |
| ssa.OpCvt64Uto32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fuint64to32"), types.TFLOAT32}, |
| ssa.OpCvt32Fto64U: sfRtCallDef{typecheck.LookupRuntimeFunc("f32touint64"), types.TUINT64}, |
| ssa.OpCvt32to64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fint32to64"), types.TFLOAT64}, |
| ssa.OpCvt64Fto32: sfRtCallDef{typecheck.LookupRuntimeFunc("f64toint32"), types.TINT32}, |
| ssa.OpCvt64to64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fint64to64"), types.TFLOAT64}, |
| ssa.OpCvt64Fto64: sfRtCallDef{typecheck.LookupRuntimeFunc("f64toint64"), types.TINT64}, |
| ssa.OpCvt64Uto64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fuint64to64"), types.TFLOAT64}, |
| ssa.OpCvt64Fto64U: sfRtCallDef{typecheck.LookupRuntimeFunc("f64touint64"), types.TUINT64}, |
| ssa.OpCvt32Fto64F: sfRtCallDef{typecheck.LookupRuntimeFunc("f32to64"), types.TFLOAT64}, |
| ssa.OpCvt64Fto32F: sfRtCallDef{typecheck.LookupRuntimeFunc("f64to32"), types.TFLOAT32}, |
| } |
| } |
| |
| // TODO: do not emit sfcall if operation can be optimized to constant in later |
| // opt phase |
| func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) { |
| f2i := func(t *types.Type) *types.Type { |
| switch t.Kind() { |
| case types.TFLOAT32: |
| return types.Types[types.TUINT32] |
| case types.TFLOAT64: |
| return types.Types[types.TUINT64] |
| } |
| return t |
| } |
| |
| if callDef, ok := softFloatOps[op]; ok { |
| switch op { |
| case ssa.OpLess32F, |
| ssa.OpLess64F, |
| ssa.OpLeq32F, |
| ssa.OpLeq64F: |
| args[0], args[1] = args[1], args[0] |
| case ssa.OpSub32F, |
| ssa.OpSub64F: |
| args[1] = s.newValue1(s.ssaOp(ir.ONEG, types.Types[callDef.rtype]), args[1].Type, args[1]) |
| } |
| |
| // runtime functions take uints for floats and returns uints. |
| // Convert to uints so we use the right calling convention. |
| for i, a := range args { |
| if a.Type.IsFloat() { |
| args[i] = s.newValue1(ssa.OpCopy, f2i(a.Type), a) |
| } |
| } |
| |
| rt := types.Types[callDef.rtype] |
| result := s.rtcall(callDef.rtfn, true, []*types.Type{f2i(rt)}, args...)[0] |
| if rt.IsFloat() { |
| result = s.newValue1(ssa.OpCopy, rt, result) |
| } |
| if op == ssa.OpNeq32F || op == ssa.OpNeq64F { |
| result = s.newValue1(ssa.OpNot, result.Type, result) |
| } |
| return result, true |
| } |
| return nil, false |
| } |
| |
| var intrinsics map[intrinsicKey]intrinsicBuilder |
| |
| // An intrinsicBuilder converts a call node n into an ssa value that |
| // implements that call as an intrinsic. args is a list of arguments to the func. |
| type intrinsicBuilder func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value |
| |
| type intrinsicKey struct { |
| arch *sys.Arch |
| pkg string |
| fn string |
| } |
| |
| func InitTables() { |
| intrinsics = map[intrinsicKey]intrinsicBuilder{} |
| |
| var all []*sys.Arch |
| var p4 []*sys.Arch |
| var p8 []*sys.Arch |
| var lwatomics []*sys.Arch |
| for _, a := range &sys.Archs { |
| all = append(all, a) |
| if a.PtrSize == 4 { |
| p4 = append(p4, a) |
| } else { |
| p8 = append(p8, a) |
| } |
| if a.Family != sys.PPC64 { |
| lwatomics = append(lwatomics, a) |
| } |
| } |
| |
| // add adds the intrinsic b for pkg.fn for the given list of architectures. |
| add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) { |
| for _, a := range archs { |
| intrinsics[intrinsicKey{a, pkg, fn}] = b |
| } |
| } |
| // addF does the same as add but operates on architecture families. |
| addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) { |
| m := 0 |
| for _, f := range archFamilies { |
| if f >= 32 { |
| panic("too many architecture families") |
| } |
| m |= 1 << uint(f) |
| } |
| for _, a := range all { |
| if m>>uint(a.Family)&1 != 0 { |
| intrinsics[intrinsicKey{a, pkg, fn}] = b |
| } |
| } |
| } |
| // alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists. |
| alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) { |
| aliased := false |
| for _, a := range archs { |
| if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok { |
| intrinsics[intrinsicKey{a, pkg, fn}] = b |
| aliased = true |
| } |
| } |
| if !aliased { |
| panic(fmt.Sprintf("attempted to alias undefined intrinsic: %s.%s", pkg, fn)) |
| } |
| } |
| |
| /******** runtime ********/ |
| if !base.Flag.Cfg.Instrumenting { |
| add("runtime", "slicebytetostringtmp", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| // Compiler frontend optimizations emit OBYTES2STRTMP nodes |
| // for the backend instead of slicebytetostringtmp calls |
| // when not instrumenting. |
| return s.newValue2(ssa.OpStringMake, n.Type(), args[0], args[1]) |
| }, |
| all...) |
| } |
| addF("runtime/internal/math", "MulUintptr", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if s.config.PtrSize == 4 { |
| return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1]) |
| } |
| return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1]) |
| }, |
| sys.AMD64, sys.I386, sys.MIPS64, sys.RISCV64) |
| add("runtime", "KeepAlive", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0]) |
| s.vars[memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem()) |
| return nil |
| }, |
| all...) |
| add("runtime", "getclosureptr", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr) |
| }, |
| all...) |
| |
| add("runtime", "getcallerpc", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr) |
| }, |
| all...) |
| |
| add("runtime", "getcallersp", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr) |
| }, |
| all...) |
| |
| addF("runtime", "publicationBarrier", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue1(ssa.OpPubBarrier, types.TypeMem, s.mem()) |
| return nil |
| }, |
| sys.ARM64) |
| |
| /******** runtime/internal/sys ********/ |
| addF("runtime/internal/sys", "Ctz32", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) |
| addF("runtime/internal/sys", "Ctz64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) |
| addF("runtime/internal/sys", "Bswap32", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBswap32, types.Types[types.TUINT32], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) |
| addF("runtime/internal/sys", "Bswap64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBswap64, types.Types[types.TUINT64], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) |
| |
| /****** Prefetch ******/ |
| makePrefetchFunc := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue2(op, types.TypeMem, args[0], s.mem()) |
| return nil |
| } |
| } |
| |
| // Make Prefetch intrinsics for supported platforms |
| // On the unsupported platforms stub function will be eliminated |
| addF("runtime/internal/sys", "Prefetch", makePrefetchFunc(ssa.OpPrefetchCache), |
| sys.AMD64, sys.ARM64, sys.PPC64) |
| addF("runtime/internal/sys", "PrefetchStreamed", makePrefetchFunc(ssa.OpPrefetchCacheStreamed), |
| sys.AMD64, sys.ARM64, sys.PPC64) |
| |
| /******** runtime/internal/atomic ********/ |
| addF("runtime/internal/atomic", "Load", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v) |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Load8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoad8, types.NewTuple(types.Types[types.TUINT8], types.TypeMem), args[0], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT8], v) |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Load64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v) |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "LoadAcq", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v) |
| }, |
| sys.PPC64, sys.S390X) |
| addF("runtime/internal/atomic", "LoadAcq64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoadAcq64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v) |
| }, |
| sys.PPC64) |
| addF("runtime/internal/atomic", "Loadp", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v) |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| |
| addF("runtime/internal/atomic", "Store", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Store8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicStore8, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Store64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "StorepNoWB", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "StoreRel", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.PPC64, sys.S390X) |
| addF("runtime/internal/atomic", "StoreRel64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel64, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.PPC64) |
| |
| addF("runtime/internal/atomic", "Xchg", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v) |
| }, |
| sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Xchg64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v) |
| }, |
| sys.AMD64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| |
| type atomicOpEmitter func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) |
| |
| makeAtomicGuardedIntrinsicARM64 := func(op0, op1 ssa.Op, typ, rtyp types.Kind, emit atomicOpEmitter) intrinsicBuilder { |
| |
| return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| // Target Atomic feature is identified by dynamic detection |
| addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARM64HasATOMICS, s.sb) |
| v := s.load(types.Types[types.TBOOL], addr) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(v) |
| bTrue := s.f.NewBlock(ssa.BlockPlain) |
| bFalse := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bTrue) |
| b.AddEdgeTo(bFalse) |
| b.Likely = ssa.BranchLikely |
| |
| // We have atomic instructions - use it directly. |
| s.startBlock(bTrue) |
| emit(s, n, args, op1, typ) |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Use original instruction sequence. |
| s.startBlock(bFalse) |
| emit(s, n, args, op0, typ) |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Merge results. |
| s.startBlock(bEnd) |
| if rtyp == types.TNIL { |
| return nil |
| } else { |
| return s.variable(n, types.Types[rtyp]) |
| } |
| } |
| } |
| |
| atomicXchgXaddEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) { |
| v := s.newValue3(op, types.NewTuple(types.Types[typ], types.TypeMem), args[0], args[1], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v) |
| } |
| addF("runtime/internal/atomic", "Xchg", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange32, ssa.OpAtomicExchange32Variant, types.TUINT32, types.TUINT32, atomicXchgXaddEmitterARM64), |
| sys.ARM64) |
| addF("runtime/internal/atomic", "Xchg64", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange64, ssa.OpAtomicExchange64Variant, types.TUINT64, types.TUINT64, atomicXchgXaddEmitterARM64), |
| sys.ARM64) |
| |
| addF("runtime/internal/atomic", "Xadd", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v) |
| }, |
| sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Xadd64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v) |
| }, |
| sys.AMD64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| |
| addF("runtime/internal/atomic", "Xadd", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, types.TUINT32, types.TUINT32, atomicXchgXaddEmitterARM64), |
| sys.ARM64) |
| addF("runtime/internal/atomic", "Xadd64", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, types.TUINT64, types.TUINT64, atomicXchgXaddEmitterARM64), |
| sys.ARM64) |
| |
| addF("runtime/internal/atomic", "Cas", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v) |
| }, |
| sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Cas64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v) |
| }, |
| sys.AMD64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "CasRel", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v) |
| }, |
| sys.PPC64) |
| |
| atomicCasEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) { |
| v := s.newValue4(op, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) |
| s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) |
| s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v) |
| } |
| |
| addF("runtime/internal/atomic", "Cas", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap32, ssa.OpAtomicCompareAndSwap32Variant, types.TUINT32, types.TBOOL, atomicCasEmitterARM64), |
| sys.ARM64) |
| addF("runtime/internal/atomic", "Cas64", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap64, ssa.OpAtomicCompareAndSwap64Variant, types.TUINT64, types.TBOOL, atomicCasEmitterARM64), |
| sys.ARM64) |
| |
| addF("runtime/internal/atomic", "And8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "And", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd32, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Or8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("runtime/internal/atomic", "Or", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| s.vars[memVar] = s.newValue3(ssa.OpAtomicOr32, types.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, |
| sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X) |
| |
| atomicAndOrEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) { |
| s.vars[memVar] = s.newValue3(op, types.TypeMem, args[0], args[1], s.mem()) |
| } |
| |
| addF("runtime/internal/atomic", "And8", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd8, ssa.OpAtomicAnd8Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64), |
| sys.ARM64) |
| addF("runtime/internal/atomic", "And", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd32, ssa.OpAtomicAnd32Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64), |
| sys.ARM64) |
| addF("runtime/internal/atomic", "Or8", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr8, ssa.OpAtomicOr8Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64), |
| sys.ARM64) |
| addF("runtime/internal/atomic", "Or", |
| makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr32, ssa.OpAtomicOr32Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64), |
| sys.ARM64) |
| |
| // Aliases for atomic load operations |
| alias("runtime/internal/atomic", "Loadint32", "runtime/internal/atomic", "Load", all...) |
| alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...) |
| alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...) |
| alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...) |
| alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...) |
| alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...) |
| alias("runtime/internal/atomic", "LoadAcq", "runtime/internal/atomic", "Load", lwatomics...) |
| alias("runtime/internal/atomic", "LoadAcq64", "runtime/internal/atomic", "Load64", lwatomics...) |
| alias("runtime/internal/atomic", "LoadAcquintptr", "runtime/internal/atomic", "LoadAcq", p4...) |
| alias("sync", "runtime_LoadAcquintptr", "runtime/internal/atomic", "LoadAcq", p4...) // linknamed |
| alias("runtime/internal/atomic", "LoadAcquintptr", "runtime/internal/atomic", "LoadAcq64", p8...) |
| alias("sync", "runtime_LoadAcquintptr", "runtime/internal/atomic", "LoadAcq64", p8...) // linknamed |
| |
| // Aliases for atomic store operations |
| alias("runtime/internal/atomic", "Storeint32", "runtime/internal/atomic", "Store", all...) |
| alias("runtime/internal/atomic", "Storeint64", "runtime/internal/atomic", "Store64", all...) |
| alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...) |
| alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...) |
| alias("runtime/internal/atomic", "StoreRel", "runtime/internal/atomic", "Store", lwatomics...) |
| alias("runtime/internal/atomic", "StoreRel64", "runtime/internal/atomic", "Store64", lwatomics...) |
| alias("runtime/internal/atomic", "StoreReluintptr", "runtime/internal/atomic", "StoreRel", p4...) |
| alias("sync", "runtime_StoreReluintptr", "runtime/internal/atomic", "StoreRel", p4...) // linknamed |
| alias("runtime/internal/atomic", "StoreReluintptr", "runtime/internal/atomic", "StoreRel64", p8...) |
| alias("sync", "runtime_StoreReluintptr", "runtime/internal/atomic", "StoreRel64", p8...) // linknamed |
| |
| // Aliases for atomic swap operations |
| alias("runtime/internal/atomic", "Xchgint32", "runtime/internal/atomic", "Xchg", all...) |
| alias("runtime/internal/atomic", "Xchgint64", "runtime/internal/atomic", "Xchg64", all...) |
| alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...) |
| alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...) |
| |
| // Aliases for atomic add operations |
| alias("runtime/internal/atomic", "Xaddint32", "runtime/internal/atomic", "Xadd", all...) |
| alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...) |
| alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...) |
| alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...) |
| |
| // Aliases for atomic CAS operations |
| alias("runtime/internal/atomic", "Casint32", "runtime/internal/atomic", "Cas", all...) |
| alias("runtime/internal/atomic", "Casint64", "runtime/internal/atomic", "Cas64", all...) |
| alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...) |
| alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...) |
| alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...) |
| alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...) |
| alias("runtime/internal/atomic", "CasRel", "runtime/internal/atomic", "Cas", lwatomics...) |
| |
| /******** math ********/ |
| addF("math", "Sqrt", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpSqrt, types.Types[types.TFLOAT64], args[0]) |
| }, |
| sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm) |
| addF("math", "Trunc", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpTrunc, types.Types[types.TFLOAT64], args[0]) |
