|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // TLS low level connection and record layer | 
|  |  | 
|  | package tls | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "crypto/cipher" | 
|  | "crypto/subtle" | 
|  | "crypto/x509" | 
|  | "errors" | 
|  | "fmt" | 
|  | "io" | 
|  | "net" | 
|  | "sync" | 
|  | "sync/atomic" | 
|  | "time" | 
|  | ) | 
|  |  | 
|  | // A Conn represents a secured connection. | 
|  | // It implements the net.Conn interface. | 
|  | type Conn struct { | 
|  | // constant | 
|  | conn     net.Conn | 
|  | isClient bool | 
|  |  | 
|  | // constant after handshake; protected by handshakeMutex | 
|  | handshakeMutex sync.Mutex | 
|  | handshakeErr   error   // error resulting from handshake | 
|  | vers           uint16  // TLS version | 
|  | haveVers       bool    // version has been negotiated | 
|  | config         *Config // configuration passed to constructor | 
|  | // handshakeComplete is true if the connection is currently transferring | 
|  | // application data (i.e. is not currently processing a handshake). | 
|  | handshakeComplete bool | 
|  | // handshakes counts the number of handshakes performed on the | 
|  | // connection so far. If renegotiation is disabled then this is either | 
|  | // zero or one. | 
|  | handshakes       int | 
|  | didResume        bool // whether this connection was a session resumption | 
|  | cipherSuite      uint16 | 
|  | ocspResponse     []byte   // stapled OCSP response | 
|  | scts             [][]byte // signed certificate timestamps from server | 
|  | peerCertificates []*x509.Certificate | 
|  | // verifiedChains contains the certificate chains that we built, as | 
|  | // opposed to the ones presented by the server. | 
|  | verifiedChains [][]*x509.Certificate | 
|  | // serverName contains the server name indicated by the client, if any. | 
|  | serverName string | 
|  | // secureRenegotiation is true if the server echoed the secure | 
|  | // renegotiation extension. (This is meaningless as a server because | 
|  | // renegotiation is not supported in that case.) | 
|  | secureRenegotiation bool | 
|  | // ekm is a closure for exporting keying material. | 
|  | ekm func(label string, context []byte, length int) ([]byte, bool) | 
|  |  | 
|  | // clientFinishedIsFirst is true if the client sent the first Finished | 
|  | // message during the most recent handshake. This is recorded because | 
|  | // the first transmitted Finished message is the tls-unique | 
|  | // channel-binding value. | 
|  | clientFinishedIsFirst bool | 
|  |  | 
|  | // closeNotifyErr is any error from sending the alertCloseNotify record. | 
|  | closeNotifyErr error | 
|  | // closeNotifySent is true if the Conn attempted to send an | 
|  | // alertCloseNotify record. | 
|  | closeNotifySent bool | 
|  |  | 
|  | // clientFinished and serverFinished contain the Finished message sent | 
|  | // by the client or server in the most recent handshake. This is | 
|  | // retained to support the renegotiation extension and tls-unique | 
|  | // channel-binding. | 
|  | clientFinished [12]byte | 
|  | serverFinished [12]byte | 
|  |  | 
|  | clientProtocol         string | 
|  | clientProtocolFallback bool | 
|  |  | 
|  | // input/output | 
|  | in, out   halfConn | 
|  | rawInput  *block       // raw input, right off the wire | 
|  | input     *block       // application data waiting to be read | 
|  | hand      bytes.Buffer // handshake data waiting to be read | 
|  | buffering bool         // whether records are buffered in sendBuf | 
|  | sendBuf   []byte       // a buffer of records waiting to be sent | 
|  |  | 
|  | // bytesSent counts the bytes of application data sent. | 
|  | // packetsSent counts packets. | 
|  | bytesSent   int64 | 
|  | packetsSent int64 | 
|  |  | 
|  | // warnCount counts the number of consecutive warning alerts received | 
|  | // by Conn.readRecord. Protected by in.Mutex. | 
|  | warnCount int | 
|  |  | 
|  | // activeCall is an atomic int32; the low bit is whether Close has | 
|  | // been called. the rest of the bits are the number of goroutines | 
|  | // in Conn.Write. | 
|  | activeCall int32 | 
|  |  | 
|  | tmp [16]byte | 
|  | } | 
|  |  | 
|  | // Access to net.Conn methods. | 
|  | // Cannot just embed net.Conn because that would | 
|  | // export the struct field too. | 
|  |  | 
|  | // LocalAddr returns the local network address. | 
|  | func (c *Conn) LocalAddr() net.Addr { | 
|  | return c.conn.LocalAddr() | 
|  | } | 
|  |  | 
|  | // RemoteAddr returns the remote network address. | 
|  | func (c *Conn) RemoteAddr() net.Addr { | 
|  | return c.conn.RemoteAddr() | 
|  | } | 
|  |  | 
|  | // SetDeadline sets the read and write deadlines associated with the connection. | 
|  | // A zero value for t means Read and Write will not time out. | 
|  | // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. | 
|  | func (c *Conn) SetDeadline(t time.Time) error { | 
|  | return c.conn.SetDeadline(t) | 
|  | } | 
|  |  | 
|  | // SetReadDeadline sets the read deadline on the underlying connection. | 
|  | // A zero value for t means Read will not time out. | 
