| // Copyright 2012 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // +build darwin dragonfly freebsd linux netbsd openbsd solaris | 
 |  | 
 | package runtime | 
 |  | 
 | import ( | 
 | 	"runtime/internal/atomic" | 
 | 	"unsafe" | 
 | ) | 
 |  | 
 | // sigTabT is the type of an entry in the global sigtable array. | 
 | // sigtable is inherently system dependent, and appears in OS-specific files, | 
 | // but sigTabT is the same for all Unixy systems. | 
 | // The sigtable array is indexed by a system signal number to get the flags | 
 | // and printable name of each signal. | 
 | type sigTabT struct { | 
 | 	flags int32 | 
 | 	name  string | 
 | } | 
 |  | 
 | //go:linkname os_sigpipe os.sigpipe | 
 | func os_sigpipe() { | 
 | 	systemstack(sigpipe) | 
 | } | 
 |  | 
 | func signame(sig uint32) string { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return "" | 
 | 	} | 
 | 	return sigtable[sig].name | 
 | } | 
 |  | 
 | const ( | 
 | 	_SIG_DFL uintptr = 0 | 
 | 	_SIG_IGN uintptr = 1 | 
 | ) | 
 |  | 
 | // Stores the signal handlers registered before Go installed its own. | 
 | // These signal handlers will be invoked in cases where Go doesn't want to | 
 | // handle a particular signal (e.g., signal occurred on a non-Go thread). | 
 | // See sigfwdgo for more information on when the signals are forwarded. | 
 | // | 
 | // This is read by the signal handler; accesses should use | 
 | // atomic.Loaduintptr and atomic.Storeuintptr. | 
 | var fwdSig [_NSIG]uintptr | 
 |  | 
 | // handlingSig is indexed by signal number and is non-zero if we are | 
 | // currently handling the signal. Or, to put it another way, whether | 
 | // the signal handler is currently set to the Go signal handler or not. | 
 | // This is uint32 rather than bool so that we can use atomic instructions. | 
 | var handlingSig [_NSIG]uint32 | 
 |  | 
 | // channels for synchronizing signal mask updates with the signal mask | 
 | // thread | 
 | var ( | 
 | 	disableSigChan  chan uint32 | 
 | 	enableSigChan   chan uint32 | 
 | 	maskUpdatedChan chan struct{} | 
 | ) | 
 |  | 
 | func init() { | 
 | 	// _NSIG is the number of signals on this operating system. | 
 | 	// sigtable should describe what to do for all the possible signals. | 
 | 	if len(sigtable) != _NSIG { | 
 | 		print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n") | 
 | 		throw("bad sigtable len") | 
 | 	} | 
 | } | 
 |  | 
 | var signalsOK bool | 
 |  | 
 | // Initialize signals. | 
 | // Called by libpreinit so runtime may not be initialized. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func initsig(preinit bool) { | 
 | 	if !preinit { | 
 | 		// It's now OK for signal handlers to run. | 
 | 		signalsOK = true | 
 | 	} | 
 |  | 
 | 	// For c-archive/c-shared this is called by libpreinit with | 
 | 	// preinit == true. | 
 | 	if (isarchive || islibrary) && !preinit { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	for i := uint32(0); i < _NSIG; i++ { | 
 | 		t := &sigtable[i] | 
 | 		if t.flags == 0 || t.flags&_SigDefault != 0 { | 
 | 			continue | 
 | 		} | 
 |  | 
 | 		// We don't need to use atomic operations here because | 
 | 		// there shouldn't be any other goroutines running yet. | 
 | 		fwdSig[i] = getsig(i) | 
 |  | 
 | 		if !sigInstallGoHandler(i) { | 
 | 			// Even if we are not installing a signal handler, | 
 | 			// set SA_ONSTACK if necessary. | 
 | 			if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN { | 
 | 				setsigstack(i) | 
 | 			} else if fwdSig[i] == _SIG_IGN { | 
 | 				sigInitIgnored(i) | 
 | 			} | 
 | 			continue | 
 | 		} | 
 |  | 
 | 		handlingSig[i] = 1 | 
 | 		setsig(i, funcPC(sighandler)) | 
 | 	} | 
 | } | 
 |  | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func sigInstallGoHandler(sig uint32) bool { | 