| }, |
| sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) |
| addF("math", "Ceil", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCeil, types.Types[types.TFLOAT64], args[0]) |
| }, |
| sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) |
| addF("math", "Floor", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpFloor, types.Types[types.TFLOAT64], args[0]) |
| }, |
| sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) |
| addF("math", "Round", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpRound, types.Types[types.TFLOAT64], args[0]) |
| }, |
| sys.ARM64, sys.PPC64, sys.S390X) |
| addF("math", "RoundToEven", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpRoundToEven, types.Types[types.TFLOAT64], args[0]) |
| }, |
| sys.ARM64, sys.S390X, sys.Wasm) |
| addF("math", "Abs", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpAbs, types.Types[types.TFLOAT64], args[0]) |
| }, |
| sys.ARM64, sys.ARM, sys.PPC64, sys.RISCV64, sys.Wasm) |
| addF("math", "Copysign", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpCopysign, types.Types[types.TFLOAT64], args[0], args[1]) |
| }, |
| sys.PPC64, sys.RISCV64, sys.Wasm) |
| addF("math", "FMA", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2]) |
| }, |
| sys.ARM64, sys.PPC64, sys.RISCV64, sys.S390X) |
| addF("math", "FMA", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if !s.config.UseFMA { |
| s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] |
| return s.variable(n, types.Types[types.TFLOAT64]) |
| } |
| |
| if buildcfg.GOAMD64 >= 3 { |
| return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2]) |
| } |
| |
| v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasFMA) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(v) |
| bTrue := s.f.NewBlock(ssa.BlockPlain) |
| bFalse := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bTrue) |
| b.AddEdgeTo(bFalse) |
| b.Likely = ssa.BranchLikely // >= haswell cpus are common |
| |
| // We have the intrinsic - use it directly. |
| s.startBlock(bTrue) |
| s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2]) |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Call the pure Go version. |
| s.startBlock(bFalse) |
| s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Merge results. |
| s.startBlock(bEnd) |
| return s.variable(n, types.Types[types.TFLOAT64]) |
| }, |
| sys.AMD64) |
| addF("math", "FMA", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if !s.config.UseFMA { |
| s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] |
| return s.variable(n, types.Types[types.TFLOAT64]) |
| } |
| addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARMHasVFPv4, s.sb) |
| v := s.load(types.Types[types.TBOOL], addr) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(v) |
| bTrue := s.f.NewBlock(ssa.BlockPlain) |
| bFalse := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bTrue) |
| b.AddEdgeTo(bFalse) |
| b.Likely = ssa.BranchLikely |
| |
| // We have the intrinsic - use it directly. |
| s.startBlock(bTrue) |
| s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2]) |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Call the pure Go version. |
| s.startBlock(bFalse) |
| s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Merge results. |
| s.startBlock(bEnd) |
| return s.variable(n, types.Types[types.TFLOAT64]) |
| }, |
| sys.ARM) |
| |
| makeRoundAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if buildcfg.GOAMD64 >= 2 { |
| return s.newValue1(op, types.Types[types.TFLOAT64], args[0]) |
| } |
| |
| v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasSSE41) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(v) |
| bTrue := s.f.NewBlock(ssa.BlockPlain) |
| bFalse := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bTrue) |
| b.AddEdgeTo(bFalse) |
| b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays |
| |
| // We have the intrinsic - use it directly. |
| s.startBlock(bTrue) |
| s.vars[n] = s.newValue1(op, types.Types[types.TFLOAT64], args[0]) |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Call the pure Go version. |
| s.startBlock(bFalse) |
| s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Merge results. |
| s.startBlock(bEnd) |
| return s.variable(n, types.Types[types.TFLOAT64]) |
| } |
| } |
| addF("math", "RoundToEven", |
| makeRoundAMD64(ssa.OpRoundToEven), |
| sys.AMD64) |
| addF("math", "Floor", |
| makeRoundAMD64(ssa.OpFloor), |
| sys.AMD64) |
| addF("math", "Ceil", |
| makeRoundAMD64(ssa.OpCeil), |
| sys.AMD64) |
| addF("math", "Trunc", |
| makeRoundAMD64(ssa.OpTrunc), |
| sys.AMD64) |
| |
| /******** math/bits ********/ |
| addF("math/bits", "TrailingZeros64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) |
| addF("math/bits", "TrailingZeros32", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) |
| addF("math/bits", "TrailingZeros16", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0]) |
| c := s.constInt32(types.Types[types.TUINT32], 1<<16) |
| y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c) |
| return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y) |
| }, |
| sys.MIPS) |
| addF("math/bits", "TrailingZeros16", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCtz16, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm) |
| addF("math/bits", "TrailingZeros16", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0]) |
| c := s.constInt64(types.Types[types.TUINT64], 1<<16) |
| y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c) |
| return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y) |
| }, |
| sys.S390X, sys.PPC64) |
| addF("math/bits", "TrailingZeros8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0]) |
| c := s.constInt32(types.Types[types.TUINT32], 1<<8) |
| y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c) |
| return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y) |
| }, |
| sys.MIPS) |
| addF("math/bits", "TrailingZeros8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCtz8, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.ARM, sys.ARM64, sys.Wasm) |
| addF("math/bits", "TrailingZeros8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0]) |
| c := s.constInt64(types.Types[types.TUINT64], 1<<8) |
| y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c) |
| return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y) |
| }, |
| sys.S390X) |
| alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...) |
| alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...) |
| // ReverseBytes inlines correctly, no need to intrinsify it. |
| // ReverseBytes16 lowers to a rotate, no need for anything special here. |
| addF("math/bits", "Len64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) |
| addF("math/bits", "Len32", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.PPC64) |
| addF("math/bits", "Len32", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if s.config.PtrSize == 4 { |
| return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0]) |
| } |
| x := s.newValue1(ssa.OpZeroExt32to64, types.Types[types.TUINT64], args[0]) |
| return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x) |
| }, |
| sys.ARM, sys.S390X, sys.MIPS, sys.Wasm) |
| addF("math/bits", "Len16", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if s.config.PtrSize == 4 { |
| x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0]) |
| return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x) |
| } |
| x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0]) |
| return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x) |
| }, |
| sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) |
| addF("math/bits", "Len16", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitLen16, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64) |
| addF("math/bits", "Len8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if s.config.PtrSize == 4 { |
| x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0]) |
| return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x) |
| } |
| x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0]) |
| return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x) |
| }, |
| sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) |
| addF("math/bits", "Len8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitLen8, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64) |
| addF("math/bits", "Len", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if s.config.PtrSize == 4 { |
| return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0]) |
| } |
| return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0]) |
| }, |
| sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) |
| // LeadingZeros is handled because it trivially calls Len. |
| addF("math/bits", "Reverse64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0]) |
| }, |
| sys.ARM64) |
| addF("math/bits", "Reverse32", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitRev32, types.Types[types.TINT], args[0]) |
| }, |
| sys.ARM64) |
| addF("math/bits", "Reverse16", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitRev16, types.Types[types.TINT], args[0]) |
| }, |
| sys.ARM64) |
| addF("math/bits", "Reverse8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitRev8, types.Types[types.TINT], args[0]) |
| }, |
| sys.ARM64) |
| addF("math/bits", "Reverse", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0]) |
| }, |
| sys.ARM64) |
| addF("math/bits", "RotateLeft8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpRotateLeft8, types.Types[types.TUINT8], args[0], args[1]) |
| }, |
| sys.AMD64) |
| addF("math/bits", "RotateLeft16", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpRotateLeft16, types.Types[types.TUINT16], args[0], args[1]) |
| }, |
| sys.AMD64) |
| addF("math/bits", "RotateLeft32", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpRotateLeft32, types.Types[types.TUINT32], args[0], args[1]) |
| }, |
| sys.AMD64, sys.ARM, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm) |
| addF("math/bits", "RotateLeft64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpRotateLeft64, types.Types[types.TUINT64], args[0], args[1]) |
| }, |
| sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm) |
| alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...) |
| |
| makeOnesCountAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| if buildcfg.GOAMD64 >= 2 { |
| return s.newValue1(op, types.Types[types.TINT], args[0]) |
| } |
| |
| v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasPOPCNT) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(v) |
| bTrue := s.f.NewBlock(ssa.BlockPlain) |
| bFalse := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bTrue) |
| b.AddEdgeTo(bFalse) |
| b.Likely = ssa.BranchLikely // most machines have popcnt nowadays |
| |
| // We have the intrinsic - use it directly. |
| s.startBlock(bTrue) |
| s.vars[n] = s.newValue1(op, types.Types[types.TINT], args[0]) |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Call the pure Go version. |
| s.startBlock(bFalse) |
| s.vars[n] = s.callResult(n, callNormal) // types.Types[TINT] |
| s.endBlock().AddEdgeTo(bEnd) |
| |
| // Merge results. |
| s.startBlock(bEnd) |
| return s.variable(n, types.Types[types.TINT]) |
| } |
| } |
| addF("math/bits", "OnesCount64", |
| makeOnesCountAMD64(ssa.OpPopCount64), |
| sys.AMD64) |
| addF("math/bits", "OnesCount64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpPopCount64, types.Types[types.TINT], args[0]) |
| }, |
| sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm) |
| addF("math/bits", "OnesCount32", |
| makeOnesCountAMD64(ssa.OpPopCount32), |
| sys.AMD64) |
| addF("math/bits", "OnesCount32", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpPopCount32, types.Types[types.TINT], args[0]) |
| }, |
| sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm) |
| addF("math/bits", "OnesCount16", |
| makeOnesCountAMD64(ssa.OpPopCount16), |
| sys.AMD64) |
| addF("math/bits", "OnesCount16", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpPopCount16, types.Types[types.TINT], args[0]) |
| }, |
| sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm) |
| addF("math/bits", "OnesCount8", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpPopCount8, types.Types[types.TINT], args[0]) |
| }, |
| sys.S390X, sys.PPC64, sys.Wasm) |
| addF("math/bits", "OnesCount", |
| makeOnesCountAMD64(ssa.OpPopCount64), |
| sys.AMD64) |
| addF("math/bits", "Mul64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1]) |
| }, |
| sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.MIPS64, sys.RISCV64) |
| alias("math/bits", "Mul", "math/bits", "Mul64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchPPC64LE, sys.ArchS390X, sys.ArchMIPS64, sys.ArchMIPS64LE, sys.ArchRISCV64) |
| alias("runtime/internal/math", "Mul64", "math/bits", "Mul64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchPPC64LE, sys.ArchS390X, sys.ArchMIPS64, sys.ArchMIPS64LE, sys.ArchRISCV64) |
| addF("math/bits", "Add64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue3(ssa.OpAdd64carry, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2]) |
| }, |
| sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X) |
| alias("math/bits", "Add", "math/bits", "Add64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchPPC64LE, sys.ArchS390X) |
| addF("math/bits", "Sub64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue3(ssa.OpSub64borrow, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2]) |
| }, |
| sys.AMD64, sys.ARM64, sys.S390X) |
| alias("math/bits", "Sub", "math/bits", "Sub64", sys.ArchAMD64, sys.ArchARM64, sys.ArchS390X) |
| addF("math/bits", "Div64", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| // check for divide-by-zero/overflow and panic with appropriate message |
| cmpZero := s.newValue2(s.ssaOp(ir.ONE, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[2], s.zeroVal(types.Types[types.TUINT64])) |
| s.check(cmpZero, ir.Syms.Panicdivide) |
| cmpOverflow := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[0], args[2]) |
| s.check(cmpOverflow, ir.Syms.Panicoverflow) |
| return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2]) |
| }, |
| sys.AMD64) |
| alias("math/bits", "Div", "math/bits", "Div64", sys.ArchAMD64) |
| |
| alias("runtime/internal/sys", "Ctz8", "math/bits", "TrailingZeros8", all...) |
| alias("runtime/internal/sys", "TrailingZeros8", "math/bits", "TrailingZeros8", all...) |
| alias("runtime/internal/sys", "TrailingZeros64", "math/bits", "TrailingZeros64", all...) |
| alias("runtime/internal/sys", "Len8", "math/bits", "Len8", all...) |
| alias("runtime/internal/sys", "Len64", "math/bits", "Len64", all...) |
| alias("runtime/internal/sys", "OnesCount64", "math/bits", "OnesCount64", all...) |
| |
| /******** sync/atomic ********/ |
| |
| // Note: these are disabled by flag_race in findIntrinsic below. |
| alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...) |
| alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...) |
| alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...) |
| alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...) |
| alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...) |
| alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...) |
| alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...) |
| |
| alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...) |
| alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...) |
| // Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap. |
| alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...) |
| alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...) |
| alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...) |
| alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...) |
| |
| alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...) |
| alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...) |
| alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...) |
| alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...) |
| alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...) |
| alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...) |
| |
| alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...) |
| alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...) |
| alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...) |
| alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...) |
| alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...) |
| alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...) |
| |
| alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...) |
| alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...) |
| alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...) |
| alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...) |
| alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...) |
| alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...) |
| |
| /******** math/big ********/ |
| add("math/big", "mulWW", |
| func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1]) |
| }, |
| sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64LE, sys.ArchPPC64, sys.ArchS390X) |
| } |
| |
| // findIntrinsic returns a function which builds the SSA equivalent of the |
| // function identified by the symbol sym. If sym is not an intrinsic call, returns nil. |
| func findIntrinsic(sym *types.Sym) intrinsicBuilder { |