|  | func (c *Conn) SetReadDeadline(t time.Time) error { | 
|  | return c.conn.SetReadDeadline(t) | 
|  | } | 
|  |  | 
|  | // SetWriteDeadline sets the write deadline on the underlying connection. | 
|  | // A zero value for t means Write will not time out. | 
|  | // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. | 
|  | func (c *Conn) SetWriteDeadline(t time.Time) error { | 
|  | return c.conn.SetWriteDeadline(t) | 
|  | } | 
|  |  | 
|  | // A halfConn represents one direction of the record layer | 
|  | // connection, either sending or receiving. | 
|  | type halfConn struct { | 
|  | sync.Mutex | 
|  |  | 
|  | err            error       // first permanent error | 
|  | version        uint16      // protocol version | 
|  | cipher         interface{} // cipher algorithm | 
|  | mac            macFunction | 
|  | seq            [8]byte  // 64-bit sequence number | 
|  | bfree          *block   // list of free blocks | 
|  | additionalData [13]byte // to avoid allocs; interface method args escape | 
|  |  | 
|  | nextCipher interface{} // next encryption state | 
|  | nextMac    macFunction // next MAC algorithm | 
|  |  | 
|  | // used to save allocating a new buffer for each MAC. | 
|  | inDigestBuf, outDigestBuf []byte | 
|  | } | 
|  |  | 
|  | func (hc *halfConn) setErrorLocked(err error) error { | 
|  | hc.err = err | 
|  | return err | 
|  | } | 
|  |  | 
|  | // prepareCipherSpec sets the encryption and MAC states | 
|  | // that a subsequent changeCipherSpec will use. | 
|  | func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { | 
|  | hc.version = version | 
|  | hc.nextCipher = cipher | 
|  | hc.nextMac = mac | 
|  | } | 
|  |  | 
|  | // changeCipherSpec changes the encryption and MAC states | 
|  | // to the ones previously passed to prepareCipherSpec. | 
|  | func (hc *halfConn) changeCipherSpec() error { | 
|  | if hc.nextCipher == nil { | 
|  | return alertInternalError | 
|  | } | 
|  | hc.cipher = hc.nextCipher | 
|  | hc.mac = hc.nextMac | 
|  | hc.nextCipher = nil | 
|  | hc.nextMac = nil | 
|  | for i := range hc.seq { | 
|  | hc.seq[i] = 0 | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // incSeq increments the sequence number. | 
|  | func (hc *halfConn) incSeq() { | 
|  | for i := 7; i >= 0; i-- { | 
|  | hc.seq[i]++ | 
|  | if hc.seq[i] != 0 { | 
|  | return | 
|  | } | 
|  | } | 
|  |  | 
|  | // Not allowed to let sequence number wrap. | 
|  | // Instead, must renegotiate before it does. | 
|  | // Not likely enough to bother. | 
|  | panic("TLS: sequence number wraparound") | 
|  | } | 
|  |  | 
|  | // extractPadding returns, in constant time, the length of the padding to remove | 
|  | // from the end of payload. It also returns a byte which is equal to 255 if the | 
|  | // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 | 
|  | func extractPadding(payload []byte) (toRemove int, good byte) { | 
|  | if len(payload) < 1 { | 
|  | return 0, 0 | 
|  | } | 
|  |  | 
|  | paddingLen := payload[len(payload)-1] | 
|  | t := uint(len(payload)-1) - uint(paddingLen) | 
|  | // if len(payload) >= (paddingLen - 1) then the MSB of t is zero | 
|  | good = byte(int32(^t) >> 31) | 
|  |  | 
|  | // The maximum possible padding length plus the actual length field | 
|  | toCheck := 256 | 
|  | // The length of the padded data is public, so we can use an if here | 
|  | if toCheck > len(payload) { | 
|  | toCheck = len(payload) | 
|  | } | 
|  |  | 
|  | for i := 0; i < toCheck; i++ { | 
|  | t := uint(paddingLen) - uint(i) | 
|  | // if i <= paddingLen then the MSB of t is zero | 
|  | mask := byte(int32(^t) >> 31) | 
|  | b := payload[len(payload)-1-i] | 
|  | good &^= mask&paddingLen ^ mask&b | 
|  | } | 
|  |  | 
|  | // We AND together the bits of good and replicate the result across | 
|  | // all the bits. | 
|  | good &= good << 4 | 
|  | good &= good << 2 | 
|  | good &= good << 1 | 
|  | good = uint8(int8(good) >> 7) | 
|  |  | 
|  | toRemove = int(paddingLen) + 1 | 
|  | return | 
|  | } | 
|  |  | 
|  | // extractPaddingSSL30 is a replacement for extractPadding in the case that the | 
|  | // protocol version is SSLv3. In this version, the contents of the padding | 
|  | // are random and cannot be checked. | 
|  | func extractPaddingSSL30(payload []byte) (toRemove int, good byte) { | 
|  | if len(payload) < 1 { | 
|  | return 0, 0 | 
|  | } | 
|  |  | 
|  | paddingLen := int(payload[len(payload)-1]) + 1 | 
|  | if paddingLen > len(payload) { | 
|  | return 0, 0 | 
|  | } | 
|  |  | 
|  | return paddingLen, 255 | 
|  | } | 
|  |  | 
|  | func roundUp(a, b int) int { | 
|  | return a + (b-a%b)%b | 
|  | } | 
|  |  | 
|  | // cbcMode is an interface for block ciphers using cipher block chaining. | 
|  | type cbcMode interface { | 
|  | cipher.BlockMode | 
|  | SetIV([]byte) | 
|  | } | 
|  |  | 
|  | // decrypt checks and strips the mac and decrypts the data in b. Returns a | 
|  | // success boolean, the number of bytes to skip from the start of the record in | 
|  | // order to get the application payload, and an optional alert value. | 
|  | func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { | 