 | 	// For some signals, we respect an inherited SIG_IGN handler | 
 | 	// rather than insist on installing our own default handler. | 
 | 	// Even these signals can be fetched using the os/signal package. | 
 | 	switch sig { | 
 | 	case _SIGHUP, _SIGINT: | 
 | 		if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN { | 
 | 			return false | 
 | 		} | 
 | 	} | 
 |  | 
 | 	t := &sigtable[sig] | 
 | 	if t.flags&_SigSetStack != 0 { | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	// When built using c-archive or c-shared, only install signal | 
 | 	// handlers for synchronous signals and SIGPIPE. | 
 | 	if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE { | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	return true | 
 | } | 
 |  | 
 | // sigenable enables the Go signal handler to catch the signal sig. | 
 | // It is only called while holding the os/signal.handlers lock, | 
 | // via os/signal.enableSignal and signal_enable. | 
 | func sigenable(sig uint32) { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	// SIGPROF is handled specially for profiling. | 
 | 	if sig == _SIGPROF { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	t := &sigtable[sig] | 
 | 	if t.flags&_SigNotify != 0 { | 
 | 		ensureSigM() | 
 | 		enableSigChan <- sig | 
 | 		<-maskUpdatedChan | 
 | 		if atomic.Cas(&handlingSig[sig], 0, 1) { | 
 | 			atomic.Storeuintptr(&fwdSig[sig], getsig(sig)) | 
 | 			setsig(sig, funcPC(sighandler)) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // sigdisable disables the Go signal handler for the signal sig. | 
 | // It is only called while holding the os/signal.handlers lock, | 
 | // via os/signal.disableSignal and signal_disable. | 
 | func sigdisable(sig uint32) { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	// SIGPROF is handled specially for profiling. | 
 | 	if sig == _SIGPROF { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	t := &sigtable[sig] | 
 | 	if t.flags&_SigNotify != 0 { | 
 | 		ensureSigM() | 
 | 		disableSigChan <- sig | 
 | 		<-maskUpdatedChan | 
 |  | 
 | 		// If initsig does not install a signal handler for a | 
 | 		// signal, then to go back to the state before Notify | 
 | 		// we should remove the one we installed. | 
 | 		if !sigInstallGoHandler(sig) { | 
 | 			atomic.Store(&handlingSig[sig], 0) | 
 | 			setsig(sig, atomic.Loaduintptr(&fwdSig[sig])) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // sigignore ignores the signal sig. | 
 | // It is only called while holding the os/signal.handlers lock, | 
 | // via os/signal.ignoreSignal and signal_ignore. | 
 | func sigignore(sig uint32) { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	// SIGPROF is handled specially for profiling. | 
 | 	if sig == _SIGPROF { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	t := &sigtable[sig] | 
 | 	if t.flags&_SigNotify != 0 { | 
 | 		atomic.Store(&handlingSig[sig], 0) | 
 | 		setsig(sig, _SIG_IGN) | 
 | 	} | 
 | } | 
 |  | 
 | // clearSignalHandlers clears all signal handlers that are not ignored | 
 | // back to the default. This is called by the child after a fork, so that | 
 | // we can enable the signal mask for the exec without worrying about | 
 | // running a signal handler in the child. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func clearSignalHandlers() { | 
 | 	for i := uint32(0); i < _NSIG; i++ { | 
 | 		if atomic.Load(&handlingSig[i]) != 0 { | 
 | 			setsig(i, _SIG_DFL) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // setProcessCPUProfiler is called when the profiling timer changes. | 
 | // It is called with prof.lock held. hz is the new timer, and is 0 if | 
 | // profiling is being disabled. Enable or disable the signal as | 
 | // required for -buildmode=c-archive. | 
 | func setProcessCPUProfiler(hz int32) { | 