| if sym == nil || sym.Pkg == nil { |
| return nil |
| } |
| pkg := sym.Pkg.Path |
| if sym.Pkg == types.LocalPkg { |
| pkg = base.Ctxt.Pkgpath |
| } |
| if sym.Pkg == ir.Pkgs.Runtime { |
| pkg = "runtime" |
| } |
| if base.Flag.Race && pkg == "sync/atomic" { |
| // The race detector needs to be able to intercept these calls. |
| // We can't intrinsify them. |
| return nil |
| } |
| // Skip intrinsifying math functions (which may contain hard-float |
| // instructions) when soft-float |
| if Arch.SoftFloat && pkg == "math" { |
| return nil |
| } |
| |
| fn := sym.Name |
| if ssa.IntrinsicsDisable { |
| if pkg == "runtime" && (fn == "getcallerpc" || fn == "getcallersp" || fn == "getclosureptr") { |
| // These runtime functions don't have definitions, must be intrinsics. |
| } else { |
| return nil |
| } |
| } |
| return intrinsics[intrinsicKey{Arch.LinkArch.Arch, pkg, fn}] |
| } |
| |
| func IsIntrinsicCall(n *ir.CallExpr) bool { |
| if n == nil { |
| return false |
| } |
| name, ok := n.X.(*ir.Name) |
| if !ok { |
| return false |
| } |
| return findIntrinsic(name.Sym()) != nil |
| } |
| |
| // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation. |
| func (s *state) intrinsicCall(n *ir.CallExpr) *ssa.Value { |
| v := findIntrinsic(n.X.Sym())(s, n, s.intrinsicArgs(n)) |
| if ssa.IntrinsicsDebug > 0 { |
| x := v |
| if x == nil { |
| x = s.mem() |
| } |
| if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 { |
| x = x.Args[0] |
| } |
| base.WarnfAt(n.Pos(), "intrinsic substitution for %v with %s", n.X.Sym().Name, x.LongString()) |
| } |
| return v |
| } |
| |
| // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them. |
| func (s *state) intrinsicArgs(n *ir.CallExpr) []*ssa.Value { |
| args := make([]*ssa.Value, len(n.Args)) |
| for i, n := range n.Args { |
| args[i] = s.expr(n) |
| } |
| return args |
| } |
| |
| // openDeferRecord adds code to evaluate and store the function for an open-code defer |
| // call, and records info about the defer, so we can generate proper code on the |
| // exit paths. n is the sub-node of the defer node that is the actual function |
| // call. We will also record funcdata information on where the function is stored |
| // (as well as the deferBits variable), and this will enable us to run the proper |
| // defer calls during panics. |
| func (s *state) openDeferRecord(n *ir.CallExpr) { |
| if len(n.Args) != 0 || n.Op() != ir.OCALLFUNC || n.X.Type().NumResults() != 0 { |
| s.Fatalf("defer call with arguments or results: %v", n) |
| } |
| |
| opendefer := &openDeferInfo{ |
| n: n, |
| } |
| fn := n.X |
| // We must always store the function value in a stack slot for the |
| // runtime panic code to use. But in the defer exit code, we will |
| // call the function directly if it is a static function. |
| closureVal := s.expr(fn) |
| closure := s.openDeferSave(fn.Type(), closureVal) |
| opendefer.closureNode = closure.Aux.(*ir.Name) |
| if !(fn.Op() == ir.ONAME && fn.(*ir.Name).Class == ir.PFUNC) { |
| opendefer.closure = closure |
| } |
| index := len(s.openDefers) |
| s.openDefers = append(s.openDefers, opendefer) |
| |
| // Update deferBits only after evaluation and storage to stack of |
| // the function is successful. |
| bitvalue := s.constInt8(types.Types[types.TUINT8], 1<<uint(index)) |
| newDeferBits := s.newValue2(ssa.OpOr8, types.Types[types.TUINT8], s.variable(deferBitsVar, types.Types[types.TUINT8]), bitvalue) |
| s.vars[deferBitsVar] = newDeferBits |
| s.store(types.Types[types.TUINT8], s.deferBitsAddr, newDeferBits) |
| } |
| |
| // openDeferSave generates SSA nodes to store a value (with type t) for an |
| // open-coded defer at an explicit autotmp location on the stack, so it can be |
| // reloaded and used for the appropriate call on exit. Type t must be a function type |
| // (therefore SSAable). val is the value to be stored. The function returns an SSA |
| // value representing a pointer to the autotmp location. |
| func (s *state) openDeferSave(t *types.Type, val *ssa.Value) *ssa.Value { |
| if !TypeOK(t) { |
| s.Fatalf("openDeferSave of non-SSA-able type %v val=%v", t, val) |
| } |
| if !t.HasPointers() { |
| s.Fatalf("openDeferSave of pointerless type %v val=%v", t, val) |
| } |
| pos := val.Pos |
| temp := typecheck.TempAt(pos.WithNotStmt(), s.curfn, t) |
| temp.SetOpenDeferSlot(true) |
| var addrTemp *ssa.Value |
| // Use OpVarLive to make sure stack slot for the closure is not removed by |
| // dead-store elimination |
| if s.curBlock.ID != s.f.Entry.ID { |
| // Force the tmp storing this defer function to be declared in the entry |
| // block, so that it will be live for the defer exit code (which will |
| // actually access it only if the associated defer call has been activated). |
| s.defvars[s.f.Entry.ID][memVar] = s.f.Entry.NewValue1A(src.NoXPos, ssa.OpVarDef, types.TypeMem, temp, s.defvars[s.f.Entry.ID][memVar]) |
| s.defvars[s.f.Entry.ID][memVar] = s.f.Entry.NewValue1A(src.NoXPos, ssa.OpVarLive, types.TypeMem, temp, s.defvars[s.f.Entry.ID][memVar]) |
| addrTemp = s.f.Entry.NewValue2A(src.NoXPos, ssa.OpLocalAddr, types.NewPtr(temp.Type()), temp, s.sp, s.defvars[s.f.Entry.ID][memVar]) |
| } else { |
| // Special case if we're still in the entry block. We can't use |
| // the above code, since s.defvars[s.f.Entry.ID] isn't defined |
| // until we end the entry block with s.endBlock(). |
| s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, temp, s.mem(), false) |
| s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, temp, s.mem(), false) |
| addrTemp = s.newValue2Apos(ssa.OpLocalAddr, types.NewPtr(temp.Type()), temp, s.sp, s.mem(), false) |
| } |
| // Since we may use this temp during exit depending on the |
| // deferBits, we must define it unconditionally on entry. |
| // Therefore, we must make sure it is zeroed out in the entry |
| // block if it contains pointers, else GC may wrongly follow an |
| // uninitialized pointer value. |
| temp.SetNeedzero(true) |
| // We are storing to the stack, hence we can avoid the full checks in |
| // storeType() (no write barrier) and do a simple store(). |
| s.store(t, addrTemp, val) |
| return addrTemp |
| } |
| |
| // openDeferExit generates SSA for processing all the open coded defers at exit. |
| // The code involves loading deferBits, and checking each of the bits to see if |
| // the corresponding defer statement was executed. For each bit that is turned |
| // on, the associated defer call is made. |
| func (s *state) openDeferExit() { |
| deferExit := s.f.NewBlock(ssa.BlockPlain) |
| s.endBlock().AddEdgeTo(deferExit) |
| s.startBlock(deferExit) |
| s.lastDeferExit = deferExit |
| s.lastDeferCount = len(s.openDefers) |
| zeroval := s.constInt8(types.Types[types.TUINT8], 0) |
| // Test for and run defers in reverse order |
| for i := len(s.openDefers) - 1; i >= 0; i-- { |
| r := s.openDefers[i] |
| bCond := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| deferBits := s.variable(deferBitsVar, types.Types[types.TUINT8]) |
| // Generate code to check if the bit associated with the current |
| // defer is set. |
| bitval := s.constInt8(types.Types[types.TUINT8], 1<<uint(i)) |
| andval := s.newValue2(ssa.OpAnd8, types.Types[types.TUINT8], deferBits, bitval) |
| eqVal := s.newValue2(ssa.OpEq8, types.Types[types.TBOOL], andval, zeroval) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(eqVal) |
| b.AddEdgeTo(bEnd) |
| b.AddEdgeTo(bCond) |
| bCond.AddEdgeTo(bEnd) |
| s.startBlock(bCond) |
| |
| // Clear this bit in deferBits and force store back to stack, so |
| // we will not try to re-run this defer call if this defer call panics. |
| nbitval := s.newValue1(ssa.OpCom8, types.Types[types.TUINT8], bitval) |
| maskedval := s.newValue2(ssa.OpAnd8, types.Types[types.TUINT8], deferBits, nbitval) |
| s.store(types.Types[types.TUINT8], s.deferBitsAddr, maskedval) |
| // Use this value for following tests, so we keep previous |
| // bits cleared. |
| s.vars[deferBitsVar] = maskedval |
| |
| // Generate code to call the function call of the defer, using the |
| // closure that were stored in argtmps at the point of the defer |
| // statement. |
| fn := r.n.X |
| stksize := fn.Type().ArgWidth() |
| var callArgs []*ssa.Value |
| var call *ssa.Value |
| if r.closure != nil { |
| v := s.load(r.closure.Type.Elem(), r.closure) |
| s.maybeNilCheckClosure(v, callDefer) |
| codeptr := s.rawLoad(types.Types[types.TUINTPTR], v) |
| aux := ssa.ClosureAuxCall(s.f.ABIDefault.ABIAnalyzeTypes(nil, nil, nil)) |
| call = s.newValue2A(ssa.OpClosureLECall, aux.LateExpansionResultType(), aux, codeptr, v) |
| } else { |
| aux := ssa.StaticAuxCall(fn.(*ir.Name).Linksym(), s.f.ABIDefault.ABIAnalyzeTypes(nil, nil, nil)) |
| call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) |
| } |
| callArgs = append(callArgs, s.mem()) |
| call.AddArgs(callArgs...) |
| call.AuxInt = stksize |
| s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, 0, call) |
| // Make sure that the stack slots with pointers are kept live |
| // through the call (which is a pre-emption point). Also, we will |
| // use the first call of the last defer exit to compute liveness |
| // for the deferreturn, so we want all stack slots to be live. |
| if r.closureNode != nil { |
| s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, r.closureNode, s.mem(), false) |
| } |
| |
| s.endBlock() |
| s.startBlock(bEnd) |
| } |
| } |
| |
| func (s *state) callResult(n *ir.CallExpr, k callKind) *ssa.Value { |
| return s.call(n, k, false) |
| } |
| |
| func (s *state) callAddr(n *ir.CallExpr, k callKind) *ssa.Value { |
| return s.call(n, k, true) |
| } |
| |
| // Calls the function n using the specified call type. |
| // Returns the address of the return value (or nil if none). |
| func (s *state) call(n *ir.CallExpr, k callKind, returnResultAddr bool) *ssa.Value { |
| s.prevCall = nil |
| var callee *ir.Name // target function (if static) |
| var closure *ssa.Value // ptr to closure to run (if dynamic) |
| var codeptr *ssa.Value // ptr to target code (if dynamic) |
| var rcvr *ssa.Value // receiver to set |
| fn := n.X |
| var ACArgs []*types.Type // AuxCall args |
| var ACResults []*types.Type // AuxCall results |
| var callArgs []*ssa.Value // For late-expansion, the args themselves (not stored, args to the call instead). |
| |
| callABI := s.f.ABIDefault |
| |
| if k != callNormal && k != callTail && (len(n.Args) != 0 || n.Op() == ir.OCALLINTER || n.X.Type().NumResults() != 0) { |
| s.Fatalf("go/defer call with arguments: %v", n) |
| } |
| |
| switch n.Op() { |
| case ir.OCALLFUNC: |
| if (k == callNormal || k == callTail) && fn.Op() == ir.ONAME && fn.(*ir.Name).Class == ir.PFUNC { |
| fn := fn.(*ir.Name) |
| callee = fn |
| if buildcfg.Experiment.RegabiArgs { |
| // This is a static call, so it may be |
| // a direct call to a non-ABIInternal |
| // function. fn.Func may be nil for |
| // some compiler-generated functions, |
| // but those are all ABIInternal. |
| if fn.Func != nil { |
| callABI = abiForFunc(fn.Func, s.f.ABI0, s.f.ABI1) |
| } |
| } else { |
| // TODO(register args) remove after register abi is working |
| inRegistersImported := fn.Pragma()&ir.RegisterParams != 0 |
| inRegistersSamePackage := fn.Func != nil && fn.Func.Pragma&ir.RegisterParams != 0 |
| if inRegistersImported || inRegistersSamePackage { |
| callABI = s.f.ABI1 |
| } |
| } |
| break |
| } |
| closure = s.expr(fn) |
| if k != callDefer && k != callDeferStack { |
| // Deferred nil function needs to panic when the function is invoked, |
| // not the point of defer statement. |
| s.maybeNilCheckClosure(closure, k) |
| } |
| case ir.OCALLINTER: |
| if fn.Op() != ir.ODOTINTER { |
| s.Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op()) |
| } |
| fn := fn.(*ir.SelectorExpr) |
| var iclosure *ssa.Value |
| iclosure, rcvr = s.getClosureAndRcvr(fn) |
| if k == callNormal { |
| codeptr = s.load(types.Types[types.TUINTPTR], iclosure) |
| } else { |
| closure = iclosure |
| } |
| } |
| |
| params := callABI.ABIAnalyze(n.X.Type(), false /* Do not set (register) nNames from caller side -- can cause races. */) |
| types.CalcSize(fn.Type()) |
| stksize := params.ArgWidth() // includes receiver, args, and results |
| |
| res := n.X.Type().Results() |
| if k == callNormal || k == callTail { |
| for _, p := range params.OutParams() { |
| ACResults = append(ACResults, p.Type) |
| } |
| } |
| |
| var call *ssa.Value |
| if k == callDeferStack { |
| // Make a defer struct d on the stack. |
| if stksize != 0 { |
| s.Fatalf("deferprocStack with non-zero stack size %d: %v", stksize, n) |
| } |
| |
| t := deferstruct() |
| d := typecheck.TempAt(n.Pos(), s.curfn, t) |
| |
| s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, d, s.mem()) |
| addr := s.addr(d) |
| |
| // Must match deferstruct() below and src/runtime/runtime2.go:_defer. |
| // 0: started, set in deferprocStack |
| // 1: heap, set in deferprocStack |
| // 2: openDefer |
| // 3: sp, set in deferprocStack |
| // 4: pc, set in deferprocStack |
| // 5: fn |
| s.store(closure.Type, |
| s.newValue1I(ssa.OpOffPtr, closure.Type.PtrTo(), t.FieldOff(5), addr), |
| closure) |
| // 6: panic, set in deferprocStack |
| // 7: link, set in deferprocStack |
| // 8: fd |
| // 9: varp |
| // 10: framepc |
| |
| // Call runtime.deferprocStack with pointer to _defer record. |
| ACArgs = append(ACArgs, types.Types[types.TUINTPTR]) |
| aux := ssa.StaticAuxCall(ir.Syms.DeferprocStack, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults)) |
| callArgs = append(callArgs, addr, s.mem()) |
| call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) |
| call.AddArgs(callArgs...) |
| call.AuxInt = int64(types.PtrSize) // deferprocStack takes a *_defer arg |
| } else { |
| // Store arguments to stack, including defer/go arguments and receiver for method calls. |
| // These are written in SP-offset order. |
| argStart := base.Ctxt.Arch.FixedFrameSize |
| // Defer/go args. |
| if k != callNormal && k != callTail { |
| // Write closure (arg to newproc/deferproc). |
| ACArgs = append(ACArgs, types.Types[types.TUINTPTR]) // not argExtra |
| callArgs = append(callArgs, closure) |
| stksize += int64(types.PtrSize) |
| argStart += int64(types.PtrSize) |
| } |
| |
| // Set receiver (for interface calls). |
| if rcvr != nil { |
| callArgs = append(callArgs, rcvr) |
| } |
| |
| // Write args. |
| t := n.X.Type() |
| args := n.Args |
| |
| for _, p := range params.InParams() { // includes receiver for interface calls |
| ACArgs = append(ACArgs, p.Type) |
| } |
| |
| // Split the entry block if there are open defers, because later calls to |
| // openDeferSave may cause a mismatch between the mem for an OpDereference |
| // and the call site which uses it. See #49282. |
| if s.curBlock.ID == s.f.Entry.ID && s.hasOpenDefers { |
| b := s.endBlock() |
| b.Kind = ssa.BlockPlain |
| curb := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(curb) |
| s.startBlock(curb) |
| } |
| |
| for i, n := range args { |
| callArgs = append(callArgs, s.putArg(n, t.Params().Field(i).Type)) |
| } |
| |
| callArgs = append(callArgs, s.mem()) |
| |
| // call target |
| switch { |
| case k == callDefer: |
| aux := ssa.StaticAuxCall(ir.Syms.Deferproc, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults)) // TODO paramResultInfo for DeferProc |
| call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) |
| case k == callGo: |
| aux := ssa.StaticAuxCall(ir.Syms.Newproc, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults)) |
| call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) // TODO paramResultInfo for NewProc |
| case closure != nil: |
| // rawLoad because loading the code pointer from a |
| // closure is always safe, but IsSanitizerSafeAddr |
| // can't always figure that out currently, and it's |
| // critical that we not clobber any arguments already |
| // stored onto the stack. |
| codeptr = s.rawLoad(types.Types[types.TUINTPTR], closure) |
| aux := ssa.ClosureAuxCall(callABI.ABIAnalyzeTypes(nil, ACArgs, ACResults)) |
| call = s.newValue2A(ssa.OpClosureLECall, aux.LateExpansionResultType(), aux, codeptr, closure) |
| case codeptr != nil: |
| // Note that the "receiver" parameter is nil because the actual receiver is the first input parameter. |
| aux := ssa.InterfaceAuxCall(params) |
| call = s.newValue1A(ssa.OpInterLECall, aux.LateExpansionResultType(), aux, codeptr) |
| case callee != nil: |
| aux := ssa.StaticAuxCall(callTargetLSym(callee), params) |
| call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) |
| if k == callTail { |
| call.Op = ssa.OpTailLECall |
| stksize = 0 // Tail call does not use stack. We reuse caller's frame. |
| } |
| default: |
| s.Fatalf("bad call type %v %v", n.Op(), n) |
| } |
| call.AddArgs(callArgs...) |
| call.AuxInt = stksize // Call operations carry the argsize of the callee along with them |
| } |
| s.prevCall = call |
| s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, int64(len(ACResults)), call) |
| // Insert OVARLIVE nodes |
| for _, name := range n.KeepAlive { |
| s.stmt(ir.NewUnaryExpr(n.Pos(), ir.OVARLIVE, name)) |
| } |
| |
| // Finish block for defers |
| if k == callDefer || k == callDeferStack { |
| b := s.endBlock() |
| b.Kind = ssa.BlockDefer |
| b.SetControl(call) |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bNext) |
| // Add recover edge to exit code. |
| r := s.f.NewBlock(ssa.BlockPlain) |