|  | // pull out payload | 
|  | payload := b.data[recordHeaderLen:] | 
|  |  | 
|  | macSize := 0 | 
|  | if hc.mac != nil { | 
|  | macSize = hc.mac.Size() | 
|  | } | 
|  |  | 
|  | paddingGood := byte(255) | 
|  | paddingLen := 0 | 
|  | explicitIVLen := 0 | 
|  |  | 
|  | // decrypt | 
|  | if hc.cipher != nil { | 
|  | switch c := hc.cipher.(type) { | 
|  | case cipher.Stream: | 
|  | c.XORKeyStream(payload, payload) | 
|  | case aead: | 
|  | explicitIVLen = c.explicitNonceLen() | 
|  | if len(payload) < explicitIVLen { | 
|  | return false, 0, alertBadRecordMAC | 
|  | } | 
|  | nonce := payload[:explicitIVLen] | 
|  | payload = payload[explicitIVLen:] | 
|  |  | 
|  | if len(nonce) == 0 { | 
|  | nonce = hc.seq[:] | 
|  | } | 
|  |  | 
|  | copy(hc.additionalData[:], hc.seq[:]) | 
|  | copy(hc.additionalData[8:], b.data[:3]) | 
|  | n := len(payload) - c.Overhead() | 
|  | hc.additionalData[11] = byte(n >> 8) | 
|  | hc.additionalData[12] = byte(n) | 
|  | var err error | 
|  | payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:]) | 
|  | if err != nil { | 
|  | return false, 0, alertBadRecordMAC | 
|  | } | 
|  | b.resize(recordHeaderLen + explicitIVLen + len(payload)) | 
|  | case cbcMode: | 
|  | blockSize := c.BlockSize() | 
|  | if hc.version >= VersionTLS11 { | 
|  | explicitIVLen = blockSize | 
|  | } | 
|  |  | 
|  | if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { | 
|  | return false, 0, alertBadRecordMAC | 
|  | } | 
|  |  | 
|  | if explicitIVLen > 0 { | 
|  | c.SetIV(payload[:explicitIVLen]) | 
|  | payload = payload[explicitIVLen:] | 
|  | } | 
|  | c.CryptBlocks(payload, payload) | 
|  | if hc.version == VersionSSL30 { | 
|  | paddingLen, paddingGood = extractPaddingSSL30(payload) | 
|  | } else { | 
|  | paddingLen, paddingGood = extractPadding(payload) | 
|  |  | 
|  | // To protect against CBC padding oracles like Lucky13, the data | 
|  | // past paddingLen (which is secret) is passed to the MAC | 
|  | // function as extra data, to be fed into the HMAC after | 
|  | // computing the digest. This makes the MAC constant time as | 
|  | // long as the digest computation is constant time and does not | 
|  | // affect the subsequent write. | 
|  | } | 
|  | default: | 
|  | panic("unknown cipher type") | 
|  | } | 
|  | } | 
|  |  | 
|  | // check, strip mac | 
|  | if hc.mac != nil { | 
|  | if len(payload) < macSize { | 
|  | return false, 0, alertBadRecordMAC | 
|  | } | 
|  |  | 
|  | // strip mac off payload, b.data | 
|  | n := len(payload) - macSize - paddingLen | 
|  | n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } | 
|  | b.data[3] = byte(n >> 8) | 
|  | b.data[4] = byte(n) | 
|  | remoteMAC := payload[n : n+macSize] | 
|  | localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:]) | 
|  |  | 
|  | if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { | 
|  | return false, 0, alertBadRecordMAC | 
|  | } | 
|  | hc.inDigestBuf = localMAC | 
|  |  | 
|  | b.resize(recordHeaderLen + explicitIVLen + n) | 
|  | } | 
|  | hc.incSeq() | 
|  |  | 
|  | return true, recordHeaderLen + explicitIVLen, 0 | 
|  | } | 
|  |  | 
|  | // padToBlockSize calculates the needed padding block, if any, for a payload. | 
|  | // On exit, prefix aliases payload and extends to the end of the last full | 
|  | // block of payload. finalBlock is a fresh slice which contains the contents of | 
|  | // any suffix of payload as well as the needed padding to make finalBlock a | 
|  | // full block. | 
|  | func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { | 
|  | overrun := len(payload) % blockSize | 
|  | paddingLen := blockSize - overrun | 
|  | prefix = payload[:len(payload)-overrun] | 
|  | finalBlock = make([]byte, blockSize) | 
|  | copy(finalBlock, payload[len(payload)-overrun:]) | 
|  | for i := overrun; i < blockSize; i++ { | 
|  | finalBlock[i] = byte(paddingLen - 1) | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // encrypt encrypts and macs the data in b. | 
|  | func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { | 
|  | // mac | 
|  | if hc.mac != nil { | 
|  | mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil) | 
|  |  | 
|  | n := len(b.data) | 
|  | b.resize(n + len(mac)) | 
|  | copy(b.data[n:], mac) | 
|  | hc.outDigestBuf = mac | 
|  | } | 
|  |  | 
|  | payload := b.data[recordHeaderLen:] | 
|  |  | 
|  | // encrypt | 
|  | if hc.cipher != nil { | 
|  | switch c := hc.cipher.(type) { | 
|  | case cipher.Stream: | 
|  | c.XORKeyStream(payload, payload) | 
|  | case aead: | 
|  | payloadLen := len(b.data) - recordHeaderLen - explicitIVLen | 
|  | b.resize(len(b.data) + c.Overhead()) | 
|  | nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] | 
|  | if len(nonce) == 0 { | 
|  | nonce = hc.seq[:] | 
|  | } | 
|  | payload := b.data[recordHeaderLen+explicitIVLen:] | 
|  | payload = payload[:payloadLen] | 
|  |  | 
|  | copy(hc.additionalData[:], hc.seq[:]) | 
|  | copy(hc.additionalData[8:], b.data[:3]) | 
|  | hc.additionalData[11] = byte(payloadLen >> 8) | 
|  | hc.additionalData[12] = byte(payloadLen) | 
|  |  | 
|  | c.Seal(payload[:0], nonce, payload, hc.additionalData[:]) | 