 | 	if hz != 0 { | 
 | 		// Enable the Go signal handler if not enabled. | 
 | 		if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) { | 
 | 			atomic.Storeuintptr(&fwdSig[_SIGPROF], getsig(_SIGPROF)) | 
 | 			setsig(_SIGPROF, funcPC(sighandler)) | 
 | 		} | 
 | 	} else { | 
 | 		// If the Go signal handler should be disabled by default, | 
 | 		// disable it if it is enabled. | 
 | 		if !sigInstallGoHandler(_SIGPROF) { | 
 | 			if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) { | 
 | 				setsig(_SIGPROF, atomic.Loaduintptr(&fwdSig[_SIGPROF])) | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // setThreadCPUProfiler makes any thread-specific changes required to | 
 | // implement profiling at a rate of hz. | 
 | func setThreadCPUProfiler(hz int32) { | 
 | 	var it itimerval | 
 | 	if hz == 0 { | 
 | 		setitimer(_ITIMER_PROF, &it, nil) | 
 | 	} else { | 
 | 		it.it_interval.tv_sec = 0 | 
 | 		it.it_interval.set_usec(1000000 / hz) | 
 | 		it.it_value = it.it_interval | 
 | 		setitimer(_ITIMER_PROF, &it, nil) | 
 | 	} | 
 | 	_g_ := getg() | 
 | 	_g_.m.profilehz = hz | 
 | } | 
 |  | 
 | func sigpipe() { | 
 | 	if sigsend(_SIGPIPE) { | 
 | 		return | 
 | 	} | 
 | 	dieFromSignal(_SIGPIPE) | 
 | } | 
 |  | 
 | // sigtrampgo is called from the signal handler function, sigtramp, | 
 | // written in assembly code. | 
 | // This is called by the signal handler, and the world may be stopped. | 
 | // | 
 | // It must be nosplit because getg() is still the G that was running | 
 | // (if any) when the signal was delivered, but it's (usually) called | 
 | // on the gsignal stack. Until this switches the G to gsignal, the | 
 | // stack bounds check won't work. | 
 | // | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) { | 
 | 	if sigfwdgo(sig, info, ctx) { | 
 | 		return | 
 | 	} | 
 | 	g := getg() | 
 | 	if g == nil { | 
 | 		c := &sigctxt{info, ctx} | 
 | 		if sig == _SIGPROF { | 
 | 			sigprofNonGoPC(c.sigpc()) | 
 | 			return | 
 | 		} | 
 | 		badsignal(uintptr(sig), c) | 
 | 		return | 
 | 	} | 
 |  | 
 | 	// If some non-Go code called sigaltstack, adjust. | 
 | 	setStack := false | 
 | 	var gsignalStack gsignalStack | 
 | 	sp := uintptr(unsafe.Pointer(&sig)) | 
 | 	if sp < g.m.gsignal.stack.lo || sp >= g.m.gsignal.stack.hi { | 
 | 		if sp >= g.m.g0.stack.lo && sp < g.m.g0.stack.hi { | 
 | 			// The signal was delivered on the g0 stack. | 
 | 			// This can happen when linked with C code | 
 | 			// using the thread sanitizer, which collects | 
 | 			// signals then delivers them itself by calling | 
 | 			// the signal handler directly when C code, | 
 | 			// including C code called via cgo, calls a | 
 | 			// TSAN-intercepted function such as malloc. | 
 | 			st := stackt{ss_size: g.m.g0.stack.hi - g.m.g0.stack.lo} | 
 | 			setSignalstackSP(&st, g.m.g0.stack.lo) | 
 | 			setGsignalStack(&st, &gsignalStack) | 
 | 			g.m.gsignal.stktopsp = getcallersp() | 
 | 			setStack = true | 
 | 		} else { | 
 | 			var st stackt | 
 | 			sigaltstack(nil, &st) | 
 | 			if st.ss_flags&_SS_DISABLE != 0 { | 
 | 				setg(nil) | 
 | 				needm(0) | 
 | 				noSignalStack(sig) | 
 | 				dropm() | 
 | 			} | 
 | 			stsp := uintptr(unsafe.Pointer(st.ss_sp)) | 
 | 			if sp < stsp || sp >= stsp+st.ss_size { | 
 | 				setg(nil) | 
 | 				needm(0) | 
 | 				sigNotOnStack(sig) | 
 | 				dropm() | 
 | 			} | 
 | 			setGsignalStack(&st, &gsignalStack) | 
 | 			g.m.gsignal.stktopsp = getcallersp() | 
 | 			setStack = true | 
 | 		} | 
 | 	} | 
 |  | 
 | 	setg(g.m.gsignal) | 
 |  | 
 | 	if g.stackguard0 == stackFork { | 
 | 		signalDuringFork(sig) | 
 | 	} | 
 |  | 
 | 	c := &sigctxt{info, ctx} | 
 | 	c.fixsigcode(sig) | 
 | 	sighandler(sig, info, ctx, g) | 
 | 	setg(g) | 
 | 	if setStack { | 
 | 		restoreGsignalStack(&gsignalStack) | 