| s.startBlock(r) |
| s.exit() |
| b.AddEdgeTo(r) |
| b.Likely = ssa.BranchLikely |
| s.startBlock(bNext) |
| } |
| |
| if res.NumFields() == 0 || k != callNormal { |
| // call has no return value. Continue with the next statement. |
| return nil |
| } |
| fp := res.Field(0) |
| if returnResultAddr { |
| return s.resultAddrOfCall(call, 0, fp.Type) |
| } |
| return s.newValue1I(ssa.OpSelectN, fp.Type, 0, call) |
| } |
| |
| // maybeNilCheckClosure checks if a nil check of a closure is needed in some |
| // architecture-dependent situations and, if so, emits the nil check. |
| func (s *state) maybeNilCheckClosure(closure *ssa.Value, k callKind) { |
| if Arch.LinkArch.Family == sys.Wasm || buildcfg.GOOS == "aix" && k != callGo { |
| // On AIX, the closure needs to be verified as fn can be nil, except if it's a call go. This needs to be handled by the runtime to have the "go of nil func value" error. |
| // TODO(neelance): On other architectures this should be eliminated by the optimization steps |
| s.nilCheck(closure) |
| } |
| } |
| |
| // getClosureAndRcvr returns values for the appropriate closure and receiver of an |
| // interface call |
| func (s *state) getClosureAndRcvr(fn *ir.SelectorExpr) (*ssa.Value, *ssa.Value) { |
| i := s.expr(fn.X) |
| itab := s.newValue1(ssa.OpITab, types.Types[types.TUINTPTR], i) |
| s.nilCheck(itab) |
| itabidx := fn.Offset() + 2*int64(types.PtrSize) + 8 // offset of fun field in runtime.itab |
| closure := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab) |
| rcvr := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, i) |
| return closure, rcvr |
| } |
| |
| // etypesign returns the signed-ness of e, for integer/pointer etypes. |
| // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. |
| func etypesign(e types.Kind) int8 { |
| switch e { |
| case types.TINT8, types.TINT16, types.TINT32, types.TINT64, types.TINT: |
| return -1 |
| case types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64, types.TUINT, types.TUINTPTR, types.TUNSAFEPTR: |
| return +1 |
| } |
| return 0 |
| } |
| |
| // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. |
| // The value that the returned Value represents is guaranteed to be non-nil. |
| func (s *state) addr(n ir.Node) *ssa.Value { |
| if n.Op() != ir.ONAME { |
| s.pushLine(n.Pos()) |
| defer s.popLine() |
| } |
| |
| if s.canSSA(n) { |
| s.Fatalf("addr of canSSA expression: %+v", n) |
| } |
| |
| t := types.NewPtr(n.Type()) |
| linksymOffset := func(lsym *obj.LSym, offset int64) *ssa.Value { |
| v := s.entryNewValue1A(ssa.OpAddr, t, lsym, s.sb) |
| // TODO: Make OpAddr use AuxInt as well as Aux. |
| if offset != 0 { |
| v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, offset, v) |
| } |
| return v |
| } |
| switch n.Op() { |
| case ir.OLINKSYMOFFSET: |
| no := n.(*ir.LinksymOffsetExpr) |
| return linksymOffset(no.Linksym, no.Offset_) |
| case ir.ONAME: |
| n := n.(*ir.Name) |
| if n.Heapaddr != nil { |
| return s.expr(n.Heapaddr) |
| } |
| switch n.Class { |
| case ir.PEXTERN: |
| // global variable |
| return linksymOffset(n.Linksym(), 0) |
| case ir.PPARAM: |
| // parameter slot |
| v := s.decladdrs[n] |
| if v != nil { |
| return v |
| } |
| s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) |
| return nil |
| case ir.PAUTO: |
| return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), !ir.IsAutoTmp(n)) |
| |
| case ir.PPARAMOUT: // Same as PAUTO -- cannot generate LEA early. |
| // ensure that we reuse symbols for out parameters so |
| // that cse works on their addresses |
| return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), true) |
| default: |
| s.Fatalf("variable address class %v not implemented", n.Class) |
| return nil |
| } |
| case ir.ORESULT: |
| // load return from callee |
| n := n.(*ir.ResultExpr) |
| return s.resultAddrOfCall(s.prevCall, n.Index, n.Type()) |
| case ir.OINDEX: |
| n := n.(*ir.IndexExpr) |
| if n.X.Type().IsSlice() { |
| a := s.expr(n.X) |
| i := s.expr(n.Index) |
| len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], a) |
| i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) |
| p := s.newValue1(ssa.OpSlicePtr, t, a) |
| return s.newValue2(ssa.OpPtrIndex, t, p, i) |
| } else { // array |
| a := s.addr(n.X) |
| i := s.expr(n.Index) |
| len := s.constInt(types.Types[types.TINT], n.X.Type().NumElem()) |
| i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) |
| return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.X.Type().Elem()), a, i) |
| } |
| case ir.ODEREF: |
| n := n.(*ir.StarExpr) |
| return s.exprPtr(n.X, n.Bounded(), n.Pos()) |
| case ir.ODOT: |
| n := n.(*ir.SelectorExpr) |
| p := s.addr(n.X) |
| return s.newValue1I(ssa.OpOffPtr, t, n.Offset(), p) |
| case ir.ODOTPTR: |
| n := n.(*ir.SelectorExpr) |
| p := s.exprPtr(n.X, n.Bounded(), n.Pos()) |
| return s.newValue1I(ssa.OpOffPtr, t, n.Offset(), p) |
| case ir.OCONVNOP: |
| n := n.(*ir.ConvExpr) |
| if n.Type() == n.X.Type() { |
| return s.addr(n.X) |
| } |
| addr := s.addr(n.X) |
| return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type |
| case ir.OCALLFUNC, ir.OCALLINTER: |
| n := n.(*ir.CallExpr) |
| return s.callAddr(n, callNormal) |
| case ir.ODOTTYPE, ir.ODYNAMICDOTTYPE: |
| var v *ssa.Value |
| if n.Op() == ir.ODOTTYPE { |
| v, _ = s.dottype(n.(*ir.TypeAssertExpr), false) |
| } else { |
| v, _ = s.dynamicDottype(n.(*ir.DynamicTypeAssertExpr), false) |
| } |
| if v.Op != ssa.OpLoad { |
| s.Fatalf("dottype of non-load") |
| } |
| if v.Args[1] != s.mem() { |
| s.Fatalf("memory no longer live from dottype load") |
| } |
| return v.Args[0] |
| default: |
| s.Fatalf("unhandled addr %v", n.Op()) |
| return nil |
| } |
| } |
| |
| // canSSA reports whether n is SSA-able. |
| // n must be an ONAME (or an ODOT sequence with an ONAME base). |
| func (s *state) canSSA(n ir.Node) bool { |
| if base.Flag.N != 0 { |
| return false |
| } |
| for { |
| nn := n |
| if nn.Op() == ir.ODOT { |
| nn := nn.(*ir.SelectorExpr) |
| n = nn.X |
| continue |
| } |
| if nn.Op() == ir.OINDEX { |
| nn := nn.(*ir.IndexExpr) |
| if nn.X.Type().IsArray() { |
| n = nn.X |
| continue |
| } |
| } |
| break |
| } |
| if n.Op() != ir.ONAME { |
| return false |
| } |
| return s.canSSAName(n.(*ir.Name)) && TypeOK(n.Type()) |
| } |
| |
| func (s *state) canSSAName(name *ir.Name) bool { |
| if name.Addrtaken() || !name.OnStack() { |
| return false |
| } |
| switch name.Class { |
| case ir.PPARAMOUT: |
| if s.hasdefer { |
| // TODO: handle this case? Named return values must be |
| // in memory so that the deferred function can see them. |
| // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false } |
| // Or maybe not, see issue 18860. Even unnamed return values |
| // must be written back so if a defer recovers, the caller can see them. |
| return false |
| } |
| if s.cgoUnsafeArgs { |
| // Cgo effectively takes the address of all result args, |
| // but the compiler can't see that. |
| return false |
| } |
| } |
| return true |
| // TODO: try to make more variables SSAable? |
| } |
| |
| // TypeOK reports whether variables of type t are SSA-able. |
| func TypeOK(t *types.Type) bool { |
| types.CalcSize(t) |
| if t.Size() > int64(4*types.PtrSize) { |
| // 4*Widthptr is an arbitrary constant. We want it |
| // to be at least 3*Widthptr so slices can be registerized. |
| // Too big and we'll introduce too much register pressure. |
| return false |
| } |
| switch t.Kind() { |
| case types.TARRAY: |
| // We can't do larger arrays because dynamic indexing is |
| // not supported on SSA variables. |
| // TODO: allow if all indexes are constant. |
| if t.NumElem() <= 1 { |
| return TypeOK(t.Elem()) |
| } |
| return false |
| case types.TSTRUCT: |
| if t.NumFields() > ssa.MaxStruct { |
| return false |
| } |
| for _, t1 := range t.Fields().Slice() { |
| if !TypeOK(t1.Type) { |
| return false |
| } |
| } |
| return true |
| default: |
| return true |
| } |
| } |
| |
| // exprPtr evaluates n to a pointer and nil-checks it. |
| func (s *state) exprPtr(n ir.Node, bounded bool, lineno src.XPos) *ssa.Value { |
| p := s.expr(n) |
| if bounded || n.NonNil() { |
| if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 { |
| s.f.Warnl(lineno, "removed nil check") |
| } |
| return p |
| } |
| s.nilCheck(p) |
| return p |
| } |
| |
| // nilCheck generates nil pointer checking code. |
| // Used only for automatically inserted nil checks, |
| // not for user code like 'x != nil'. |
| func (s *state) nilCheck(ptr *ssa.Value) { |
| if base.Debug.DisableNil != 0 || s.curfn.NilCheckDisabled() { |
| return |
| } |
| s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem()) |
| } |
| |
| // boundsCheck generates bounds checking code. Checks if 0 <= idx <[=] len, branches to exit if not. |
| // Starts a new block on return. |
| // On input, len must be converted to full int width and be nonnegative. |
| // Returns idx converted to full int width. |
| // If bounded is true then caller guarantees the index is not out of bounds |
| // (but boundsCheck will still extend the index to full int width). |
| func (s *state) boundsCheck(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value { |
| idx = s.extendIndex(idx, len, kind, bounded) |
| |
| if bounded || base.Flag.B != 0 { |
| // If bounded or bounds checking is flag-disabled, then no check necessary, |
| // just return the extended index. |
| // |
| // Here, bounded == true if the compiler generated the index itself, |
| // such as in the expansion of a slice initializer. These indexes are |
| // compiler-generated, not Go program variables, so they cannot be |
| // attacker-controlled, so we can omit Spectre masking as well. |
| // |
| // Note that we do not want to omit Spectre masking in code like: |
| // |
| // if 0 <= i && i < len(x) { |
| // use(x[i]) |
| // } |
| // |
| // Lucky for us, bounded==false for that code. |
| // In that case (handled below), we emit a bound check (and Spectre mask) |
| // and then the prove pass will remove the bounds check. |
| // In theory the prove pass could potentially remove certain |
| // Spectre masks, but it's very delicate and probably better |
| // to be conservative and leave them all in. |
| return idx |
| } |
| |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| bPanic := s.f.NewBlock(ssa.BlockExit) |
| |
| if !idx.Type.IsSigned() { |
| switch kind { |
| case ssa.BoundsIndex: |
| kind = ssa.BoundsIndexU |
| case ssa.BoundsSliceAlen: |
| kind = ssa.BoundsSliceAlenU |
| case ssa.BoundsSliceAcap: |
| kind = ssa.BoundsSliceAcapU |
| case ssa.BoundsSliceB: |
| kind = ssa.BoundsSliceBU |
| case ssa.BoundsSlice3Alen: |
| kind = ssa.BoundsSlice3AlenU |
| case ssa.BoundsSlice3Acap: |
| kind = ssa.BoundsSlice3AcapU |
| case ssa.BoundsSlice3B: |
| kind = ssa.BoundsSlice3BU |
| case ssa.BoundsSlice3C: |
| kind = ssa.BoundsSlice3CU |
| } |
| } |
| |
| var cmp *ssa.Value |
| if kind == ssa.BoundsIndex || kind == ssa.BoundsIndexU { |
| cmp = s.newValue2(ssa.OpIsInBounds, types.Types[types.TBOOL], idx, len) |
| } else { |
| cmp = s.newValue2(ssa.OpIsSliceInBounds, types.Types[types.TBOOL], idx, len) |
| } |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| b.AddEdgeTo(bNext) |
| b.AddEdgeTo(bPanic) |
| |
| s.startBlock(bPanic) |
| if Arch.LinkArch.Family == sys.Wasm { |
| // TODO(khr): figure out how to do "register" based calling convention for bounds checks. |
| // Should be similar to gcWriteBarrier, but I can't make it work. |
| s.rtcall(BoundsCheckFunc[kind], false, nil, idx, len) |
| } else { |
| mem := s.newValue3I(ssa.OpPanicBounds, types.TypeMem, int64(kind), idx, len, s.mem()) |
| s.endBlock().SetControl(mem) |
| } |
| s.startBlock(bNext) |
| |
| // In Spectre index mode, apply an appropriate mask to avoid speculative out-of-bounds accesses. |
| if base.Flag.Cfg.SpectreIndex { |
| op := ssa.OpSpectreIndex |
| if kind != ssa.BoundsIndex && kind != ssa.BoundsIndexU { |
| op = ssa.OpSpectreSliceIndex |
| } |
| idx = s.newValue2(op, types.Types[types.TINT], idx, len) |
| } |
| |
| return idx |
| } |
| |
| // If cmp (a bool) is false, panic using the given function. |
| func (s *state) check(cmp *ssa.Value, fn *obj.LSym) { |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| line := s.peekPos() |
| pos := base.Ctxt.PosTable.Pos(line) |
| fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()} |
| bPanic := s.panics[fl] |
| if bPanic == nil { |
| bPanic = s.f.NewBlock(ssa.BlockPlain) |
| s.panics[fl] = bPanic |
| s.startBlock(bPanic) |
| // The panic call takes/returns memory to ensure that the right |
| // memory state is observed if the panic happens. |
| s.rtcall(fn, false, nil) |
| } |
| b.AddEdgeTo(bNext) |
| b.AddEdgeTo(bPanic) |
| s.startBlock(bNext) |
| } |
| |
| func (s *state) intDivide(n ir.Node, a, b *ssa.Value) *ssa.Value { |
| needcheck := true |
| switch b.Op { |
| case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64: |
| if b.AuxInt != 0 { |
| needcheck = false |
| } |
| } |
| if needcheck { |
| // do a size-appropriate check for zero |
| cmp := s.newValue2(s.ssaOp(ir.ONE, n.Type()), types.Types[types.TBOOL], b, s.zeroVal(n.Type())) |
| s.check(cmp, ir.Syms.Panicdivide) |
| } |
| return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) |
| } |
| |
| // rtcall issues a call to the given runtime function fn with the listed args. |
| // Returns a slice of results of the given result types. |
| // The call is added to the end of the current block. |
| // If returns is false, the block is marked as an exit block. |
| func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value { |
| s.prevCall = nil |
| // Write args to the stack |
| off := base.Ctxt.Arch.FixedFrameSize |
| var callArgs []*ssa.Value |
| var callArgTypes []*types.Type |
| |
| for _, arg := range args { |
| t := arg.Type |
| off = types.Rnd(off, t.Alignment()) |
| size := t.Size() |
| callArgs = append(callArgs, arg) |
| callArgTypes = append(callArgTypes, t) |
| off += size |
| } |
| off = types.Rnd(off, int64(types.RegSize)) |
| |
| // Issue call |
| var call *ssa.Value |
| aux := ssa.StaticAuxCall(fn, s.f.ABIDefault.ABIAnalyzeTypes(nil, callArgTypes, results)) |
| callArgs = append(callArgs, s.mem()) |
| call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) |
| call.AddArgs(callArgs...) |
| s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, int64(len(results)), call) |
| |
| if !returns { |
| // Finish block |
| b := s.endBlock() |
| b.Kind = ssa.BlockExit |
| b.SetControl(call) |
| call.AuxInt = off - base.Ctxt.Arch.FixedFrameSize |
| if len(results) > 0 { |
| s.Fatalf("panic call can't have results") |
| } |
| return nil |
| } |
| |
| // Load results |
| res := make([]*ssa.Value, len(results)) |
| for i, t := range results { |
| off = types.Rnd(off, t.Alignment()) |
| res[i] = s.resultOfCall(call, int64(i), t) |
| off += t.Size() |
| } |
| off = types.Rnd(off, int64(types.PtrSize)) |
| |
| // Remember how much callee stack space we needed. |
| call.AuxInt = off |
| |
| return res |
| } |
| |
| // do *left = right for type t. |
| func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask, leftIsStmt bool) { |
| s.instrument(t, left, instrumentWrite) |
| |
| if skip == 0 && (!t.HasPointers() || ssa.IsStackAddr(left)) { |
| // Known to not have write barrier. Store the whole type. |
| s.vars[memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, left, right, s.mem(), leftIsStmt) |
| return |
| } |
| |
| // store scalar fields first, so write barrier stores for |
| // pointer fields can be grouped together, and scalar values |
| // don't need to be live across the write barrier call. |
| // TODO: if the writebarrier pass knows how to reorder stores, |
| // we can do a single store here as long as skip==0. |
| s.storeTypeScalars(t, left, right, skip) |
| if skip&skipPtr == 0 && t.HasPointers() { |
| s.storeTypePtrs(t, left, right) |
| } |
| } |
| |
| // do *left = right for all scalar (non-pointer) parts of t. |
| func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) { |
| switch { |
| case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): |
| s.store(t, left, right) |
| case t.IsPtrShaped(): |
| if t.IsPtr() && t.Elem().NotInHeap() { |
| s.store(t, left, right) // see issue 42032 |
| } |
| // otherwise, no scalar fields. |
| case t.IsString(): |
| if skip&skipLen != 0 { |
| return |
| } |
| len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], right) |
| lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) |
| s.store(types.Types[types.TINT], lenAddr, len) |
| case t.IsSlice(): |
| if skip&skipLen == 0 { |
| len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], right) |
| lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) |
| s.store(types.Types[types.TINT], lenAddr, len) |
| } |
| if skip&skipCap == 0 { |
| cap := s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], right) |
| capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left) |
| s.store(types.Types[types.TINT], capAddr, cap) |
| } |
| case t.IsInterface(): |
| // itab field doesn't need a write barrier (even though it is a pointer). |
| itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right) |
| s.store(types.Types[types.TUINTPTR], left, itab) |
| case t.IsStruct(): |
| n := t.NumFields() |
| for i := 0; i < n; i++ { |
| ft := t.FieldType(i) |
| addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) |