|  | case cbcMode: | 
|  | blockSize := c.BlockSize() | 
|  | if explicitIVLen > 0 { | 
|  | c.SetIV(payload[:explicitIVLen]) | 
|  | payload = payload[explicitIVLen:] | 
|  | } | 
|  | prefix, finalBlock := padToBlockSize(payload, blockSize) | 
|  | b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) | 
|  | c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) | 
|  | c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) | 
|  | default: | 
|  | panic("unknown cipher type") | 
|  | } | 
|  | } | 
|  |  | 
|  | // update length to include MAC and any block padding needed. | 
|  | n := len(b.data) - recordHeaderLen | 
|  | b.data[3] = byte(n >> 8) | 
|  | b.data[4] = byte(n) | 
|  | hc.incSeq() | 
|  |  | 
|  | return true, 0 | 
|  | } | 
|  |  | 
|  | // A block is a simple data buffer. | 
|  | type block struct { | 
|  | data []byte | 
|  | off  int // index for Read | 
|  | link *block | 
|  | } | 
|  |  | 
|  | // resize resizes block to be n bytes, growing if necessary. | 
|  | func (b *block) resize(n int) { | 
|  | if n > cap(b.data) { | 
|  | b.reserve(n) | 
|  | } | 
|  | b.data = b.data[0:n] | 
|  | } | 
|  |  | 
|  | // reserve makes sure that block contains a capacity of at least n bytes. | 
|  | func (b *block) reserve(n int) { | 
|  | if cap(b.data) >= n { | 
|  | return | 
|  | } | 
|  | m := cap(b.data) | 
|  | if m == 0 { | 
|  | m = 1024 | 
|  | } | 
|  | for m < n { | 
|  | m *= 2 | 
|  | } | 
|  | data := make([]byte, len(b.data), m) | 
|  | copy(data, b.data) | 
|  | b.data = data | 
|  | } | 
|  |  | 
|  | // readFromUntil reads from r into b until b contains at least n bytes | 
|  | // or else returns an error. | 
|  | func (b *block) readFromUntil(r io.Reader, n int) error { | 
|  | // quick case | 
|  | if len(b.data) >= n { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // read until have enough. | 
|  | b.reserve(n) | 
|  | for { | 
|  | m, err := r.Read(b.data[len(b.data):cap(b.data)]) | 
|  | b.data = b.data[0 : len(b.data)+m] | 
|  | if len(b.data) >= n { | 
|  | // TODO(bradfitz,agl): slightly suspicious | 
|  | // that we're throwing away r.Read's err here. | 
|  | break | 
|  | } | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | func (b *block) Read(p []byte) (n int, err error) { | 
|  | n = copy(p, b.data[b.off:]) | 
|  | b.off += n | 
|  | return | 
|  | } | 
|  |  | 
|  | // newBlock allocates a new block, from hc's free list if possible. | 
|  | func (hc *halfConn) newBlock() *block { | 
|  | b := hc.bfree | 
|  | if b == nil { | 
|  | return new(block) | 
|  | } | 
|  | hc.bfree = b.link | 
|  | b.link = nil | 
|  | b.resize(0) | 
|  | return b | 
|  | } | 
|  |  | 
|  | // freeBlock returns a block to hc's free list. | 
|  | // The protocol is such that each side only has a block or two on | 
|  | // its free list at a time, so there's no need to worry about | 
|  | // trimming the list, etc. | 
|  | func (hc *halfConn) freeBlock(b *block) { | 
|  | b.link = hc.bfree | 
|  | hc.bfree = b | 
|  | } | 
|  |  | 
|  | // splitBlock splits a block after the first n bytes, | 
|  | // returning a block with those n bytes and a | 
|  | // block with the remainder.  the latter may be nil. | 
|  | func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { | 
|  | if len(b.data) <= n { | 
|  | return b, nil | 
|  | } | 
|  | bb := hc.newBlock() | 
|  | bb.resize(len(b.data) - n) | 
|  | copy(bb.data, b.data[n:]) | 
|  | b.data = b.data[0:n] | 
|  | return b, bb | 
|  | } | 
|  |  | 
|  | // RecordHeaderError results when a TLS record header is invalid. | 
|  | type RecordHeaderError struct { | 
|  | // Msg contains a human readable string that describes the error. | 
|  | Msg string | 
|  | // RecordHeader contains the five bytes of TLS record header that | 
|  | // triggered the error. | 
|  | RecordHeader [5]byte | 
|  | } | 
|  |  | 
|  | func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } | 
|  |  | 
|  | func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) { | 
|  | err.Msg = msg | 
|  | copy(err.RecordHeader[:], c.rawInput.data) | 
|  | return err | 
|  | } | 
|  |  | 
|  | // readRecord reads the next TLS record from the connection | 
|  | // and updates the record layer state. | 
|  | func (c *Conn) readRecord(want recordType) error { | 
|  | // Caller must be in sync with connection: | 
|  | // handshake data if handshake not yet completed, | 
|  | // else application data. | 
|  | switch want { | 
|  | default: | 
|  | c.sendAlert(alertInternalError) | 
|  | return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) | 
|  | case recordTypeHandshake, recordTypeChangeCipherSpec: | 
|  | if c.handshakeComplete { | 
|  | c.sendAlert(alertInternalError) | 
|  | return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake")) | 
|  | } | 
|  | case recordTypeApplicationData: | 
|  | if !c.handshakeComplete { | 
|  | c.sendAlert(alertInternalError) | 
|  | return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake")) | 
|  | } | 
|  | } | 
|  |  | 
|  | Again: | 
|  | if c.rawInput == nil { | 
|  | c.rawInput = c.in.newBlock() | 
|  | } | 
|  | b := c.rawInput | 
|  |  | 
|  | // Read header, payload. | 