 | 	} | 
 | } | 
 |  | 
 | // sigpanic turns a synchronous signal into a run-time panic. | 
 | // If the signal handler sees a synchronous panic, it arranges the | 
 | // stack to look like the function where the signal occurred called | 
 | // sigpanic, sets the signal's PC value to sigpanic, and returns from | 
 | // the signal handler. The effect is that the program will act as | 
 | // though the function that got the signal simply called sigpanic | 
 | // instead. | 
 | // | 
 | // This must NOT be nosplit because the linker doesn't know where | 
 | // sigpanic calls can be injected. | 
 | // | 
 | // The signal handler must not inject a call to sigpanic if | 
 | // getg().throwsplit, since sigpanic may need to grow the stack. | 
 | func sigpanic() { | 
 | 	g := getg() | 
 | 	if !canpanic(g) { | 
 | 		throw("unexpected signal during runtime execution") | 
 | 	} | 
 |  | 
 | 	switch g.sig { | 
 | 	case _SIGBUS: | 
 | 		if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 { | 
 | 			panicmem() | 
 | 		} | 
 | 		// Support runtime/debug.SetPanicOnFault. | 
 | 		if g.paniconfault { | 
 | 			panicmem() | 
 | 		} | 
 | 		print("unexpected fault address ", hex(g.sigcode1), "\n") | 
 | 		throw("fault") | 
 | 	case _SIGSEGV: | 
 | 		if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 { | 
 | 			panicmem() | 
 | 		} | 
 | 		// Support runtime/debug.SetPanicOnFault. | 
 | 		if g.paniconfault { | 
 | 			panicmem() | 
 | 		} | 
 | 		print("unexpected fault address ", hex(g.sigcode1), "\n") | 
 | 		throw("fault") | 
 | 	case _SIGFPE: | 
 | 		switch g.sigcode0 { | 
 | 		case _FPE_INTDIV: | 
 | 			panicdivide() | 
 | 		case _FPE_INTOVF: | 
 | 			panicoverflow() | 
 | 		} | 
 | 		panicfloat() | 
 | 	} | 
 |  | 
 | 	if g.sig >= uint32(len(sigtable)) { | 
 | 		// can't happen: we looked up g.sig in sigtable to decide to call sigpanic | 
 | 		throw("unexpected signal value") | 
 | 	} | 
 | 	panic(errorString(sigtable[g.sig].name)) | 
 | } | 
 |  | 
 | // dieFromSignal kills the program with a signal. | 
 | // This provides the expected exit status for the shell. | 
 | // This is only called with fatal signals expected to kill the process. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func dieFromSignal(sig uint32) { | 
 | 	unblocksig(sig) | 
 | 	// Mark the signal as unhandled to ensure it is forwarded. | 
 | 	atomic.Store(&handlingSig[sig], 0) | 
 | 	raise(sig) | 
 |  | 
 | 	// That should have killed us. On some systems, though, raise | 
 | 	// sends the signal to the whole process rather than to just | 
 | 	// the current thread, which means that the signal may not yet | 
 | 	// have been delivered. Give other threads a chance to run and | 
 | 	// pick up the signal. | 
 | 	osyield() | 
 | 	osyield() | 
 | 	osyield() | 
 |  | 
 | 	// If that didn't work, try _SIG_DFL. | 
 | 	setsig(sig, _SIG_DFL) | 
 | 	raise(sig) | 
 |  | 
 | 	osyield() | 
 | 	osyield() | 
 | 	osyield() | 
 |  | 
 | 	// If we are still somehow running, just exit with the wrong status. | 
 | 	exit(2) | 
 | } | 
 |  | 
 | // raisebadsignal is called when a signal is received on a non-Go | 
 | // thread, and the Go program does not want to handle it (that is, the | 
 | // program has not called os/signal.Notify for the signal). | 
 | func raisebadsignal(sig uint32, c *sigctxt) { | 
 | 	if sig == _SIGPROF { | 
 | 		// Ignore profiling signals that arrive on non-Go threads. | 
 | 		return | 
 | 	} | 
 |  | 
 | 	var handler uintptr | 
 | 	if sig >= _NSIG { | 
 | 		handler = _SIG_DFL | 
 | 	} else { | 
 | 		handler = atomic.Loaduintptr(&fwdSig[sig]) | 
 | 	} | 
 |  | 
 | 	// Reset the signal handler and raise the signal. | 
 | 	// We are currently running inside a signal handler, so the | 
 | 	// signal is blocked. We need to unblock it before raising the | 