| val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) |
| s.storeTypeScalars(ft, addr, val, 0) |
| } |
| case t.IsArray() && t.NumElem() == 0: |
| // nothing |
| case t.IsArray() && t.NumElem() == 1: |
| s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0) |
| default: |
| s.Fatalf("bad write barrier type %v", t) |
| } |
| } |
| |
| // do *left = right for all pointer parts of t. |
| func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) { |
| switch { |
| case t.IsPtrShaped(): |
| if t.IsPtr() && t.Elem().NotInHeap() { |
| break // see issue 42032 |
| } |
| s.store(t, left, right) |
| case t.IsString(): |
| ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right) |
| s.store(s.f.Config.Types.BytePtr, left, ptr) |
| case t.IsSlice(): |
| elType := types.NewPtr(t.Elem()) |
| ptr := s.newValue1(ssa.OpSlicePtr, elType, right) |
| s.store(elType, left, ptr) |
| case t.IsInterface(): |
| // itab field is treated as a scalar. |
| idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right) |
| idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left) |
| s.store(s.f.Config.Types.BytePtr, idataAddr, idata) |
| case t.IsStruct(): |
| n := t.NumFields() |
| for i := 0; i < n; i++ { |
| ft := t.FieldType(i) |
| if !ft.HasPointers() { |
| continue |
| } |
| addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) |
| val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) |
| s.storeTypePtrs(ft, addr, val) |
| } |
| case t.IsArray() && t.NumElem() == 0: |
| // nothing |
| case t.IsArray() && t.NumElem() == 1: |
| s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right)) |
| default: |
| s.Fatalf("bad write barrier type %v", t) |
| } |
| } |
| |
| // putArg evaluates n for the purpose of passing it as an argument to a function and returns the value for the call. |
| func (s *state) putArg(n ir.Node, t *types.Type) *ssa.Value { |
| var a *ssa.Value |
| if !TypeOK(t) { |
| a = s.newValue2(ssa.OpDereference, t, s.addr(n), s.mem()) |
| } else { |
| a = s.expr(n) |
| } |
| return a |
| } |
| |
| func (s *state) storeArgWithBase(n ir.Node, t *types.Type, base *ssa.Value, off int64) { |
| pt := types.NewPtr(t) |
| var addr *ssa.Value |
| if base == s.sp { |
| // Use special routine that avoids allocation on duplicate offsets. |
| addr = s.constOffPtrSP(pt, off) |
| } else { |
| addr = s.newValue1I(ssa.OpOffPtr, pt, off, base) |
| } |
| |
| if !TypeOK(t) { |
| a := s.addr(n) |
| s.move(t, addr, a) |
| return |
| } |
| |
| a := s.expr(n) |
| s.storeType(t, addr, a, 0, false) |
| } |
| |
| // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. |
| // i,j,k may be nil, in which case they are set to their default value. |
| // v may be a slice, string or pointer to an array. |
| func (s *state) slice(v, i, j, k *ssa.Value, bounded bool) (p, l, c *ssa.Value) { |
| t := v.Type |
| var ptr, len, cap *ssa.Value |
| switch { |
| case t.IsSlice(): |
| ptr = s.newValue1(ssa.OpSlicePtr, types.NewPtr(t.Elem()), v) |
| len = s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], v) |
| cap = s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], v) |
| case t.IsString(): |
| ptr = s.newValue1(ssa.OpStringPtr, types.NewPtr(types.Types[types.TUINT8]), v) |
| len = s.newValue1(ssa.OpStringLen, types.Types[types.TINT], v) |
| cap = len |
| case t.IsPtr(): |
| if !t.Elem().IsArray() { |
| s.Fatalf("bad ptr to array in slice %v\n", t) |
| } |
| s.nilCheck(v) |
| ptr = s.newValue1(ssa.OpCopy, types.NewPtr(t.Elem().Elem()), v) |
| len = s.constInt(types.Types[types.TINT], t.Elem().NumElem()) |
| cap = len |
| default: |
| s.Fatalf("bad type in slice %v\n", t) |
| } |
| |
| // Set default values |
| if i == nil { |
| i = s.constInt(types.Types[types.TINT], 0) |
| } |
| if j == nil { |
| j = len |
| } |
| three := true |
| if k == nil { |
| three = false |
| k = cap |
| } |
| |
| // Panic if slice indices are not in bounds. |
| // Make sure we check these in reverse order so that we're always |
| // comparing against a value known to be nonnegative. See issue 28797. |
| if three { |
| if k != cap { |
| kind := ssa.BoundsSlice3Alen |
| if t.IsSlice() { |
| kind = ssa.BoundsSlice3Acap |
| } |
| k = s.boundsCheck(k, cap, kind, bounded) |
| } |
| if j != k { |
| j = s.boundsCheck(j, k, ssa.BoundsSlice3B, bounded) |
| } |
| i = s.boundsCheck(i, j, ssa.BoundsSlice3C, bounded) |
| } else { |
| if j != k { |
| kind := ssa.BoundsSliceAlen |
| if t.IsSlice() { |
| kind = ssa.BoundsSliceAcap |
| } |
| j = s.boundsCheck(j, k, kind, bounded) |
| } |
| i = s.boundsCheck(i, j, ssa.BoundsSliceB, bounded) |
| } |
| |
| // Word-sized integer operations. |
| subOp := s.ssaOp(ir.OSUB, types.Types[types.TINT]) |
| mulOp := s.ssaOp(ir.OMUL, types.Types[types.TINT]) |
| andOp := s.ssaOp(ir.OAND, types.Types[types.TINT]) |
| |
| // Calculate the length (rlen) and capacity (rcap) of the new slice. |
| // For strings the capacity of the result is unimportant. However, |
| // we use rcap to test if we've generated a zero-length slice. |
| // Use length of strings for that. |
| rlen := s.newValue2(subOp, types.Types[types.TINT], j, i) |
| rcap := rlen |
| if j != k && !t.IsString() { |
| rcap = s.newValue2(subOp, types.Types[types.TINT], k, i) |
| } |
| |
| if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 { |
| // No pointer arithmetic necessary. |
| return ptr, rlen, rcap |
| } |
| |
| // Calculate the base pointer (rptr) for the new slice. |
| // |
| // Generate the following code assuming that indexes are in bounds. |
| // The masking is to make sure that we don't generate a slice |
| // that points to the next object in memory. We cannot just set |
| // the pointer to nil because then we would create a nil slice or |
| // string. |
| // |
| // rcap = k - i |
| // rlen = j - i |
| // rptr = ptr + (mask(rcap) & (i * stride)) |
| // |
| // Where mask(x) is 0 if x==0 and -1 if x>0 and stride is the width |
| // of the element type. |
| stride := s.constInt(types.Types[types.TINT], ptr.Type.Elem().Size()) |
| |
| // The delta is the number of bytes to offset ptr by. |
| delta := s.newValue2(mulOp, types.Types[types.TINT], i, stride) |
| |
| // If we're slicing to the point where the capacity is zero, |
| // zero out the delta. |
| mask := s.newValue1(ssa.OpSlicemask, types.Types[types.TINT], rcap) |
| delta = s.newValue2(andOp, types.Types[types.TINT], delta, mask) |
| |
| // Compute rptr = ptr + delta. |
| rptr := s.newValue2(ssa.OpAddPtr, ptr.Type, ptr, delta) |
| |
| return rptr, rlen, rcap |
| } |
| |
| type u642fcvtTab struct { |
| leq, cvt2F, and, rsh, or, add ssa.Op |
| one func(*state, *types.Type, int64) *ssa.Value |
| } |
| |
| var u64_f64 = u642fcvtTab{ |
| leq: ssa.OpLeq64, |
| cvt2F: ssa.OpCvt64to64F, |
| and: ssa.OpAnd64, |
| rsh: ssa.OpRsh64Ux64, |
| or: ssa.OpOr64, |
| add: ssa.OpAdd64F, |
| one: (*state).constInt64, |
| } |
| |
| var u64_f32 = u642fcvtTab{ |
| leq: ssa.OpLeq64, |
| cvt2F: ssa.OpCvt64to32F, |
| and: ssa.OpAnd64, |
| rsh: ssa.OpRsh64Ux64, |
| or: ssa.OpOr64, |
| add: ssa.OpAdd32F, |
| one: (*state).constInt64, |
| } |
| |
| func (s *state) uint64Tofloat64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| return s.uint64Tofloat(&u64_f64, n, x, ft, tt) |
| } |
| |
| func (s *state) uint64Tofloat32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| return s.uint64Tofloat(&u64_f32, n, x, ft, tt) |
| } |
| |
| func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| // if x >= 0 { |
| // result = (floatY) x |
| // } else { |
| // y = uintX(x) ; y = x & 1 |
| // z = uintX(x) ; z = z >> 1 |
| // z = z | y |
| // result = floatY(z) |
| // result = result + result |
| // } |
| // |
| // Code borrowed from old code generator. |
| // What's going on: large 64-bit "unsigned" looks like |
| // negative number to hardware's integer-to-float |
| // conversion. However, because the mantissa is only |
| // 63 bits, we don't need the LSB, so instead we do an |
| // unsigned right shift (divide by two), convert, and |
| // double. However, before we do that, we need to be |
| // sure that we do not lose a "1" if that made the |
| // difference in the resulting rounding. Therefore, we |
| // preserve it, and OR (not ADD) it back in. The case |
| // that matters is when the eleven discarded bits are |
| // equal to 10000000001; that rounds up, and the 1 cannot |
| // be lost else it would round down if the LSB of the |
| // candidate mantissa is 0. |
| cmp := s.newValue2(cvttab.leq, types.Types[types.TBOOL], s.zeroVal(ft), x) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| a0 := s.newValue1(cvttab.cvt2F, tt, x) |
| s.vars[n] = a0 |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| one := cvttab.one(s, ft, 1) |
| y := s.newValue2(cvttab.and, ft, x, one) |
| z := s.newValue2(cvttab.rsh, ft, x, one) |
| z = s.newValue2(cvttab.or, ft, z, y) |
| a := s.newValue1(cvttab.cvt2F, tt, z) |
| a1 := s.newValue2(cvttab.add, tt, a, a) |
| s.vars[n] = a1 |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, n.Type()) |
| } |
| |
| type u322fcvtTab struct { |
| cvtI2F, cvtF2F ssa.Op |
| } |
| |
| var u32_f64 = u322fcvtTab{ |
| cvtI2F: ssa.OpCvt32to64F, |
| cvtF2F: ssa.OpCopy, |
| } |
| |
| var u32_f32 = u322fcvtTab{ |
| cvtI2F: ssa.OpCvt32to32F, |
| cvtF2F: ssa.OpCvt64Fto32F, |
| } |
| |
| func (s *state) uint32Tofloat64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| return s.uint32Tofloat(&u32_f64, n, x, ft, tt) |
| } |
| |
| func (s *state) uint32Tofloat32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| return s.uint32Tofloat(&u32_f32, n, x, ft, tt) |
| } |
| |
| func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| // if x >= 0 { |
| // result = floatY(x) |
| // } else { |
| // result = floatY(float64(x) + (1<<32)) |
| // } |
| cmp := s.newValue2(ssa.OpLeq32, types.Types[types.TBOOL], s.zeroVal(ft), x) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| a0 := s.newValue1(cvttab.cvtI2F, tt, x) |
| s.vars[n] = a0 |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[types.TFLOAT64], x) |
| twoToThe32 := s.constFloat64(types.Types[types.TFLOAT64], float64(1<<32)) |
| a2 := s.newValue2(ssa.OpAdd64F, types.Types[types.TFLOAT64], a1, twoToThe32) |
| a3 := s.newValue1(cvttab.cvtF2F, tt, a2) |
| |
| s.vars[n] = a3 |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, n.Type()) |
| } |
| |
| // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. |
| func (s *state) referenceTypeBuiltin(n *ir.UnaryExpr, x *ssa.Value) *ssa.Value { |
| if !n.X.Type().IsMap() && !n.X.Type().IsChan() { |
| s.Fatalf("node must be a map or a channel") |
| } |
| // if n == nil { |
| // return 0 |
| // } else { |
| // // len |
| // return *((*int)n) |
| // // cap |
| // return *(((*int)n)+1) |
| // } |
| lenType := n.Type() |
| nilValue := s.constNil(types.Types[types.TUINTPTR]) |
| cmp := s.newValue2(ssa.OpEqPtr, types.Types[types.TBOOL], x, nilValue) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchUnlikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| // length/capacity of a nil map/chan is zero |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| s.vars[n] = s.zeroVal(lenType) |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| switch n.Op() { |
| case ir.OLEN: |
| // length is stored in the first word for map/chan |
| s.vars[n] = s.load(lenType, x) |
| case ir.OCAP: |
| // capacity is stored in the second word for chan |
| sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Size(), x) |
| s.vars[n] = s.load(lenType, sw) |
| default: |
| s.Fatalf("op must be OLEN or OCAP") |
| } |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, lenType) |
| } |
| |
| type f2uCvtTab struct { |
| ltf, cvt2U, subf, or ssa.Op |
| floatValue func(*state, *types.Type, float64) *ssa.Value |
| intValue func(*state, *types.Type, int64) *ssa.Value |
| cutoff uint64 |
| } |
| |
| var f32_u64 = f2uCvtTab{ |
| ltf: ssa.OpLess32F, |
| cvt2U: ssa.OpCvt32Fto64, |
| subf: ssa.OpSub32F, |
| or: ssa.OpOr64, |
| floatValue: (*state).constFloat32, |
| intValue: (*state).constInt64, |
| cutoff: 1 << 63, |
| } |
| |
| var f64_u64 = f2uCvtTab{ |
| ltf: ssa.OpLess64F, |
| cvt2U: ssa.OpCvt64Fto64, |
| subf: ssa.OpSub64F, |
| or: ssa.OpOr64, |
| floatValue: (*state).constFloat64, |
| intValue: (*state).constInt64, |
| cutoff: 1 << 63, |
| } |
| |
| var f32_u32 = f2uCvtTab{ |
| ltf: ssa.OpLess32F, |
| cvt2U: ssa.OpCvt32Fto32, |
| subf: ssa.OpSub32F, |
| or: ssa.OpOr32, |
| floatValue: (*state).constFloat32, |
| intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, |
| cutoff: 1 << 31, |
| } |
| |
| var f64_u32 = f2uCvtTab{ |
| ltf: ssa.OpLess64F, |
| cvt2U: ssa.OpCvt64Fto32, |
| subf: ssa.OpSub64F, |
| or: ssa.OpOr32, |
| floatValue: (*state).constFloat64, |
| intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, |
| cutoff: 1 << 31, |
| } |
| |
| func (s *state) float32ToUint64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| return s.floatToUint(&f32_u64, n, x, ft, tt) |
| } |
| func (s *state) float64ToUint64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| return s.floatToUint(&f64_u64, n, x, ft, tt) |
| } |
| |
| func (s *state) float32ToUint32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| return s.floatToUint(&f32_u32, n, x, ft, tt) |
| } |
| |
| func (s *state) float64ToUint32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| return s.floatToUint(&f64_u32, n, x, ft, tt) |
| } |
| |
| func (s *state) floatToUint(cvttab *f2uCvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { |
| // cutoff:=1<<(intY_Size-1) |
| // if x < floatX(cutoff) { |
| // result = uintY(x) |
| // } else { |
| // y = x - floatX(cutoff) |
| // z = uintY(y) |
| // result = z | -(cutoff) |
| // } |
| cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff)) |
| cmp := s.newValue2(cvttab.ltf, types.Types[types.TBOOL], x, cutoff) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| a0 := s.newValue1(cvttab.cvt2U, tt, x) |
| s.vars[n] = a0 |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| y := s.newValue2(cvttab.subf, ft, x, cutoff) |
| y = s.newValue1(cvttab.cvt2U, tt, y) |
| z := cvttab.intValue(s, tt, int64(-cvttab.cutoff)) |
| a1 := s.newValue2(cvttab.or, tt, y, z) |
| s.vars[n] = a1 |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, n.Type()) |
| } |
| |
| // dottype generates SSA for a type assertion node. |
| // commaok indicates whether to panic or return a bool. |
| // If commaok is false, resok will be nil. |
| func (s *state) dottype(n *ir.TypeAssertExpr, commaok bool) (res, resok *ssa.Value) { |
| iface := s.expr(n.X) // input interface |
| target := s.reflectType(n.Type()) // target type |
| var targetItab *ssa.Value |
| if n.Itab != nil { |
| targetItab = s.expr(n.Itab) |
| } |
| return s.dottype1(n.Pos(), n.X.Type(), n.Type(), iface, target, targetItab, commaok) |
| } |
| |
| func (s *state) dynamicDottype(n *ir.DynamicTypeAssertExpr, commaok bool) (res, resok *ssa.Value) { |
| iface := s.expr(n.X) |
| target := s.expr(n.T) |
| var itab *ssa.Value |
| if !n.X.Type().IsEmptyInterface() && !n.Type().IsInterface() { |
| byteptr := s.f.Config.Types.BytePtr |
| itab = target |
| target = s.load(byteptr, s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab)) // itab.typ |
| } |
| return s.dottype1(n.Pos(), n.X.Type(), n.Type(), iface, target, itab, commaok) |
| } |
| |
| // dottype1 implements a x.(T) operation. iface is the argument (x), dst is the type we're asserting to (T) |
| // and src is the type we're asserting from. |
| // target is the *runtime._type of dst. |
| // If src is a nonempty interface and dst is not an interface, targetItab is an itab representing (dst, src). Otherwise it is nil. |
| // commaok is true if the caller wants a boolean success value. Otherwise, the generated code panics if the conversion fails. |
| func (s *state) dottype1(pos src.XPos, src, dst *types.Type, iface, target, targetItab *ssa.Value, commaok bool) (res, resok *ssa.Value) { |
| byteptr := s.f.Config.Types.BytePtr |
| if dst.IsInterface() { |
| if dst.IsEmptyInterface() { |
| // Converting to an empty interface. |
| // Input could be an empty or nonempty interface. |
| if base.Debug.TypeAssert > 0 { |
| base.WarnfAt(pos, "type assertion inlined") |
| } |
| |
| // Get itab/type field from input. |
| itab := s.newValue1(ssa.OpITab, byteptr, iface) |
| // Conversion succeeds iff that field is not nil. |
| cond := s.newValue2(ssa.OpNeqPtr, types.Types[types.TBOOL], itab, s.constNil(byteptr)) |
| |
| if src.IsEmptyInterface() && commaok { |
| // Converting empty interface to empty interface with ,ok is just a nil check. |
| return iface, cond |
| } |
| |
| // Branch on nilness. |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cond) |
| b.Likely = ssa.BranchLikely |
| bOk := s.f.NewBlock(ssa.BlockPlain) |
| bFail := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bOk) |
| b.AddEdgeTo(bFail) |
| |
| if !commaok { |
| // On failure, panic by calling panicnildottype. |
| s.startBlock(bFail) |
| s.rtcall(ir.Syms.Panicnildottype, false, nil, target) |
| |
| // On success, return (perhaps modified) input interface. |
| s.startBlock(bOk) |
| if src.IsEmptyInterface() { |
| res = iface // Use input interface unchanged. |
| return |
| } |
| // Load type out of itab, build interface with existing idata. |
| off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab) |
| typ := s.load(byteptr, off) |
| idata := s.newValue1(ssa.OpIData, byteptr, iface) |