|  | if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { | 
|  | // RFC suggests that EOF without an alertCloseNotify is | 
|  | // an error, but popular web sites seem to do this, | 
|  | // so we can't make it an error. | 
|  | // if err == io.EOF { | 
|  | // 	err = io.ErrUnexpectedEOF | 
|  | // } | 
|  | if e, ok := err.(net.Error); !ok || !e.Temporary() { | 
|  | c.in.setErrorLocked(err) | 
|  | } | 
|  | return err | 
|  | } | 
|  | typ := recordType(b.data[0]) | 
|  |  | 
|  | // No valid TLS record has a type of 0x80, however SSLv2 handshakes | 
|  | // start with a uint16 length where the MSB is set and the first record | 
|  | // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests | 
|  | // an SSLv2 client. | 
|  | if want == recordTypeHandshake && typ == 0x80 { | 
|  | c.sendAlert(alertProtocolVersion) | 
|  | return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received")) | 
|  | } | 
|  |  | 
|  | vers := uint16(b.data[1])<<8 | uint16(b.data[2]) | 
|  | n := int(b.data[3])<<8 | int(b.data[4]) | 
|  | if c.haveVers && vers != c.vers { | 
|  | c.sendAlert(alertProtocolVersion) | 
|  | msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers) | 
|  | return c.in.setErrorLocked(c.newRecordHeaderError(msg)) | 
|  | } | 
|  | if n > maxCiphertext { | 
|  | c.sendAlert(alertRecordOverflow) | 
|  | msg := fmt.Sprintf("oversized record received with length %d", n) | 
|  | return c.in.setErrorLocked(c.newRecordHeaderError(msg)) | 
|  | } | 
|  | if !c.haveVers { | 
|  | // First message, be extra suspicious: this might not be a TLS | 
|  | // client. Bail out before reading a full 'body', if possible. | 
|  | // The current max version is 3.3 so if the version is >= 16.0, | 
|  | // it's probably not real. | 
|  | if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 { | 
|  | c.sendAlert(alertUnexpectedMessage) | 
|  | return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake")) | 
|  | } | 
|  | } | 
|  | if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { | 
|  | if err == io.EOF { | 
|  | err = io.ErrUnexpectedEOF | 
|  | } | 
|  | if e, ok := err.(net.Error); !ok || !e.Temporary() { | 
|  | c.in.setErrorLocked(err) | 
|  | } | 
|  | return err | 
|  | } | 
|  |  | 
|  | // Process message. | 
|  | b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) | 
|  | ok, off, alertValue := c.in.decrypt(b) | 
|  | if !ok { | 
|  | c.in.freeBlock(b) | 
|  | return c.in.setErrorLocked(c.sendAlert(alertValue)) | 
|  | } | 
|  | b.off = off | 
|  | data := b.data[b.off:] | 
|  | if len(data) > maxPlaintext { | 
|  | err := c.sendAlert(alertRecordOverflow) | 
|  | c.in.freeBlock(b) | 
|  | return c.in.setErrorLocked(err) | 
|  | } | 
|  |  | 
|  | if typ != recordTypeAlert && len(data) > 0 { | 
|  | // this is a valid non-alert message: reset the count of alerts | 
|  | c.warnCount = 0 | 
|  | } | 
|  |  | 
|  | switch typ { | 
|  | default: | 
|  | c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  |  | 
|  | case recordTypeAlert: | 
|  | if len(data) != 2 { | 
|  | c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | break | 
|  | } | 
|  | if alert(data[1]) == alertCloseNotify { | 
|  | c.in.setErrorLocked(io.EOF) | 
|  | break | 
|  | } | 
|  | switch data[0] { | 
|  | case alertLevelWarning: | 
|  | // drop on the floor | 
|  | c.in.freeBlock(b) | 
|  |  | 
|  | c.warnCount++ | 
|  | if c.warnCount > maxWarnAlertCount { | 
|  | c.sendAlert(alertUnexpectedMessage) | 
|  | return c.in.setErrorLocked(errors.New("tls: too many warn alerts")) | 
|  | } | 
|  |  | 
|  | goto Again | 
|  | case alertLevelError: | 
|  | c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) | 
|  | default: | 
|  | c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  |  | 
|  | case recordTypeChangeCipherSpec: | 
|  | if typ != want || len(data) != 1 || data[0] != 1 { | 
|  | c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | break | 
|  | } | 
|  | // Handshake messages are not allowed to fragment across the CCS | 
|  | if c.hand.Len() > 0 { | 
|  | c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | break | 
|  | } | 
|  | err := c.in.changeCipherSpec() | 
|  | if err != nil { | 
|  | c.in.setErrorLocked(c.sendAlert(err.(alert))) | 
|  | } | 
|  |  | 
|  | case recordTypeApplicationData: | 
|  | if typ != want { | 
|  | c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | break | 
|  | } | 
|  | c.input = b | 
|  | b = nil | 
|  |  | 
|  | case recordTypeHandshake: | 
|  | // TODO(rsc): Should at least pick off connection close. | 
|  | if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) | 
|  | } | 
|  | c.hand.Write(data) | 
|  | } | 
|  |  | 
|  | if b != nil { | 
|  | c.in.freeBlock(b) | 
|  | } | 
|  | return c.in.err | 
|  | } | 
|  |  | 
|  | // sendAlert sends a TLS alert message. | 
|  | func (c *Conn) sendAlertLocked(err alert) error { | 
|  | switch err { | 
|  | case alertNoRenegotiation, alertCloseNotify: | 
|  | c.tmp[0] = alertLevelWarning | 
|  | default: | 
|  | c.tmp[0] = alertLevelError | 
|  | } | 
|  | c.tmp[1] = byte(err) | 
|  |  | 
|  | _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) | 