 | 	// signal, or the signal we raise will be ignored until we return | 
 | 	// from the signal handler. We know that the signal was unblocked | 
 | 	// before entering the handler, or else we would not have received | 
 | 	// it. That means that we don't have to worry about blocking it | 
 | 	// again. | 
 | 	unblocksig(sig) | 
 | 	setsig(sig, handler) | 
 |  | 
 | 	// If we're linked into a non-Go program we want to try to | 
 | 	// avoid modifying the original context in which the signal | 
 | 	// was raised. If the handler is the default, we know it | 
 | 	// is non-recoverable, so we don't have to worry about | 
 | 	// re-installing sighandler. At this point we can just | 
 | 	// return and the signal will be re-raised and caught by | 
 | 	// the default handler with the correct context. | 
 | 	// | 
 | 	// On FreeBSD, the libthr sigaction code prevents | 
 | 	// this from working so we fall through to raise. | 
 | 	if GOOS != "freebsd" && (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	raise(sig) | 
 |  | 
 | 	// Give the signal a chance to be delivered. | 
 | 	// In almost all real cases the program is about to crash, | 
 | 	// so sleeping here is not a waste of time. | 
 | 	usleep(1000) | 
 |  | 
 | 	// If the signal didn't cause the program to exit, restore the | 
 | 	// Go signal handler and carry on. | 
 | 	// | 
 | 	// We may receive another instance of the signal before we | 
 | 	// restore the Go handler, but that is not so bad: we know | 
 | 	// that the Go program has been ignoring the signal. | 
 | 	setsig(sig, funcPC(sighandler)) | 
 | } | 
 |  | 
 | //go:nosplit | 
 | func crash() { | 
 | 	if GOOS == "darwin" { | 
 | 		// OS X core dumps are linear dumps of the mapped memory, | 
 | 		// from the first virtual byte to the last, with zeros in the gaps. | 
 | 		// Because of the way we arrange the address space on 64-bit systems, | 
 | 		// this means the OS X core file will be >128 GB and even on a zippy | 
 | 		// workstation can take OS X well over an hour to write (uninterruptible). | 
 | 		// Save users from making that mistake. | 
 | 		if GOARCH == "amd64" { | 
 | 			return | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dieFromSignal(_SIGABRT) | 
 | } | 
 |  | 
 | // ensureSigM starts one global, sleeping thread to make sure at least one thread | 
 | // is available to catch signals enabled for os/signal. | 
 | func ensureSigM() { | 
 | 	if maskUpdatedChan != nil { | 
 | 		return | 
 | 	} | 
 | 	maskUpdatedChan = make(chan struct{}) | 
 | 	disableSigChan = make(chan uint32) | 
 | 	enableSigChan = make(chan uint32) | 
 | 	go func() { | 
 | 		// Signal masks are per-thread, so make sure this goroutine stays on one | 
 | 		// thread. | 
 | 		LockOSThread() | 
 | 		defer UnlockOSThread() | 
 | 		// The sigBlocked mask contains the signals not active for os/signal, | 
 | 		// initially all signals except the essential. When signal.Notify()/Stop is called, | 
 | 		// sigenable/sigdisable in turn notify this thread to update its signal | 
 | 		// mask accordingly. | 
 | 		sigBlocked := sigset_all | 
 | 		for i := range sigtable { | 
 | 			if !blockableSig(uint32(i)) { | 
 | 				sigdelset(&sigBlocked, i) | 
 | 			} | 
 | 		} | 
 | 		sigprocmask(_SIG_SETMASK, &sigBlocked, nil) | 
 | 		for { | 
 | 			select { | 
 | 			case sig := <-enableSigChan: | 
 | 				if sig > 0 { | 
 | 					sigdelset(&sigBlocked, int(sig)) | 
 | 				} | 
 | 			case sig := <-disableSigChan: | 
 | 				if sig > 0 && blockableSig(sig) { | 
 | 					sigaddset(&sigBlocked, int(sig)) | 
 | 				} | 
 | 			} | 
 | 			sigprocmask(_SIG_SETMASK, &sigBlocked, nil) | 
 | 			maskUpdatedChan <- struct{}{} | 
 | 		} | 
 | 	}() | 
 | } | 
 |  | 
 | // This is called when we receive a signal when there is no signal stack. | 