| res = s.newValue2(ssa.OpIMake, dst, typ, idata) |
| return |
| } |
| |
| s.startBlock(bOk) |
| // nonempty -> empty |
| // Need to load type from itab |
| off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab) |
| s.vars[typVar] = s.load(byteptr, off) |
| s.endBlock() |
| |
| // itab is nil, might as well use that as the nil result. |
| s.startBlock(bFail) |
| s.vars[typVar] = itab |
| s.endBlock() |
| |
| // Merge point. |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| bOk.AddEdgeTo(bEnd) |
| bFail.AddEdgeTo(bEnd) |
| s.startBlock(bEnd) |
| idata := s.newValue1(ssa.OpIData, byteptr, iface) |
| res = s.newValue2(ssa.OpIMake, dst, s.variable(typVar, byteptr), idata) |
| resok = cond |
| delete(s.vars, typVar) |
| return |
| } |
| // converting to a nonempty interface needs a runtime call. |
| if base.Debug.TypeAssert > 0 { |
| base.WarnfAt(pos, "type assertion not inlined") |
| } |
| if !commaok { |
| fn := ir.Syms.AssertI2I |
| if src.IsEmptyInterface() { |
| fn = ir.Syms.AssertE2I |
| } |
| data := s.newValue1(ssa.OpIData, types.Types[types.TUNSAFEPTR], iface) |
| tab := s.newValue1(ssa.OpITab, byteptr, iface) |
| tab = s.rtcall(fn, true, []*types.Type{byteptr}, target, tab)[0] |
| return s.newValue2(ssa.OpIMake, dst, tab, data), nil |
| } |
| fn := ir.Syms.AssertI2I2 |
| if src.IsEmptyInterface() { |
| fn = ir.Syms.AssertE2I2 |
| } |
| res = s.rtcall(fn, true, []*types.Type{dst}, target, iface)[0] |
| resok = s.newValue2(ssa.OpNeqInter, types.Types[types.TBOOL], res, s.constInterface(dst)) |
| return |
| } |
| |
| if base.Debug.TypeAssert > 0 { |
| base.WarnfAt(pos, "type assertion inlined") |
| } |
| |
| // Converting to a concrete type. |
| direct := types.IsDirectIface(dst) |
| itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface |
| if base.Debug.TypeAssert > 0 { |
| base.WarnfAt(pos, "type assertion inlined") |
| } |
| var wantedFirstWord *ssa.Value |
| if src.IsEmptyInterface() { |
| // Looking for pointer to target type. |
| wantedFirstWord = target |
| } else { |
| // Looking for pointer to itab for target type and source interface. |
| wantedFirstWord = targetItab |
| } |
| |
| var tmp ir.Node // temporary for use with large types |
| var addr *ssa.Value // address of tmp |
| if commaok && !TypeOK(dst) { |
| // unSSAable type, use temporary. |
| // TODO: get rid of some of these temporaries. |
| tmp, addr = s.temp(pos, dst) |
| } |
| |
| cond := s.newValue2(ssa.OpEqPtr, types.Types[types.TBOOL], itab, wantedFirstWord) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cond) |
| b.Likely = ssa.BranchLikely |
| |
| bOk := s.f.NewBlock(ssa.BlockPlain) |
| bFail := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bOk) |
| b.AddEdgeTo(bFail) |
| |
| if !commaok { |
| // on failure, panic by calling panicdottype |
| s.startBlock(bFail) |
| taddr := s.reflectType(src) |
| if src.IsEmptyInterface() { |
| s.rtcall(ir.Syms.PanicdottypeE, false, nil, itab, target, taddr) |
| } else { |
| s.rtcall(ir.Syms.PanicdottypeI, false, nil, itab, target, taddr) |
| } |
| |
| // on success, return data from interface |
| s.startBlock(bOk) |
| if direct { |
| return s.newValue1(ssa.OpIData, dst, iface), nil |
| } |
| p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface) |
| return s.load(dst, p), nil |
| } |
| |
| // commaok is the more complicated case because we have |
| // a control flow merge point. |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| // Note that we need a new valVar each time (unlike okVar where we can |
| // reuse the variable) because it might have a different type every time. |
| valVar := ssaMarker("val") |
| |
| // type assertion succeeded |
| s.startBlock(bOk) |
| if tmp == nil { |
| if direct { |
| s.vars[valVar] = s.newValue1(ssa.OpIData, dst, iface) |
| } else { |
| p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface) |
| s.vars[valVar] = s.load(dst, p) |
| } |
| } else { |
| p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface) |
| s.move(dst, addr, p) |
| } |
| s.vars[okVar] = s.constBool(true) |
| s.endBlock() |
| bOk.AddEdgeTo(bEnd) |
| |
| // type assertion failed |
| s.startBlock(bFail) |
| if tmp == nil { |
| s.vars[valVar] = s.zeroVal(dst) |
| } else { |
| s.zero(dst, addr) |
| } |
| s.vars[okVar] = s.constBool(false) |
| s.endBlock() |
| bFail.AddEdgeTo(bEnd) |
| |
| // merge point |
| s.startBlock(bEnd) |
| if tmp == nil { |
| res = s.variable(valVar, dst) |
| delete(s.vars, valVar) |
| } else { |
| res = s.load(dst, addr) |
| s.vars[memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp.(*ir.Name), s.mem()) |
| } |
| resok = s.variable(okVar, types.Types[types.TBOOL]) |
| delete(s.vars, okVar) |
| return res, resok |
| } |
| |
| // temp allocates a temp of type t at position pos |
| func (s *state) temp(pos src.XPos, t *types.Type) (*ir.Name, *ssa.Value) { |
| tmp := typecheck.TempAt(pos, s.curfn, t) |
| s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem()) |
| addr := s.addr(tmp) |
| return tmp, addr |
| } |
| |
| // variable returns the value of a variable at the current location. |
| func (s *state) variable(n ir.Node, t *types.Type) *ssa.Value { |
| v := s.vars[n] |
| if v != nil { |
| return v |
| } |
| v = s.fwdVars[n] |
| if v != nil { |
| return v |
| } |
| |
| if s.curBlock == s.f.Entry { |
| // No variable should be live at entry. |
| s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, n, v) |
| } |
| // Make a FwdRef, which records a value that's live on block input. |
| // We'll find the matching definition as part of insertPhis. |
| v = s.newValue0A(ssa.OpFwdRef, t, fwdRefAux{N: n}) |
| s.fwdVars[n] = v |
| if n.Op() == ir.ONAME { |
| s.addNamedValue(n.(*ir.Name), v) |
| } |
| return v |
| } |
| |
| func (s *state) mem() *ssa.Value { |
| return s.variable(memVar, types.TypeMem) |
| } |
| |
| func (s *state) addNamedValue(n *ir.Name, v *ssa.Value) { |
| if n.Class == ir.Pxxx { |
| // Don't track our marker nodes (memVar etc.). |
| return |
| } |
| if ir.IsAutoTmp(n) { |
| // Don't track temporary variables. |
| return |
| } |
| if n.Class == ir.PPARAMOUT { |
| // Don't track named output values. This prevents return values |
| // from being assigned too early. See #14591 and #14762. TODO: allow this. |
| return |
| } |
| loc := ssa.LocalSlot{N: n, Type: n.Type(), Off: 0} |
| values, ok := s.f.NamedValues[loc] |
| if !ok { |
| s.f.Names = append(s.f.Names, &loc) |
| s.f.CanonicalLocalSlots[loc] = &loc |
| } |
| s.f.NamedValues[loc] = append(values, v) |
| } |
| |
| // Branch is an unresolved branch. |
| type Branch struct { |
| P *obj.Prog // branch instruction |
| B *ssa.Block // target |
| } |
| |
| // State contains state needed during Prog generation. |
| type State struct { |
| ABI obj.ABI |
| |
| pp *objw.Progs |
| |
| // Branches remembers all the branch instructions we've seen |
| // and where they would like to go. |
| Branches []Branch |
| |
| // JumpTables remembers all the jump tables we've seen. |
| JumpTables []*ssa.Block |
| |
| // bstart remembers where each block starts (indexed by block ID) |
| bstart []*obj.Prog |
| |
| maxarg int64 // largest frame size for arguments to calls made by the function |
| |
| // Map from GC safe points to liveness index, generated by |
| // liveness analysis. |
| livenessMap liveness.Map |
| |
| // partLiveArgs includes arguments that may be partially live, for which we |
| // need to generate instructions that spill the argument registers. |
| partLiveArgs map[*ir.Name]bool |
| |
| // lineRunStart records the beginning of the current run of instructions |
| // within a single block sharing the same line number |
| // Used to move statement marks to the beginning of such runs. |
| lineRunStart *obj.Prog |
| |
| // wasm: The number of values on the WebAssembly stack. This is only used as a safeguard. |
| OnWasmStackSkipped int |
| } |
| |
| func (s *State) FuncInfo() *obj.FuncInfo { |
| return s.pp.CurFunc.LSym.Func() |
| } |
| |
| // Prog appends a new Prog. |
| func (s *State) Prog(as obj.As) *obj.Prog { |
| p := s.pp.Prog(as) |
| if objw.LosesStmtMark(as) { |
| return p |
| } |
| // Float a statement start to the beginning of any same-line run. |
| // lineRunStart is reset at block boundaries, which appears to work well. |
| if s.lineRunStart == nil || s.lineRunStart.Pos.Line() != p.Pos.Line() { |
| s.lineRunStart = p |
| } else if p.Pos.IsStmt() == src.PosIsStmt { |
| s.lineRunStart.Pos = s.lineRunStart.Pos.WithIsStmt() |
| p.Pos = p.Pos.WithNotStmt() |
| } |
| return p |
| } |
| |
| // Pc returns the current Prog. |
| func (s *State) Pc() *obj.Prog { |
| return s.pp.Next |
| } |
| |
| // SetPos sets the current source position. |
| func (s *State) SetPos(pos src.XPos) { |
| s.pp.Pos = pos |
| } |
| |
| // Br emits a single branch instruction and returns the instruction. |
| // Not all architectures need the returned instruction, but otherwise |
| // the boilerplate is common to all. |
| func (s *State) Br(op obj.As, target *ssa.Block) *obj.Prog { |
| p := s.Prog(op) |
| p.To.Type = obj.TYPE_BRANCH |
| s.Branches = append(s.Branches, Branch{P: p, B: target}) |
| return p |
| } |
| |
| // DebugFriendlySetPosFrom adjusts Pos.IsStmt subject to heuristics |
| // that reduce "jumpy" line number churn when debugging. |
| // Spill/fill/copy instructions from the register allocator, |
| // phi functions, and instructions with a no-pos position |
| // are examples of instructions that can cause churn. |
| func (s *State) DebugFriendlySetPosFrom(v *ssa.Value) { |
| switch v.Op { |
| case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg: |
| // These are not statements |
| s.SetPos(v.Pos.WithNotStmt()) |
| default: |
| p := v.Pos |
| if p != src.NoXPos { |
| // If the position is defined, update the position. |
| // Also convert default IsStmt to NotStmt; only |
| // explicit statement boundaries should appear |
| // in the generated code. |
| if p.IsStmt() != src.PosIsStmt { |
| if s.pp.Pos.IsStmt() == src.PosIsStmt && s.pp.Pos.SameFileAndLine(p) { |
| // If s.pp.Pos already has a statement mark, then it was set here (below) for |
| // the previous value. If an actual instruction had been emitted for that |
| // value, then the statement mark would have been reset. Since the statement |
| // mark of s.pp.Pos was not reset, this position (file/line) still needs a |
| // statement mark on an instruction. If file and line for this value are |
| // the same as the previous value, then the first instruction for this |
| // value will work to take the statement mark. Return early to avoid |
| // resetting the statement mark. |
| // |
| // The reset of s.pp.Pos occurs in (*Progs).Prog() -- if it emits |
| // an instruction, and the instruction's statement mark was set, |
| // and it is not one of the LosesStmtMark instructions, |
| // then Prog() resets the statement mark on the (*Progs).Pos. |
| return |
| } |
| p = p.WithNotStmt() |
| // Calls use the pos attached to v, but copy the statement mark from State |
| } |
| s.SetPos(p) |
| } else { |
| s.SetPos(s.pp.Pos.WithNotStmt()) |
| } |
| } |
| } |
| |
| // emit argument info (locations on stack) for traceback. |
| func emitArgInfo(e *ssafn, f *ssa.Func, pp *objw.Progs) { |
| ft := e.curfn.Type() |
| if ft.NumRecvs() == 0 && ft.NumParams() == 0 { |
| return |
| } |
| |
| x := EmitArgInfo(e.curfn, f.OwnAux.ABIInfo()) |
| x.Set(obj.AttrContentAddressable, true) |
| e.curfn.LSym.Func().ArgInfo = x |
| |
| // Emit a funcdata pointing at the arg info data. |
| p := pp.Prog(obj.AFUNCDATA) |
| p.From.SetConst(objabi.FUNCDATA_ArgInfo) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = x |
| } |
| |
| // emit argument info (locations on stack) of f for traceback. |
| func EmitArgInfo(f *ir.Func, abiInfo *abi.ABIParamResultInfo) *obj.LSym { |
| x := base.Ctxt.Lookup(fmt.Sprintf("%s.arginfo%d", f.LSym.Name, f.ABI)) |
| // NOTE: do not set ContentAddressable here. This may be referenced from |
| // assembly code by name (in this case f is a declaration). |
| // Instead, set it in emitArgInfo above. |
| |
| PtrSize := int64(types.PtrSize) |
| uintptrTyp := types.Types[types.TUINTPTR] |
| |
| isAggregate := func(t *types.Type) bool { |
| return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice() |
| } |
| |
| // Populate the data. |
| // The data is a stream of bytes, which contains the offsets and sizes of the |
| // non-aggregate arguments or non-aggregate fields/elements of aggregate-typed |
| // arguments, along with special "operators". Specifically, |
| // - for each non-aggrgate arg/field/element, its offset from FP (1 byte) and |
| // size (1 byte) |
| // - special operators: |
| // - 0xff - end of sequence |
| // - 0xfe - print { (at the start of an aggregate-typed argument) |
| // - 0xfd - print } (at the end of an aggregate-typed argument) |
| // - 0xfc - print ... (more args/fields/elements) |
| // - 0xfb - print _ (offset too large) |
| // These constants need to be in sync with runtime.traceback.go:printArgs. |
| const ( |
| _endSeq = 0xff |
| _startAgg = 0xfe |
| _endAgg = 0xfd |
| _dotdotdot = 0xfc |
| _offsetTooLarge = 0xfb |
| _special = 0xf0 // above this are operators, below this are ordinary offsets |
| ) |
| |
| const ( |
| limit = 10 // print no more than 10 args/components |
| maxDepth = 5 // no more than 5 layers of nesting |
| |
| // maxLen is a (conservative) upper bound of the byte stream length. For |
| // each arg/component, it has no more than 2 bytes of data (size, offset), |
| // and no more than one {, }, ... at each level (it cannot have both the |
| // data and ... unless it is the last one, just be conservative). Plus 1 |
| // for _endSeq. |
| maxLen = (maxDepth*3+2)*limit + 1 |
| ) |
| |
| wOff := 0 |
| n := 0 |
| writebyte := func(o uint8) { wOff = objw.Uint8(x, wOff, o) } |
| |
| // Write one non-aggrgate arg/field/element. |
| write1 := func(sz, offset int64) { |
| if offset >= _special { |
| writebyte(_offsetTooLarge) |
| } else { |
| writebyte(uint8(offset)) |
| writebyte(uint8(sz)) |
| } |
| n++ |
| } |
| |
| // Visit t recursively and write it out. |
| // Returns whether to continue visiting. |
| var visitType func(baseOffset int64, t *types.Type, depth int) bool |
| visitType = func(baseOffset int64, t *types.Type, depth int) bool { |
| if n >= limit { |
| writebyte(_dotdotdot) |
| return false |
| } |
| if !isAggregate(t) { |
| write1(t.Size(), baseOffset) |
| return true |
| } |
| writebyte(_startAgg) |
| depth++ |
| if depth >= maxDepth { |
| writebyte(_dotdotdot) |
| writebyte(_endAgg) |
| n++ |
| return true |
| } |
| switch { |
| case t.IsInterface(), t.IsString(): |
| _ = visitType(baseOffset, uintptrTyp, depth) && |
| visitType(baseOffset+PtrSize, uintptrTyp, depth) |
| case t.IsSlice(): |
| _ = visitType(baseOffset, uintptrTyp, depth) && |
| visitType(baseOffset+PtrSize, uintptrTyp, depth) && |
| visitType(baseOffset+PtrSize*2, uintptrTyp, depth) |
| case t.IsComplex(): |
| _ = visitType(baseOffset, types.FloatForComplex(t), depth) && |
| visitType(baseOffset+t.Size()/2, types.FloatForComplex(t), depth) |
| case t.IsArray(): |
| if t.NumElem() == 0 { |
| n++ // {} counts as a component |
| break |
| } |
| for i := int64(0); i < t.NumElem(); i++ { |
| if !visitType(baseOffset, t.Elem(), depth) { |
| break |
| } |
| baseOffset += t.Elem().Size() |
| } |
| case t.IsStruct(): |
| if t.NumFields() == 0 { |
| n++ // {} counts as a component |
| break |
| } |
| for _, field := range t.Fields().Slice() { |
| if !visitType(baseOffset+field.Offset, field.Type, depth) { |
| break |
| } |
| } |
| } |
| writebyte(_endAgg) |
| return true |
| } |
| |
| start := 0 |
| if strings.Contains(f.LSym.Name, "[") { |
| // Skip the dictionary argument - it is implicit and the user doesn't need to see it. |
| start = 1 |
| } |
| |
| for _, a := range abiInfo.InParams()[start:] { |
| if !visitType(a.FrameOffset(abiInfo), a.Type, 0) { |
| break |
| } |
| } |
| writebyte(_endSeq) |
| if wOff > maxLen { |
| base.Fatalf("ArgInfo too large") |
| } |
| |
| return x |
| } |
| |
| // for wrapper, emit info of wrapped function. |
| func emitWrappedFuncInfo(e *ssafn, pp *objw.Progs) { |
| if base.Ctxt.Flag_linkshared { |
| // Relative reference (SymPtrOff) to another shared object doesn't work. |
| // Unfortunate. |
| return |
| } |
| |
| wfn := e.curfn.WrappedFunc |
| if wfn == nil { |
| return |
| } |
| |
| wsym := wfn.Linksym() |
| x := base.Ctxt.LookupInit(fmt.Sprintf("%s.wrapinfo", wsym.Name), func(x *obj.LSym) { |
| objw.SymPtrOff(x, 0, wsym) |
| x.Set(obj.AttrContentAddressable, true) |
| }) |
| e.curfn.LSym.Func().WrapInfo = x |
| |
| // Emit a funcdata pointing at the wrap info data. |
| p := pp.Prog(obj.AFUNCDATA) |
| p.From.SetConst(objabi.FUNCDATA_WrapInfo) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = x |
| } |
| |
| // genssa appends entries to pp for each instruction in f. |
| func genssa(f *ssa.Func, pp *objw.Progs) { |
| var s State |
| s.ABI = f.OwnAux.Fn.ABI() |
| |
| e := f.Frontend().(*ssafn) |
| |
| s.livenessMap, s.partLiveArgs = liveness.Compute(e.curfn, f, e.stkptrsize, pp) |
| emitArgInfo(e, f, pp) |
| argLiveBlockMap, argLiveValueMap := liveness.ArgLiveness(e.curfn, f, pp) |
| |
| openDeferInfo := e.curfn.LSym.Func().OpenCodedDeferInfo |
| if openDeferInfo != nil { |
| // This function uses open-coded defers -- write out the funcdata |
| // info that we computed at the end of genssa. |
| p := pp.Prog(obj.AFUNCDATA) |