|  | if err == alertCloseNotify { | 
|  | // closeNotify is a special case in that it isn't an error. | 
|  | return writeErr | 
|  | } | 
|  |  | 
|  | return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) | 
|  | } | 
|  |  | 
|  | // sendAlert sends a TLS alert message. | 
|  | func (c *Conn) sendAlert(err alert) error { | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  | return c.sendAlertLocked(err) | 
|  | } | 
|  |  | 
|  | const ( | 
|  | // tcpMSSEstimate is a conservative estimate of the TCP maximum segment | 
|  | // size (MSS). A constant is used, rather than querying the kernel for | 
|  | // the actual MSS, to avoid complexity. The value here is the IPv6 | 
|  | // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 | 
|  | // bytes) and a TCP header with timestamps (32 bytes). | 
|  | tcpMSSEstimate = 1208 | 
|  |  | 
|  | // recordSizeBoostThreshold is the number of bytes of application data | 
|  | // sent after which the TLS record size will be increased to the | 
|  | // maximum. | 
|  | recordSizeBoostThreshold = 128 * 1024 | 
|  | ) | 
|  |  | 
|  | // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the | 
|  | // next application data record. There is the following trade-off: | 
|  | // | 
|  | //   - For latency-sensitive applications, such as web browsing, each TLS | 
|  | //     record should fit in one TCP segment. | 
|  | //   - For throughput-sensitive applications, such as large file transfers, | 
|  | //     larger TLS records better amortize framing and encryption overheads. | 
|  | // | 
|  | // A simple heuristic that works well in practice is to use small records for | 
|  | // the first 1MB of data, then use larger records for subsequent data, and | 
|  | // reset back to smaller records after the connection becomes idle. See "High | 
|  | // Performance Web Networking", Chapter 4, or: | 
|  | // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ | 
|  | // | 
|  | // In the interests of simplicity and determinism, this code does not attempt | 
|  | // to reset the record size once the connection is idle, however. | 
|  | func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int { | 
|  | if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { | 
|  | return maxPlaintext | 
|  | } | 
|  |  | 
|  | if c.bytesSent >= recordSizeBoostThreshold { | 
|  | return maxPlaintext | 
|  | } | 
|  |  | 
|  | // Subtract TLS overheads to get the maximum payload size. | 
|  | macSize := 0 | 
|  | if c.out.mac != nil { | 
|  | macSize = c.out.mac.Size() | 
|  | } | 
|  |  | 
|  | payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen | 
|  | if c.out.cipher != nil { | 
|  | switch ciph := c.out.cipher.(type) { | 
|  | case cipher.Stream: | 
|  | payloadBytes -= macSize | 
|  | case cipher.AEAD: | 
|  | payloadBytes -= ciph.Overhead() | 
|  | case cbcMode: | 
|  | blockSize := ciph.BlockSize() | 
|  | // The payload must fit in a multiple of blockSize, with | 
|  | // room for at least one padding byte. | 
|  | payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 | 
|  | // The MAC is appended before padding so affects the | 
|  | // payload size directly. | 
|  | payloadBytes -= macSize | 
|  | default: | 
|  | panic("unknown cipher type") | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allow packet growth in arithmetic progression up to max. | 
|  | pkt := c.packetsSent | 
|  | c.packetsSent++ | 
|  | if pkt > 1000 { | 
|  | return maxPlaintext // avoid overflow in multiply below | 
|  | } | 
|  |  | 
|  | n := payloadBytes * int(pkt+1) | 
|  | if n > maxPlaintext { | 
|  | n = maxPlaintext | 
|  | } | 
|  | return n | 
|  | } | 
|  |  | 
|  | func (c *Conn) write(data []byte) (int, error) { | 
|  | if c.buffering { | 
|  | c.sendBuf = append(c.sendBuf, data...) | 
|  | return len(data), nil | 
|  | } | 
|  |  | 
|  | n, err := c.conn.Write(data) | 
|  | c.bytesSent += int64(n) | 
|  | return n, err | 
|  | } | 
|  |  | 
|  | func (c *Conn) flush() (int, error) { | 
|  | if len(c.sendBuf) == 0 { | 
|  | return 0, nil | 
|  | } | 
|  |  | 
|  | n, err := c.conn.Write(c.sendBuf) | 
|  | c.bytesSent += int64(n) | 
|  | c.sendBuf = nil | 
|  | c.buffering = false | 
|  | return n, err | 
|  | } | 
|  |  | 
|  | // writeRecordLocked writes a TLS record with the given type and payload to the | 
|  | // connection and updates the record layer state. | 
|  | func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { | 
|  | b := c.out.newBlock() | 
|  | defer c.out.freeBlock(b) | 
|  |  | 
|  | var n int | 
|  | for len(data) > 0 { | 
|  | explicitIVLen := 0 | 
|  | explicitIVIsSeq := false | 
|  |  | 
|  | var cbc cbcMode | 
|  | if c.out.version >= VersionTLS11 { | 
|  | var ok bool | 
|  | if cbc, ok = c.out.cipher.(cbcMode); ok { | 
|  | explicitIVLen = cbc.BlockSize() | 
|  | } | 
|  | } | 
|  | if explicitIVLen == 0 { | 
|  | if c, ok := c.out.cipher.(aead); ok { | 
|  | explicitIVLen = c.explicitNonceLen() | 
|  |  | 
|  | // The AES-GCM construction in TLS has an | 
|  | // explicit nonce so that the nonce can be | 
|  | // random. However, the nonce is only 8 bytes | 
|  | // which is too small for a secure, random | 