 | // This can only happen if non-Go code calls sigaltstack to disable the | 
 | // signal stack. | 
 | func noSignalStack(sig uint32) { | 
 | 	println("signal", sig, "received on thread with no signal stack") | 
 | 	throw("non-Go code disabled sigaltstack") | 
 | } | 
 |  | 
 | // This is called if we receive a signal when there is a signal stack | 
 | // but we are not on it. This can only happen if non-Go code called | 
 | // sigaction without setting the SS_ONSTACK flag. | 
 | func sigNotOnStack(sig uint32) { | 
 | 	println("signal", sig, "received but handler not on signal stack") | 
 | 	throw("non-Go code set up signal handler without SA_ONSTACK flag") | 
 | } | 
 |  | 
 | // signalDuringFork is called if we receive a signal while doing a fork. | 
 | // We do not want signals at that time, as a signal sent to the process | 
 | // group may be delivered to the child process, causing confusion. | 
 | // This should never be called, because we block signals across the fork; | 
 | // this function is just a safety check. See issue 18600 for background. | 
 | func signalDuringFork(sig uint32) { | 
 | 	println("signal", sig, "received during fork") | 
 | 	throw("signal received during fork") | 
 | } | 
 |  | 
 | // This runs on a foreign stack, without an m or a g. No stack split. | 
 | //go:nosplit | 
 | //go:norace | 
 | //go:nowritebarrierrec | 
 | func badsignal(sig uintptr, c *sigctxt) { | 
 | 	needm(0) | 
 | 	if !sigsend(uint32(sig)) { | 
 | 		// A foreign thread received the signal sig, and the | 
 | 		// Go code does not want to handle it. | 
 | 		raisebadsignal(uint32(sig), c) | 
 | 	} | 
 | 	dropm() | 
 | } | 
 |  | 
 | //go:noescape | 
 | func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer) | 
 |  | 
 | // Determines if the signal should be handled by Go and if not, forwards the | 
 | // signal to the handler that was installed before Go's. Returns whether the | 
 | // signal was forwarded. | 
 | // This is called by the signal handler, and the world may be stopped. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return false | 
 | 	} | 
 | 	fwdFn := atomic.Loaduintptr(&fwdSig[sig]) | 
 | 	flags := sigtable[sig].flags | 
 |  | 
 | 	// If we aren't handling the signal, forward it. | 
 | 	if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK { | 
 | 		// If the signal is ignored, doing nothing is the same as forwarding. | 
 | 		if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) { | 
 | 			return true | 
 | 		} | 
 | 		// We are not handling the signal and there is no other handler to forward to. | 
 | 		// Crash with the default behavior. | 
 | 		if fwdFn == _SIG_DFL { | 
 | 			setsig(sig, _SIG_DFL) | 
 | 			dieFromSignal(sig) | 
 | 			return false | 
 | 		} | 
 |  | 
 | 		sigfwd(fwdFn, sig, info, ctx) | 
 | 		return true | 
 | 	} | 
 |  | 
 | 	// If there is no handler to forward to, no need to forward. | 
 | 	if fwdFn == _SIG_DFL { | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	c := &sigctxt{info, ctx} | 
 | 	// Only forward synchronous signals and SIGPIPE. | 
 | 	// Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code | 
 | 	// is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket | 
 | 	// or pipe. | 
 | 	if (c.sigcode() == _SI_USER || flags&_SigPanic == 0) && sig != _SIGPIPE { | 
 | 		return false | 
 | 	} | 
 | 	// Determine if the signal occurred inside Go code. We test that: | 
 | 	//   (1) we were in a goroutine (i.e., m.curg != nil), and | 
 | 	//   (2) we weren't in CGO. | 
 | 	g := getg() | 
 | 	if g != nil && g.m != nil && g.m.curg != nil && !g.m.incgo { | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	// Signal not handled by Go, forward it. | 
 | 	if fwdFn != _SIG_IGN { | 
 | 		sigfwd(fwdFn, sig, info, ctx) | 
 | 	} | 
 |  | 
 | 	return true | 
 | } | 
 |  | 