| p.From.SetConst(objabi.FUNCDATA_OpenCodedDeferInfo) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = openDeferInfo |
| } |
| |
| emitWrappedFuncInfo(e, pp) |
| |
| // Remember where each block starts. |
| s.bstart = make([]*obj.Prog, f.NumBlocks()) |
| s.pp = pp |
| var progToValue map[*obj.Prog]*ssa.Value |
| var progToBlock map[*obj.Prog]*ssa.Block |
| var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point. |
| gatherPrintInfo := f.PrintOrHtmlSSA || ssa.GenssaDump[f.Name] |
| if gatherPrintInfo { |
| progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues()) |
| progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) |
| f.Logf("genssa %s\n", f.Name) |
| progToBlock[s.pp.Next] = f.Blocks[0] |
| } |
| |
| if base.Ctxt.Flag_locationlists { |
| if cap(f.Cache.ValueToProgAfter) < f.NumValues() { |
| f.Cache.ValueToProgAfter = make([]*obj.Prog, f.NumValues()) |
| } |
| valueToProgAfter = f.Cache.ValueToProgAfter[:f.NumValues()] |
| for i := range valueToProgAfter { |
| valueToProgAfter[i] = nil |
| } |
| } |
| |
| // If the very first instruction is not tagged as a statement, |
| // debuggers may attribute it to previous function in program. |
| firstPos := src.NoXPos |
| for _, v := range f.Entry.Values { |
| if v.Pos.IsStmt() == src.PosIsStmt { |
| firstPos = v.Pos |
| v.Pos = firstPos.WithDefaultStmt() |
| break |
| } |
| } |
| |
| // inlMarks has an entry for each Prog that implements an inline mark. |
| // It maps from that Prog to the global inlining id of the inlined body |
| // which should unwind to this Prog's location. |
| var inlMarks map[*obj.Prog]int32 |
| var inlMarkList []*obj.Prog |
| |
| // inlMarksByPos maps from a (column 1) source position to the set of |
| // Progs that are in the set above and have that source position. |
| var inlMarksByPos map[src.XPos][]*obj.Prog |
| |
| var argLiveIdx int = -1 // argument liveness info index |
| |
| // Emit basic blocks |
| for i, b := range f.Blocks { |
| s.bstart[b.ID] = s.pp.Next |
| s.lineRunStart = nil |
| s.SetPos(s.pp.Pos.WithNotStmt()) // It needs a non-empty Pos, but cannot be a statement boundary (yet). |
| |
| // Attach a "default" liveness info. Normally this will be |
| // overwritten in the Values loop below for each Value. But |
| // for an empty block this will be used for its control |
| // instruction. We won't use the actual liveness map on a |
| // control instruction. Just mark it something that is |
| // preemptible, unless this function is "all unsafe". |
| s.pp.NextLive = objw.LivenessIndex{StackMapIndex: -1, IsUnsafePoint: liveness.IsUnsafe(f)} |
| |
| if idx, ok := argLiveBlockMap[b.ID]; ok && idx != argLiveIdx { |
| argLiveIdx = idx |
| p := s.pp.Prog(obj.APCDATA) |
| p.From.SetConst(objabi.PCDATA_ArgLiveIndex) |
| p.To.SetConst(int64(idx)) |
| } |
| |
| // Emit values in block |
| Arch.SSAMarkMoves(&s, b) |
| for _, v := range b.Values { |
| x := s.pp.Next |
| s.DebugFriendlySetPosFrom(v) |
| |
| if v.Op.ResultInArg0() && v.ResultReg() != v.Args[0].Reg() { |
| v.Fatalf("input[0] and output not in same register %s", v.LongString()) |
| } |
| |
| switch v.Op { |
| case ssa.OpInitMem: |
| // memory arg needs no code |
| case ssa.OpArg: |
| // input args need no code |
| case ssa.OpSP, ssa.OpSB: |
| // nothing to do |
| case ssa.OpSelect0, ssa.OpSelect1, ssa.OpSelectN, ssa.OpMakeResult: |
| // nothing to do |
| case ssa.OpGetG: |
| // nothing to do when there's a g register, |
| // and checkLower complains if there's not |
| case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive, ssa.OpVarKill: |
| // nothing to do; already used by liveness |
| case ssa.OpPhi: |
| CheckLoweredPhi(v) |
| case ssa.OpConvert: |
| // nothing to do; no-op conversion for liveness |
| if v.Args[0].Reg() != v.Reg() { |
| v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString()) |
| } |
| case ssa.OpInlMark: |
| p := Arch.Ginsnop(s.pp) |
| if inlMarks == nil { |
| inlMarks = map[*obj.Prog]int32{} |
| inlMarksByPos = map[src.XPos][]*obj.Prog{} |
| } |
| inlMarks[p] = v.AuxInt32() |
| inlMarkList = append(inlMarkList, p) |
| pos := v.Pos.AtColumn1() |
| inlMarksByPos[pos] = append(inlMarksByPos[pos], p) |
| |
| default: |
| // Special case for first line in function; move it to the start (which cannot be a register-valued instruction) |
| if firstPos != src.NoXPos && v.Op != ssa.OpArgIntReg && v.Op != ssa.OpArgFloatReg && v.Op != ssa.OpLoadReg && v.Op != ssa.OpStoreReg { |
| s.SetPos(firstPos) |
| firstPos = src.NoXPos |
| } |
| // Attach this safe point to the next |
| // instruction. |
| s.pp.NextLive = s.livenessMap.Get(v) |
| |
| // let the backend handle it |
| Arch.SSAGenValue(&s, v) |
| } |
| |
| if idx, ok := argLiveValueMap[v.ID]; ok && idx != argLiveIdx { |
| argLiveIdx = idx |
| p := s.pp.Prog(obj.APCDATA) |
| p.From.SetConst(objabi.PCDATA_ArgLiveIndex) |
| p.To.SetConst(int64(idx)) |
| } |
| |
| if base.Ctxt.Flag_locationlists { |
| valueToProgAfter[v.ID] = s.pp.Next |
| } |
| |
| if gatherPrintInfo { |
| for ; x != s.pp.Next; x = x.Link { |
| progToValue[x] = v |
| } |
| } |
| } |
| // If this is an empty infinite loop, stick a hardware NOP in there so that debuggers are less confused. |
| if s.bstart[b.ID] == s.pp.Next && len(b.Succs) == 1 && b.Succs[0].Block() == b { |
| p := Arch.Ginsnop(s.pp) |
| p.Pos = p.Pos.WithIsStmt() |
| if b.Pos == src.NoXPos { |
| b.Pos = p.Pos // It needs a file, otherwise a no-file non-zero line causes confusion. See #35652. |
| if b.Pos == src.NoXPos { |
| b.Pos = pp.Text.Pos // Sometimes p.Pos is empty. See #35695. |
| } |
| } |
| b.Pos = b.Pos.WithBogusLine() // Debuggers are not good about infinite loops, force a change in line number |
| } |
| // Emit control flow instructions for block |
| var next *ssa.Block |
| if i < len(f.Blocks)-1 && base.Flag.N == 0 { |
| // If -N, leave next==nil so every block with successors |
| // ends in a JMP (except call blocks - plive doesn't like |
| // select{send,recv} followed by a JMP call). Helps keep |
| // line numbers for otherwise empty blocks. |
| next = f.Blocks[i+1] |
| } |
| x := s.pp.Next |
| s.SetPos(b.Pos) |
| Arch.SSAGenBlock(&s, b, next) |
| if gatherPrintInfo { |
| for ; x != s.pp.Next; x = x.Link { |
| progToBlock[x] = b |
| } |
| } |
| } |
| if f.Blocks[len(f.Blocks)-1].Kind == ssa.BlockExit { |
| // We need the return address of a panic call to |
| // still be inside the function in question. So if |
| // it ends in a call which doesn't return, add a |
| // nop (which will never execute) after the call. |
| Arch.Ginsnop(pp) |
| } |
| if openDeferInfo != nil { |
| // When doing open-coded defers, generate a disconnected call to |
| // deferreturn and a return. This will be used to during panic |
| // recovery to unwind the stack and return back to the runtime. |
| s.pp.NextLive = s.livenessMap.DeferReturn |
| p := pp.Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = ir.Syms.Deferreturn |
| |
| // Load results into registers. So when a deferred function |
| // recovers a panic, it will return to caller with right results. |
| // The results are already in memory, because they are not SSA'd |
| // when the function has defers (see canSSAName). |
| for _, o := range f.OwnAux.ABIInfo().OutParams() { |
| n := o.Name.(*ir.Name) |
| rts, offs := o.RegisterTypesAndOffsets() |
| for i := range o.Registers { |
| Arch.LoadRegResult(&s, f, rts[i], ssa.ObjRegForAbiReg(o.Registers[i], f.Config), n, offs[i]) |
| } |
| } |
| |
| pp.Prog(obj.ARET) |
| } |
| |
| if inlMarks != nil { |
| // We have some inline marks. Try to find other instructions we're |
| // going to emit anyway, and use those instructions instead of the |
| // inline marks. |
| for p := pp.Text; p != nil; p = p.Link { |
| if p.As == obj.ANOP || p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.APCALIGN || Arch.LinkArch.Family == sys.Wasm { |
| // Don't use 0-sized instructions as inline marks, because we need |
| // to identify inline mark instructions by pc offset. |
| // (Some of these instructions are sometimes zero-sized, sometimes not. |
| // We must not use anything that even might be zero-sized.) |
| // TODO: are there others? |
| continue |
| } |
| if _, ok := inlMarks[p]; ok { |
| // Don't use inline marks themselves. We don't know |
| // whether they will be zero-sized or not yet. |
| continue |
| } |
| pos := p.Pos.AtColumn1() |
| s := inlMarksByPos[pos] |
| if len(s) == 0 { |
| continue |
| } |
| for _, m := range s { |
| // We found an instruction with the same source position as |
| // some of the inline marks. |
| // Use this instruction instead. |
| p.Pos = p.Pos.WithIsStmt() // promote position to a statement |
| pp.CurFunc.LSym.Func().AddInlMark(p, inlMarks[m]) |
| // Make the inline mark a real nop, so it doesn't generate any code. |
| m.As = obj.ANOP |
| m.Pos = src.NoXPos |
| m.From = obj.Addr{} |
| m.To = obj.Addr{} |
| } |
| delete(inlMarksByPos, pos) |
| } |
| // Any unmatched inline marks now need to be added to the inlining tree (and will generate a nop instruction). |
| for _, p := range inlMarkList { |
| if p.As != obj.ANOP { |
| pp.CurFunc.LSym.Func().AddInlMark(p, inlMarks[p]) |
| } |
| } |
| } |
| |
| if base.Ctxt.Flag_locationlists { |
| var debugInfo *ssa.FuncDebug |
| debugInfo = e.curfn.DebugInfo.(*ssa.FuncDebug) |
| if e.curfn.ABI == obj.ABIInternal && base.Flag.N != 0 { |
| ssa.BuildFuncDebugNoOptimized(base.Ctxt, f, base.Debug.LocationLists > 1, StackOffset, debugInfo) |
| } else { |
| ssa.BuildFuncDebug(base.Ctxt, f, base.Debug.LocationLists > 1, StackOffset, debugInfo) |
| } |
| bstart := s.bstart |
| idToIdx := make([]int, f.NumBlocks()) |
| for i, b := range f.Blocks { |
| idToIdx[b.ID] = i |
| } |
| // Note that at this moment, Prog.Pc is a sequence number; it's |
| // not a real PC until after assembly, so this mapping has to |
| // be done later. |
| debugInfo.GetPC = func(b, v ssa.ID) int64 { |
| switch v { |
| case ssa.BlockStart.ID: |
| if b == f.Entry.ID { |
| return 0 // Start at the very beginning, at the assembler-generated prologue. |
| // this should only happen for function args (ssa.OpArg) |
| } |
| return bstart[b].Pc |
| case ssa.BlockEnd.ID: |
| blk := f.Blocks[idToIdx[b]] |
| nv := len(blk.Values) |
| return valueToProgAfter[blk.Values[nv-1].ID].Pc |
| case ssa.FuncEnd.ID: |
| return e.curfn.LSym.Size |
| default: |
| return valueToProgAfter[v].Pc |
| } |
| } |
| } |
| |
| // Resolve branches, and relax DefaultStmt into NotStmt |
| for _, br := range s.Branches { |
| br.P.To.SetTarget(s.bstart[br.B.ID]) |
| if br.P.Pos.IsStmt() != src.PosIsStmt { |
| br.P.Pos = br.P.Pos.WithNotStmt() |
| } else if v0 := br.B.FirstPossibleStmtValue(); v0 != nil && v0.Pos.Line() == br.P.Pos.Line() && v0.Pos.IsStmt() == src.PosIsStmt { |
| br.P.Pos = br.P.Pos.WithNotStmt() |
| } |
| |
| } |
| |
| // Resolve jump table destinations. |
| for _, jt := range s.JumpTables { |
| // Convert from *Block targets to *Prog targets. |
| targets := make([]*obj.Prog, len(jt.Succs)) |
| for i, e := range jt.Succs { |
| targets[i] = s.bstart[e.Block().ID] |
| } |
| // Add to list of jump tables to be resolved at assembly time. |
| // The assembler converts from *Prog entries to absolute addresses |
| // once it knows instruction byte offsets. |
| fi := pp.CurFunc.LSym.Func() |
| fi.JumpTables = append(fi.JumpTables, obj.JumpTable{Sym: jt.Aux.(*obj.LSym), Targets: targets}) |
| } |
| |
| if e.log { // spew to stdout |
| filename := "" |
| for p := pp.Text; p != nil; p = p.Link { |
| if p.Pos.IsKnown() && p.InnermostFilename() != filename { |
| filename = p.InnermostFilename() |
| f.Logf("# %s\n", filename) |
| } |
| |
| var s string |
| if v, ok := progToValue[p]; ok { |
| s = v.String() |
| } else if b, ok := progToBlock[p]; ok { |
| s = b.String() |
| } else { |
| s = " " // most value and branch strings are 2-3 characters long |
| } |
| f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString()) |
| } |
| } |
| if f.HTMLWriter != nil { // spew to ssa.html |
| var buf bytes.Buffer |
| buf.WriteString("<code>") |
| buf.WriteString("<dl class=\"ssa-gen\">") |
| filename := "" |
| for p := pp.Text; p != nil; p = p.Link { |
| // Don't spam every line with the file name, which is often huge. |
| // Only print changes, and "unknown" is not a change. |
| if p.Pos.IsKnown() && p.InnermostFilename() != filename { |
| filename = p.InnermostFilename() |
| buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">") |
| buf.WriteString(html.EscapeString("# " + filename)) |
| buf.WriteString("</dd>") |
| } |
| |
| buf.WriteString("<dt class=\"ssa-prog-src\">") |
| if v, ok := progToValue[p]; ok { |
| buf.WriteString(v.HTML()) |
| } else if b, ok := progToBlock[p]; ok { |
| buf.WriteString("<b>" + b.HTML() + "</b>") |
| } |
| buf.WriteString("</dt>") |
| buf.WriteString("<dd class=\"ssa-prog\">") |
| buf.WriteString(fmt.Sprintf("%.5d <span class=\"l%v line-number\">(%s)</span> %s", p.Pc, p.InnermostLineNumber(), p.InnermostLineNumberHTML(), html.EscapeString(p.InstructionString()))) |
| buf.WriteString("</dd>") |
| } |
| buf.WriteString("</dl>") |
| buf.WriteString("</code>") |
| f.HTMLWriter.WriteColumn("genssa", "genssa", "ssa-prog", buf.String()) |
| } |
| if ssa.GenssaDump[f.Name] { |
| fi := f.DumpFileForPhase("genssa") |
| if fi != nil { |
| |
| // inliningDiffers if any filename changes or if any line number except the innermost (index 0) changes. |
| inliningDiffers := func(a, b []src.Pos) bool { |
| if len(a) != len(b) { |
| return true |
| } |
| for i := range a { |
| if a[i].Filename() != b[i].Filename() { |
| return true |
| } |
| if i > 0 && a[i].Line() != b[i].Line() { |
| return true |
| } |
| } |
| return false |
| } |
| |
| var allPosOld []src.Pos |
| var allPos []src.Pos |
| |
| for p := pp.Text; p != nil; p = p.Link { |
| if p.Pos.IsKnown() { |
| allPos = p.AllPos(allPos) |
| if inliningDiffers(allPos, allPosOld) { |
| for i := len(allPos) - 1; i >= 0; i-- { |
| pos := allPos[i] |
| fmt.Fprintf(fi, "# %s:%d\n", pos.Filename(), pos.Line()) |
| } |
| allPos, allPosOld = allPosOld, allPos // swap, not copy, so that they do not share slice storage. |
| } |
| } |
| |
| var s string |
| if v, ok := progToValue[p]; ok { |
| s = v.String() |
| } else if b, ok := progToBlock[p]; ok { |
| s = b.String() |
| } else { |
| s = " " // most value and branch strings are 2-3 characters long |
| } |
| fmt.Fprintf(fi, " %-6s\t%.5d %s\t%s\n", s, p.Pc, ssa.StmtString(p.Pos), p.InstructionString()) |
| } |
| fi.Close() |
| } |
| } |
| |
| defframe(&s, e, f) |
| |
| f.HTMLWriter.Close() |
| f.HTMLWriter = nil |
| } |
| |
| func defframe(s *State, e *ssafn, f *ssa.Func) { |
| pp := s.pp |
| |
| frame := types.Rnd(s.maxarg+e.stksize, int64(types.RegSize)) |
| if Arch.PadFrame != nil { |
| frame = Arch.PadFrame(frame) |
| } |
| |
| // Fill in argument and frame size. |
| pp.Text.To.Type = obj.TYPE_TEXTSIZE |
| pp.Text.To.Val = int32(types.Rnd(f.OwnAux.ArgWidth(), int64(types.RegSize))) |
| pp.Text.To.Offset = frame |
| |
| p := pp.Text |
| |
| // Insert code to spill argument registers if the named slot may be partially |
| // live. That is, the named slot is considered live by liveness analysis, |
| // (because a part of it is live), but we may not spill all parts into the |
| // slot. This can only happen with aggregate-typed arguments that are SSA-able |
| // and not address-taken (for non-SSA-able or address-taken arguments we always |
| // spill upfront). |
| // Note: spilling is unnecessary in the -N/no-optimize case, since all values |
| // will be considered non-SSAable and spilled up front. |
| // TODO(register args) Make liveness more fine-grained to that partial spilling is okay. |
| if f.OwnAux.ABIInfo().InRegistersUsed() != 0 && base.Flag.N == 0 { |
| // First, see if it is already spilled before it may be live. Look for a spill |
| // in the entry block up to the first safepoint. |
| type nameOff struct { |
| n *ir.Name |
| off int64 |
| } |
| partLiveArgsSpilled := make(map[nameOff]bool) |
| for _, v := range f.Entry.Values { |
| if v.Op.IsCall() { |
| break |
| } |
| if v.Op != ssa.OpStoreReg || v.Args[0].Op != ssa.OpArgIntReg { |
| continue |
| } |
| n, off := ssa.AutoVar(v) |
| if n.Class != ir.PPARAM || n.Addrtaken() || !TypeOK(n.Type()) || !s.partLiveArgs[n] { |
| continue |
| } |
| partLiveArgsSpilled[nameOff{n, off}] = true |
| } |
| |
| // Then, insert code to spill registers if not already. |
| for _, a := range f.OwnAux.ABIInfo().InParams() { |
| n, ok := a.Name.(*ir.Name) |
| if !ok || n.Addrtaken() || !TypeOK(n.Type()) || !s.partLiveArgs[n] || len(a.Registers) <= 1 { |
| continue |
| } |
| rts, offs := a.RegisterTypesAndOffsets() |
| for i := range a.Registers { |
| if !rts[i].HasPointers() { |
| continue |
| } |
| if partLiveArgsSpilled[nameOff{n, offs[i]}] { |
| continue // already spilled |
| } |
| reg := ssa.ObjRegForAbiReg(a.Registers[i], f.Config) |
| p = Arch.SpillArgReg(pp, p, f, rts[i], reg, n, offs[i]) |
| } |
| } |
| } |
| |
| // Insert code to zero ambiguously live variables so that the |
| // garbage collector only sees initialized values when it |
| // looks for pointers. |
| var lo, hi int64 |
| |
| // Opaque state for backend to use. Current backends use it to |
| // keep track of which helper registers have been zeroed. |
| var state uint32 |
| |
| // Iterate through declarations. Autos are sorted in decreasing |