|  | // nonce. Therefore we use the sequence number | 
|  | // as the nonce. | 
|  | explicitIVIsSeq = explicitIVLen > 0 | 
|  | } | 
|  | } | 
|  | m := len(data) | 
|  | if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload { | 
|  | m = maxPayload | 
|  | } | 
|  | b.resize(recordHeaderLen + explicitIVLen + m) | 
|  | b.data[0] = byte(typ) | 
|  | vers := c.vers | 
|  | if vers == 0 { | 
|  | // Some TLS servers fail if the record version is | 
|  | // greater than TLS 1.0 for the initial ClientHello. | 
|  | vers = VersionTLS10 | 
|  | } | 
|  | b.data[1] = byte(vers >> 8) | 
|  | b.data[2] = byte(vers) | 
|  | b.data[3] = byte(m >> 8) | 
|  | b.data[4] = byte(m) | 
|  | if explicitIVLen > 0 { | 
|  | explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] | 
|  | if explicitIVIsSeq { | 
|  | copy(explicitIV, c.out.seq[:]) | 
|  | } else { | 
|  | if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil { | 
|  | return n, err | 
|  | } | 
|  | } | 
|  | } | 
|  | copy(b.data[recordHeaderLen+explicitIVLen:], data) | 
|  | c.out.encrypt(b, explicitIVLen) | 
|  | if _, err := c.write(b.data); err != nil { | 
|  | return n, err | 
|  | } | 
|  | n += m | 
|  | data = data[m:] | 
|  | } | 
|  |  | 
|  | if typ == recordTypeChangeCipherSpec { | 
|  | if err := c.out.changeCipherSpec(); err != nil { | 
|  | return n, c.sendAlertLocked(err.(alert)) | 
|  | } | 
|  | } | 
|  |  | 
|  | return n, nil | 
|  | } | 
|  |  | 
|  | // writeRecord writes a TLS record with the given type and payload to the | 
|  | // connection and updates the record layer state. | 
|  | func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) { | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  |  | 
|  | return c.writeRecordLocked(typ, data) | 
|  | } | 
|  |  | 
|  | // readHandshake reads the next handshake message from | 
|  | // the record layer. | 
|  | func (c *Conn) readHandshake() (interface{}, error) { | 
|  | for c.hand.Len() < 4 { | 
|  | if err := c.in.err; err != nil { | 
|  | return nil, err | 
|  | } | 
|  | if err := c.readRecord(recordTypeHandshake); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | } | 
|  |  | 
|  | data := c.hand.Bytes() | 
|  | n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) | 
|  | if n > maxHandshake { | 
|  | c.sendAlertLocked(alertInternalError) | 
|  | return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) | 
|  | } | 
|  | for c.hand.Len() < 4+n { | 
|  | if err := c.in.err; err != nil { | 
|  | return nil, err | 
|  | } | 
|  | if err := c.readRecord(recordTypeHandshake); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | } | 
|  | data = c.hand.Next(4 + n) | 
|  | var m handshakeMessage | 
|  | switch data[0] { | 
|  | case typeHelloRequest: | 
|  | m = new(helloRequestMsg) | 
|  | case typeClientHello: | 
|  | m = new(clientHelloMsg) | 
|  | case typeServerHello: | 
|  | m = new(serverHelloMsg) | 
|  | case typeNewSessionTicket: | 
|  | m = new(newSessionTicketMsg) | 
|  | case typeCertificate: | 
|  | m = new(certificateMsg) | 
|  | case typeCertificateRequest: | 
|  | m = &certificateRequestMsg{ | 
|  | hasSignatureAndHash: c.vers >= VersionTLS12, | 
|  | } | 
|  | case typeCertificateStatus: | 
|  | m = new(certificateStatusMsg) | 
|  | case typeServerKeyExchange: | 
|  | m = new(serverKeyExchangeMsg) | 
|  | case typeServerHelloDone: | 
|  | m = new(serverHelloDoneMsg) | 
|  | case typeClientKeyExchange: | 
|  | m = new(clientKeyExchangeMsg) | 
|  | case typeCertificateVerify: | 
|  | m = &certificateVerifyMsg{ | 
|  | hasSignatureAndHash: c.vers >= VersionTLS12, | 
|  | } | 
|  | case typeNextProtocol: | 
|  | m = new(nextProtoMsg) | 
|  | case typeFinished: | 
|  | m = new(finishedMsg) | 
|  | default: | 
|  | return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  |  | 
|  | // The handshake message unmarshalers | 
|  | // expect to be able to keep references to data, | 
|  | // so pass in a fresh copy that won't be overwritten. | 
|  | data = append([]byte(nil), data...) | 
|  |  | 
|  | if !m.unmarshal(data) { | 
|  | return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  | return m, nil | 
|  | } | 
|  |  | 
|  | var ( | 
|  | errClosed   = errors.New("tls: use of closed connection") | 
|  | errShutdown = errors.New("tls: protocol is shutdown") | 
|  | ) | 
|  |  | 
|  | // Write writes data to the connection. | 
|  | func (c *Conn) Write(b []byte) (int, error) { | 
|  | // interlock with Close below | 
|  | for { | 
|  | x := atomic.LoadInt32(&c.activeCall) | 
|  | if x&1 != 0 { | 
|  | return 0, errClosed | 
|  | } | 
|  | if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { | 
|  | defer atomic.AddInt32(&c.activeCall, -2) | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | if err := c.Handshake(); err != nil { | 
|  | return 0, err | 
|  | } | 
|  |  | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  |  | 
|  | if err := c.out.err; err != nil { | 
|  | return 0, err | 
|  | } | 
|  |  | 
|  | if !c.handshakeComplete { | 
|  | return 0, alertInternalError | 
|  | } | 
|  |  | 
|  | if c.closeNotifySent { | 
|  | return 0, errShutdown | 
|  | } | 
|  |  | 