 | // msigsave saves the current thread's signal mask into mp.sigmask. | 
 | // This is used to preserve the non-Go signal mask when a non-Go | 
 | // thread calls a Go function. | 
 | // This is nosplit and nowritebarrierrec because it is called by needm | 
 | // which may be called on a non-Go thread with no g available. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func msigsave(mp *m) { | 
 | 	sigprocmask(_SIG_SETMASK, nil, &mp.sigmask) | 
 | } | 
 |  | 
 | // msigrestore sets the current thread's signal mask to sigmask. | 
 | // This is used to restore the non-Go signal mask when a non-Go thread | 
 | // calls a Go function. | 
 | // This is nosplit and nowritebarrierrec because it is called by dropm | 
 | // after g has been cleared. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func msigrestore(sigmask sigset) { | 
 | 	sigprocmask(_SIG_SETMASK, &sigmask, nil) | 
 | } | 
 |  | 
 | // sigblock blocks all signals in the current thread's signal mask. | 
 | // This is used to block signals while setting up and tearing down g | 
 | // when a non-Go thread calls a Go function. | 
 | // The OS-specific code is expected to define sigset_all. | 
 | // This is nosplit and nowritebarrierrec because it is called by needm | 
 | // which may be called on a non-Go thread with no g available. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func sigblock() { | 
 | 	sigprocmask(_SIG_SETMASK, &sigset_all, nil) | 
 | } | 
 |  | 
 | // unblocksig removes sig from the current thread's signal mask. | 
 | // This is nosplit and nowritebarrierrec because it is called from | 
 | // dieFromSignal, which can be called by sigfwdgo while running in the | 
 | // signal handler, on the signal stack, with no g available. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func unblocksig(sig uint32) { | 
 | 	var set sigset | 
 | 	sigaddset(&set, int(sig)) | 
 | 	sigprocmask(_SIG_UNBLOCK, &set, nil) | 
 | } | 
 |  | 
 | // minitSignals is called when initializing a new m to set the | 
 | // thread's alternate signal stack and signal mask. | 
 | func minitSignals() { | 
 | 	minitSignalStack() | 
 | 	minitSignalMask() | 
 | } | 
 |  | 
 | // minitSignalStack is called when initializing a new m to set the | 
 | // alternate signal stack. If the alternate signal stack is not set | 
 | // for the thread (the normal case) then set the alternate signal | 
 | // stack to the gsignal stack. If the alternate signal stack is set | 
 | // for the thread (the case when a non-Go thread sets the alternate | 
 | // signal stack and then calls a Go function) then set the gsignal | 
 | // stack to the alternate signal stack. Record which choice was made | 
 | // in newSigstack, so that it can be undone in unminit. | 
 | func minitSignalStack() { | 
 | 	_g_ := getg() | 
 | 	var st stackt | 
 | 	sigaltstack(nil, &st) | 
 | 	if st.ss_flags&_SS_DISABLE != 0 { | 
 | 		signalstack(&_g_.m.gsignal.stack) | 
 | 		_g_.m.newSigstack = true | 
 | 	} else { | 
 | 		setGsignalStack(&st, &_g_.m.goSigStack) | 
 | 		_g_.m.newSigstack = false | 
 | 	} | 
 | } | 
 |  | 
 | // minitSignalMask is called when initializing a new m to set the | 
 | // thread's signal mask. When this is called all signals have been | 
 | // blocked for the thread.  This starts with m.sigmask, which was set | 
 | // either from initSigmask for a newly created thread or by calling | 
 | // msigsave if this is a non-Go thread calling a Go function. It | 
 | // removes all essential signals from the mask, thus causing those | 
 | // signals to not be blocked. Then it sets the thread's signal mask. | 
 | // After this is called the thread can receive signals. | 
 | func minitSignalMask() { | 
 | 	nmask := getg().m.sigmask | 
 | 	for i := range sigtable { | 
 | 		if !blockableSig(uint32(i)) { | 