| // frame offset order. |
| for _, n := range e.curfn.Dcl { |
| if !n.Needzero() { |
| continue |
| } |
| if n.Class != ir.PAUTO { |
| e.Fatalf(n.Pos(), "needzero class %d", n.Class) |
| } |
| if n.Type().Size()%int64(types.PtrSize) != 0 || n.FrameOffset()%int64(types.PtrSize) != 0 || n.Type().Size() == 0 { |
| e.Fatalf(n.Pos(), "var %L has size %d offset %d", n, n.Type().Size(), n.Offset_) |
| } |
| |
| if lo != hi && n.FrameOffset()+n.Type().Size() >= lo-int64(2*types.RegSize) { |
| // Merge with range we already have. |
| lo = n.FrameOffset() |
| continue |
| } |
| |
| // Zero old range |
| p = Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state) |
| |
| // Set new range. |
| lo = n.FrameOffset() |
| hi = lo + n.Type().Size() |
| } |
| |
| // Zero final range. |
| Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state) |
| } |
| |
| // For generating consecutive jump instructions to model a specific branching |
| type IndexJump struct { |
| Jump obj.As |
| Index int |
| } |
| |
| func (s *State) oneJump(b *ssa.Block, jump *IndexJump) { |
| p := s.Br(jump.Jump, b.Succs[jump.Index].Block()) |
| p.Pos = b.Pos |
| } |
| |
| // CombJump generates combinational instructions (2 at present) for a block jump, |
| // thereby the behaviour of non-standard condition codes could be simulated |
| func (s *State) CombJump(b, next *ssa.Block, jumps *[2][2]IndexJump) { |
| switch next { |
| case b.Succs[0].Block(): |
| s.oneJump(b, &jumps[0][0]) |
| s.oneJump(b, &jumps[0][1]) |
| case b.Succs[1].Block(): |
| s.oneJump(b, &jumps[1][0]) |
| s.oneJump(b, &jumps[1][1]) |
| default: |
| var q *obj.Prog |
| if b.Likely != ssa.BranchUnlikely { |
| s.oneJump(b, &jumps[1][0]) |
| s.oneJump(b, &jumps[1][1]) |
| q = s.Br(obj.AJMP, b.Succs[1].Block()) |
| } else { |
| s.oneJump(b, &jumps[0][0]) |
| s.oneJump(b, &jumps[0][1]) |
| q = s.Br(obj.AJMP, b.Succs[0].Block()) |
| } |
| q.Pos = b.Pos |
| } |
| } |
| |
| // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. |
| func AddAux(a *obj.Addr, v *ssa.Value) { |
| AddAux2(a, v, v.AuxInt) |
| } |
| func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { |
| if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR { |
| v.Fatalf("bad AddAux addr %v", a) |
| } |
| // add integer offset |
| a.Offset += offset |
| |
| // If no additional symbol offset, we're done. |
| if v.Aux == nil { |
| return |
| } |
| // Add symbol's offset from its base register. |
| switch n := v.Aux.(type) { |
| case *ssa.AuxCall: |
| a.Name = obj.NAME_EXTERN |
| a.Sym = n.Fn |
| case *obj.LSym: |
| a.Name = obj.NAME_EXTERN |
| a.Sym = n |
| case *ir.Name: |
| if n.Class == ir.PPARAM || (n.Class == ir.PPARAMOUT && !n.IsOutputParamInRegisters()) { |
| a.Name = obj.NAME_PARAM |
| a.Sym = ir.Orig(n).(*ir.Name).Linksym() |
| a.Offset += n.FrameOffset() |
| break |
| } |
| a.Name = obj.NAME_AUTO |
| if n.Class == ir.PPARAMOUT { |
| a.Sym = ir.Orig(n).(*ir.Name).Linksym() |
| } else { |
| a.Sym = n.Linksym() |
| } |
| a.Offset += n.FrameOffset() |
| default: |
| v.Fatalf("aux in %s not implemented %#v", v, v.Aux) |
| } |
| } |
| |
| // extendIndex extends v to a full int width. |
| // panic with the given kind if v does not fit in an int (only on 32-bit archs). |
| func (s *state) extendIndex(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value { |
| size := idx.Type.Size() |
| if size == s.config.PtrSize { |
| return idx |
| } |
| if size > s.config.PtrSize { |
| // truncate 64-bit indexes on 32-bit pointer archs. Test the |
| // high word and branch to out-of-bounds failure if it is not 0. |
| var lo *ssa.Value |
| if idx.Type.IsSigned() { |
| lo = s.newValue1(ssa.OpInt64Lo, types.Types[types.TINT], idx) |
| } else { |
| lo = s.newValue1(ssa.OpInt64Lo, types.Types[types.TUINT], idx) |
| } |
| if bounded || base.Flag.B != 0 { |
| return lo |
| } |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| bPanic := s.f.NewBlock(ssa.BlockExit) |
| hi := s.newValue1(ssa.OpInt64Hi, types.Types[types.TUINT32], idx) |
| cmp := s.newValue2(ssa.OpEq32, types.Types[types.TBOOL], hi, s.constInt32(types.Types[types.TUINT32], 0)) |
| if !idx.Type.IsSigned() { |
| switch kind { |
| case ssa.BoundsIndex: |
| kind = ssa.BoundsIndexU |
| case ssa.BoundsSliceAlen: |
| kind = ssa.BoundsSliceAlenU |
| case ssa.BoundsSliceAcap: |
| kind = ssa.BoundsSliceAcapU |
| case ssa.BoundsSliceB: |
| kind = ssa.BoundsSliceBU |
| case ssa.BoundsSlice3Alen: |
| kind = ssa.BoundsSlice3AlenU |
| case ssa.BoundsSlice3Acap: |
| kind = ssa.BoundsSlice3AcapU |
| case ssa.BoundsSlice3B: |
| kind = ssa.BoundsSlice3BU |
| case ssa.BoundsSlice3C: |
| kind = ssa.BoundsSlice3CU |
| } |
| } |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| b.AddEdgeTo(bNext) |
| b.AddEdgeTo(bPanic) |
| |
| s.startBlock(bPanic) |
| mem := s.newValue4I(ssa.OpPanicExtend, types.TypeMem, int64(kind), hi, lo, len, s.mem()) |
| s.endBlock().SetControl(mem) |
| s.startBlock(bNext) |
| |
| return lo |
| } |
| |
| // Extend value to the required size |
| var op ssa.Op |
| if idx.Type.IsSigned() { |
| switch 10*size + s.config.PtrSize { |
| case 14: |
| op = ssa.OpSignExt8to32 |
| case 18: |
| op = ssa.OpSignExt8to64 |
| case 24: |
| op = ssa.OpSignExt16to32 |
| case 28: |
| op = ssa.OpSignExt16to64 |
| case 48: |
| op = ssa.OpSignExt32to64 |
| default: |
| s.Fatalf("bad signed index extension %s", idx.Type) |
| } |
| } else { |
| switch 10*size + s.config.PtrSize { |
| case 14: |
| op = ssa.OpZeroExt8to32 |
| case 18: |
| op = ssa.OpZeroExt8to64 |
| case 24: |
| op = ssa.OpZeroExt16to32 |
| case 28: |
| op = ssa.OpZeroExt16to64 |
| case 48: |
| op = ssa.OpZeroExt32to64 |
| default: |
| s.Fatalf("bad unsigned index extension %s", idx.Type) |
| } |
| } |
| return s.newValue1(op, types.Types[types.TINT], idx) |
| } |
| |
| // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. |
| // Called during ssaGenValue. |
| func CheckLoweredPhi(v *ssa.Value) { |
| if v.Op != ssa.OpPhi { |
| v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString()) |
| } |
| if v.Type.IsMemory() { |
| return |
| } |
| f := v.Block.Func |
| loc := f.RegAlloc[v.ID] |
| for _, a := range v.Args { |
| if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? |
| v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func) |
| } |
| } |
| } |
| |
| // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block, |
| // except for incoming in-register arguments. |
| // The output of LoweredGetClosurePtr is generally hardwired to the correct register. |
| // That register contains the closure pointer on closure entry. |
| func CheckLoweredGetClosurePtr(v *ssa.Value) { |
| entry := v.Block.Func.Entry |
| if entry != v.Block { |
| base.Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) |
| } |
| for _, w := range entry.Values { |
| if w == v { |
| break |
| } |
| switch w.Op { |
| case ssa.OpArgIntReg, ssa.OpArgFloatReg: |
| // okay |
| default: |
| base.Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) |
| } |
| } |
| } |
| |
| // CheckArgReg ensures that v is in the function's entry block. |
| func CheckArgReg(v *ssa.Value) { |
| entry := v.Block.Func.Entry |
| if entry != v.Block { |
| base.Fatalf("in %s, badly placed ArgIReg or ArgFReg: %v %v", v.Block.Func.Name, v.Block, v) |
| } |
| } |
| |
| func AddrAuto(a *obj.Addr, v *ssa.Value) { |
| n, off := ssa.AutoVar(v) |
| a.Type = obj.TYPE_MEM |
| a.Sym = n.Linksym() |
| a.Reg = int16(Arch.REGSP) |
| a.Offset = n.FrameOffset() + off |
| if n.Class == ir.PPARAM || (n.Class == ir.PPARAMOUT && !n.IsOutputParamInRegisters()) { |
| a.Name = obj.NAME_PARAM |
| } else { |
| a.Name = obj.NAME_AUTO |
| } |
| } |
| |
| // Call returns a new CALL instruction for the SSA value v. |
| // It uses PrepareCall to prepare the call. |
| func (s *State) Call(v *ssa.Value) *obj.Prog { |
| pPosIsStmt := s.pp.Pos.IsStmt() // The statement-ness fo the call comes from ssaGenState |
| s.PrepareCall(v) |
| |
| p := s.Prog(obj.ACALL) |
| if pPosIsStmt == src.PosIsStmt { |
| p.Pos = v.Pos.WithIsStmt() |
| } else { |
| p.Pos = v.Pos.WithNotStmt() |
| } |
| if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil { |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = sym.Fn |
| } else { |
| // TODO(mdempsky): Can these differences be eliminated? |
| switch Arch.LinkArch.Family { |
| case sys.AMD64, sys.I386, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm: |
| p.To.Type = obj.TYPE_REG |
| case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64: |
| p.To.Type = obj.TYPE_MEM |
| default: |
| base.Fatalf("unknown indirect call family") |
| } |
| p.To.Reg = v.Args[0].Reg() |
| } |
| return p |
| } |
| |
| // TailCall returns a new tail call instruction for the SSA value v. |
| // It is like Call, but for a tail call. |
| func (s *State) TailCall(v *ssa.Value) *obj.Prog { |
| p := s.Call(v) |
| p.As = obj.ARET |
| return p |
| } |
| |
| // PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping. |
| // It must be called immediately before emitting the actual CALL instruction, |
| // since it emits PCDATA for the stack map at the call (calls are safe points). |
| func (s *State) PrepareCall(v *ssa.Value) { |
| idx := s.livenessMap.Get(v) |
| if !idx.StackMapValid() { |
| // See Liveness.hasStackMap. |
| if sym, ok := v.Aux.(*ssa.AuxCall); !ok || !(sym.Fn == ir.Syms.Typedmemclr || sym.Fn == ir.Syms.Typedmemmove) { |
| base.Fatalf("missing stack map index for %v", v.LongString()) |
| } |
| } |
| |
| call, ok := v.Aux.(*ssa.AuxCall) |
| |
| if ok { |
| // Record call graph information for nowritebarrierrec |
| // analysis. |
| if nowritebarrierrecCheck != nil { |
| nowritebarrierrecCheck.recordCall(s.pp.CurFunc, call.Fn, v.Pos) |
| } |
| } |
| |
| if s.maxarg < v.AuxInt { |
| s.maxarg = v.AuxInt |
| } |
| } |
| |
| // UseArgs records the fact that an instruction needs a certain amount of |
| // callee args space for its use. |
| func (s *State) UseArgs(n int64) { |
| if s.maxarg < n { |
| s.maxarg = n |
| } |
| } |
| |
| // fieldIdx finds the index of the field referred to by the ODOT node n. |
| func fieldIdx(n *ir.SelectorExpr) int { |
| t := n.X.Type() |
| if !t.IsStruct() { |
| panic("ODOT's LHS is not a struct") |
| } |
| |
| for i, f := range t.Fields().Slice() { |
| if f.Sym == n.Sel { |
| if f.Offset != n.Offset() { |
| panic("field offset doesn't match") |
| } |
| return i |
| } |
| } |
| panic(fmt.Sprintf("can't find field in expr %v\n", n)) |
| |
| // TODO: keep the result of this function somewhere in the ODOT Node |
| // so we don't have to recompute it each time we need it. |
| } |
| |
| // ssafn holds frontend information about a function that the backend is processing. |
| // It also exports a bunch of compiler services for the ssa backend. |
| type ssafn struct { |
| curfn *ir.Func |
| strings map[string]*obj.LSym // map from constant string to data symbols |
| stksize int64 // stack size for current frame |
| stkptrsize int64 // prefix of stack containing pointers |
| log bool // print ssa debug to the stdout |
| } |
| |
| // StringData returns a symbol which |
| // is the data component of a global string constant containing s. |
| func (e *ssafn) StringData(s string) *obj.LSym { |
| if aux, ok := e.strings[s]; ok { |
| return aux |
| } |
| if e.strings == nil { |
| e.strings = make(map[string]*obj.LSym) |
| } |
| data := staticdata.StringSym(e.curfn.Pos(), s) |
| e.strings[s] = data |
| return data |
| } |
| |
| func (e *ssafn) Auto(pos src.XPos, t *types.Type) *ir.Name { |
| return typecheck.TempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list |
| } |
| |
| // SplitSlot returns a slot representing the data of parent starting at offset. |
| func (e *ssafn) SplitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot { |
| node := parent.N |
| |
| if node.Class != ir.PAUTO || node.Addrtaken() { |
| // addressed things and non-autos retain their parents (i.e., cannot truly be split) |
| return ssa.LocalSlot{N: node, Type: t, Off: parent.Off + offset} |
| } |
| |
| s := &types.Sym{Name: node.Sym().Name + suffix, Pkg: types.LocalPkg} |
| n := ir.NewNameAt(parent.N.Pos(), s) |
| s.Def = n |
| ir.AsNode(s.Def).Name().SetUsed(true) |
| n.SetType(t) |
| n.Class = ir.PAUTO |
| n.SetEsc(ir.EscNever) |
| n.Curfn = e.curfn |
| e.curfn.Dcl = append(e.curfn.Dcl, n) |
| types.CalcSize(t) |
| return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset} |
| } |
| |
| func (e *ssafn) CanSSA(t *types.Type) bool { |
| return TypeOK(t) |
| } |
| |
| func (e *ssafn) Line(pos src.XPos) string { |
| return base.FmtPos(pos) |
| } |
| |
| // Log logs a message from the compiler. |
| func (e *ssafn) Logf(msg string, args ...interface{}) { |
| if e.log { |
| fmt.Printf(msg, args...) |
| } |
| } |
| |
| func (e *ssafn) Log() bool { |
| return e.log |
| } |
| |
| // Fatal reports a compiler error and exits. |
| func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) { |
| base.Pos = pos |
| nargs := append([]interface{}{ir.FuncName(e.curfn)}, args...) |
| base.Fatalf("'%s': "+msg, nargs...) |
| } |
| |
| // Warnl reports a "warning", which is usually flag-triggered |
| // logging output for the benefit of tests. |
| func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) { |
| base.WarnfAt(pos, fmt_, args...) |
| } |
| |
| func (e *ssafn) Debug_checknil() bool { |
| return base.Debug.Nil != 0 |
| } |
| |
| func (e *ssafn) UseWriteBarrier() bool { |
| return base.Flag.WB |
| } |
| |
| func (e *ssafn) Syslook(name string) *obj.LSym { |
| switch name { |
| case "goschedguarded": |
| return ir.Syms.Goschedguarded |
| case "writeBarrier": |
| return ir.Syms.WriteBarrier |
| case "gcWriteBarrier": |
| return ir.Syms.GCWriteBarrier |
| case "typedmemmove": |
| return ir.Syms.Typedmemmove |
| case "typedmemclr": |
| return ir.Syms.Typedmemclr |
| } |
| e.Fatalf(src.NoXPos, "unknown Syslook func %v", name) |
| return nil |
| } |
| |
| func (e *ssafn) SetWBPos(pos src.XPos) { |
| e.curfn.SetWBPos(pos) |
| } |
| |
| func (e *ssafn) MyImportPath() string { |
| return base.Ctxt.Pkgpath |
| } |
| |
| func (e *ssafn) LSym() string { |
| return e.curfn.LSym.Name |
| } |
| |
| func clobberBase(n ir.Node) ir.Node { |
| if n.Op() == ir.ODOT { |
| n := n.(*ir.SelectorExpr) |
| if n.X.Type().NumFields() == 1 { |
| return clobberBase(n.X) |
| } |
| } |
| if n.Op() == ir.OINDEX { |
| n := n.(*ir.IndexExpr) |
| if n.X.Type().IsArray() && n.X.Type().NumElem() == 1 { |
| return clobberBase(n.X) |
| } |
| } |
| return n |
| } |
| |
| // callTargetLSym returns the correct LSym to call 'callee' using its ABI. |
| func callTargetLSym(callee *ir.Name) *obj.LSym { |
| if callee.Func == nil { |
| // TODO(austin): This happens in a few cases of |
| // compiler-generated functions. These are all |
| // ABIInternal. It would be better if callee.Func was |
| // never nil and we didn't need this case. |
| return callee.Linksym() |
| } |
| |
| return callee.LinksymABI(callee.Func.ABI) |
| } |
| |
| func min8(a, b int8) int8 { |
| if a < b { |
| return a |
| } |
| return b |
| } |
| |
| func max8(a, b int8) int8 { |
| if a > b { |
| return a |
| } |
| return b |
| } |
| |
| // deferstruct makes a runtime._defer structure. |
| func deferstruct() *types.Type { |
| makefield := func(name string, typ *types.Type) *types.Field { |
| // Unlike the global makefield function, this one needs to set Pkg |
| // because these types might be compared (in SSA CSE sorting). |
| // TODO: unify this makefield and the global one above. |
| sym := &types.Sym{Name: name, Pkg: types.LocalPkg} |
| return types.NewField(src.NoXPos, sym, typ) |
| } |
| // These fields must match the ones in runtime/runtime2.go:_defer and |
| // (*state).call above. |
| fields := []*types.Field{ |
| makefield("started", types.Types[types.TBOOL]), |
| makefield("heap", types.Types[types.TBOOL]), |
| makefield("openDefer", types.Types[types.TBOOL]), |
| makefield("sp", types.Types[types.TUINTPTR]), |
| makefield("pc", types.Types[types.TUINTPTR]), |
| // Note: the types here don't really matter. Defer structures |
| // are always scanned explicitly during stack copying and GC, |
| // so we make them uintptr type even though they are real pointers. |
| makefield("fn", types.Types[types.TUINTPTR]), |
| makefield("_panic", types.Types[types.TUINTPTR]), |
| makefield("link", types.Types[types.TUINTPTR]), |
| makefield("fd", types.Types[types.TUINTPTR]), |
| makefield("varp", types.Types[types.TUINTPTR]), |
| makefield("framepc", types.Types[types.TUINTPTR]), |
| } |
| |
| // build struct holding the above fields |
| s := types.NewStruct(types.NoPkg, fields) |
| s.SetNoalg(true) |
| types.CalcStructSize(s) |
| return s |
| } |
| |
| // SlotAddr uses LocalSlot information to initialize an obj.Addr |
| // The resulting addr is used in a non-standard context -- in the prologue |
| // of a function, before the frame has been constructed, so the standard |
| // addressing for the parameters will be wrong. |
| func SpillSlotAddr(spill ssa.Spill, baseReg int16, extraOffset int64) obj.Addr { |
| return obj.Addr{ |
| Name: obj.NAME_NONE, |
| Type: obj.TYPE_MEM, |
| Reg: baseReg, |
| Offset: spill.Offset + extraOffset, |
| } |
| } |
| |
| var ( |
| BoundsCheckFunc [ssa.BoundsKindCount]*obj.LSym |
| ExtendCheckFunc [ssa.BoundsKindCount]*obj.LSym |
| ) |
| |
| // GCWriteBarrierReg maps from registers to gcWriteBarrier implementation LSyms. |
| var GCWriteBarrierReg map[int16]*obj.LSym |