 | 			sigdelset(&nmask, i) | 
 | 		} | 
 | 	} | 
 | 	sigprocmask(_SIG_SETMASK, &nmask, nil) | 
 | } | 
 |  | 
 | // unminitSignals is called from dropm, via unminit, to undo the | 
 | // effect of calling minit on a non-Go thread. | 
 | //go:nosplit | 
 | func unminitSignals() { | 
 | 	if getg().m.newSigstack { | 
 | 		st := stackt{ss_flags: _SS_DISABLE} | 
 | 		sigaltstack(&st, nil) | 
 | 	} else { | 
 | 		// We got the signal stack from someone else. Restore | 
 | 		// the Go-allocated stack in case this M gets reused | 
 | 		// for another thread (e.g., it's an extram). Also, on | 
 | 		// Android, libc allocates a signal stack for all | 
 | 		// threads, so it's important to restore the Go stack | 
 | 		// even on Go-created threads so we can free it. | 
 | 		restoreGsignalStack(&getg().m.goSigStack) | 
 | 	} | 
 | } | 
 |  | 
 | // blockableSig returns whether sig may be blocked by the signal mask. | 
 | // We never want to block the signals marked _SigUnblock; | 
 | // these are the synchronous signals that turn into a Go panic. | 
 | // In a Go program--not a c-archive/c-shared--we never want to block | 
 | // the signals marked _SigKill or _SigThrow, as otherwise it's possible | 
 | // for all running threads to block them and delay their delivery until | 
 | // we start a new thread. When linked into a C program we let the C code | 
 | // decide on the disposition of those signals. | 
 | func blockableSig(sig uint32) bool { | 
 | 	flags := sigtable[sig].flags | 
 | 	if flags&_SigUnblock != 0 { | 
 | 		return false | 
 | 	} | 
 | 	if isarchive || islibrary { | 
 | 		return true | 
 | 	} | 
 | 	return flags&(_SigKill|_SigThrow) == 0 | 
 | } | 
 |  | 
 | // gsignalStack saves the fields of the gsignal stack changed by | 
 | // setGsignalStack. | 
 | type gsignalStack struct { | 
 | 	stack       stack | 
 | 	stackguard0 uintptr | 
 | 	stackguard1 uintptr | 
 | 	stktopsp    uintptr | 
 | } | 
 |  | 
 | // setGsignalStack sets the gsignal stack of the current m to an | 
 | // alternate signal stack returned from the sigaltstack system call. | 
 | // It saves the old values in *old for use by restoreGsignalStack. | 
 | // This is used when handling a signal if non-Go code has set the | 
 | // alternate signal stack. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func setGsignalStack(st *stackt, old *gsignalStack) { | 
 | 	g := getg() | 
 | 	if old != nil { | 
 | 		old.stack = g.m.gsignal.stack | 
 | 		old.stackguard0 = g.m.gsignal.stackguard0 | 
 | 		old.stackguard1 = g.m.gsignal.stackguard1 | 
 | 		old.stktopsp = g.m.gsignal.stktopsp | 
 | 	} | 
 | 	stsp := uintptr(unsafe.Pointer(st.ss_sp)) | 
 | 	g.m.gsignal.stack.lo = stsp | 
 | 	g.m.gsignal.stack.hi = stsp + st.ss_size | 
 | 	g.m.gsignal.stackguard0 = stsp + _StackGuard | 
 | 	g.m.gsignal.stackguard1 = stsp + _StackGuard | 
 | } | 
 |  | 
 | // restoreGsignalStack restores the gsignal stack to the value it had | 
 | // before entering the signal handler. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func restoreGsignalStack(st *gsignalStack) { | 
 | 	gp := getg().m.gsignal | 
 | 	gp.stack = st.stack | 
 | 	gp.stackguard0 = st.stackguard0 | 
 | 	gp.stackguard1 = st.stackguard1 | 
 | 	gp.stktopsp = st.stktopsp | 
 | } | 
 |  | 
 | // signalstack sets the current thread's alternate signal stack to s. | 
 | //go:nosplit | 
 | func signalstack(s *stack) { | 
 | 	st := stackt{ss_size: s.hi - s.lo} | 
 | 	setSignalstackSP(&st, s.lo) | 
 | 	sigaltstack(&st, nil) | 
 | } | 
 |  | 
 | // setsigsegv is used on darwin/arm{,64} to fake a segmentation fault. | 
 | //go:nosplit | 
 | func setsigsegv(pc uintptr) { | 
 | 	g := getg() | 
 | 	g.sig = _SIGSEGV | 
 | 	g.sigpc = pc | 
 | 	g.sigcode0 = _SEGV_MAPERR | 
 | 	g.sigcode1 = 0 // TODO: emulate si_addr | 
 | } |