|  | // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext | 
|  | // attack when using block mode ciphers due to predictable IVs. | 
|  | // This can be prevented by splitting each Application Data | 
|  | // record into two records, effectively randomizing the IV. | 
|  | // | 
|  | // https://www.openssl.org/~bodo/tls-cbc.txt | 
|  | // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 | 
|  | // https://www.imperialviolet.org/2012/01/15/beastfollowup.html | 
|  |  | 
|  | var m int | 
|  | if len(b) > 1 && c.vers <= VersionTLS10 { | 
|  | if _, ok := c.out.cipher.(cipher.BlockMode); ok { | 
|  | n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) | 
|  | if err != nil { | 
|  | return n, c.out.setErrorLocked(err) | 
|  | } | 
|  | m, b = 1, b[1:] | 
|  | } | 
|  | } | 
|  |  | 
|  | n, err := c.writeRecordLocked(recordTypeApplicationData, b) | 
|  | return n + m, c.out.setErrorLocked(err) | 
|  | } | 
|  |  | 
|  | // handleRenegotiation processes a HelloRequest handshake message. | 
|  | func (c *Conn) handleRenegotiation() error { | 
|  | msg, err := c.readHandshake() | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | _, ok := msg.(*helloRequestMsg) | 
|  | if !ok { | 
|  | c.sendAlert(alertUnexpectedMessage) | 
|  | return alertUnexpectedMessage | 
|  | } | 
|  |  | 
|  | if !c.isClient { | 
|  | return c.sendAlert(alertNoRenegotiation) | 
|  | } | 
|  |  | 
|  | switch c.config.Renegotiation { | 
|  | case RenegotiateNever: | 
|  | return c.sendAlert(alertNoRenegotiation) | 
|  | case RenegotiateOnceAsClient: | 
|  | if c.handshakes > 1 { | 
|  | return c.sendAlert(alertNoRenegotiation) | 
|  | } | 
|  | case RenegotiateFreelyAsClient: | 
|  | // Ok. | 
|  | default: | 
|  | c.sendAlert(alertInternalError) | 
|  | return errors.New("tls: unknown Renegotiation value") | 
|  | } | 
|  |  | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  |  | 
|  | c.handshakeComplete = false | 
|  | if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil { | 
|  | c.handshakes++ | 
|  | } | 
|  | return c.handshakeErr | 
|  | } | 
|  |  | 
|  | // Read can be made to time out and return a net.Error with Timeout() == true | 
|  | // after a fixed time limit; see SetDeadline and SetReadDeadline. | 
|  | func (c *Conn) Read(b []byte) (n int, err error) { | 
|  | if err = c.Handshake(); err != nil { | 
|  | return | 
|  | } | 
|  | if len(b) == 0 { | 
|  | // Put this after Handshake, in case people were calling | 
|  | // Read(nil) for the side effect of the Handshake. | 
|  | return | 
|  | } | 
|  |  | 
|  | c.in.Lock() | 
|  | defer c.in.Unlock() | 
|  |  | 
|  | // Some OpenSSL servers send empty records in order to randomize the | 
|  | // CBC IV. So this loop ignores a limited number of empty records. | 
|  | const maxConsecutiveEmptyRecords = 100 | 
|  | for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { | 
|  | for c.input == nil && c.in.err == nil { | 
|  | if err := c.readRecord(recordTypeApplicationData); err != nil { | 
|  | // Soft error, like EAGAIN | 
|  | return 0, err | 
|  | } | 
|  | if c.hand.Len() > 0 { | 
|  | // We received handshake bytes, indicating the | 
|  | // start of a renegotiation. | 
|  | if err := c.handleRenegotiation(); err != nil { | 
|  | return 0, err | 
|  | } | 
|  | } | 
|  | } | 
|  | if err := c.in.err; err != nil { | 
|  | return 0, err | 
|  | } | 
|  |  | 
|  | n, err = c.input.Read(b) | 
|  | if c.input.off >= len(c.input.data) { | 
|  | c.in.freeBlock(c.input) | 
|  | c.input = nil | 
|  | } | 
|  |  | 
|  | // If a close-notify alert is waiting, read it so that | 
|  | // we can return (n, EOF) instead of (n, nil), to signal | 
|  | // to the HTTP response reading goroutine that the | 
|  | // connection is now closed. This eliminates a race | 
|  | // where the HTTP response reading goroutine would | 
|  | // otherwise not observe the EOF until its next read, | 
|  | // by which time a client goroutine might have already | 
|  | // tried to reuse the HTTP connection for a new | 
|  | // request. | 
|  | // See https://codereview.appspot.com/76400046 | 
|  | // and https://golang.org/issue/3514 | 
|  | if ri := c.rawInput; ri != nil && | 
|  | n != 0 && err == nil && | 
|  | c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { | 
|  | if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { | 
|  | err = recErr // will be io.EOF on closeNotify | 
|  | } | 
|  | } | 
|  |  | 
|  | if n != 0 || err != nil { | 
|  | return n, err | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0, io.ErrNoProgress | 
|  | } | 
|  |  | 
|  | // Close closes the connection. | 
|  | func (c *Conn) Close() error { | 
|  | // Interlock with Conn.Write above. | 
|  | var x int32 | 
|  | for { | 
|  | x = atomic.LoadInt32(&c.activeCall) | 
|  | if x&1 != 0 { | 
|  | return errClosed | 
|  | } | 
|  | if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { | 
|  | break | 
|  | } | 
|  | } | 
|  | if x != 0 { | 
|  | // io.Writer and io.Closer should not be used concurrently. | 
|  | // If Close is called while a Write is currently in-flight, | 
|  | // interpret that as a sign that this Close is really just | 
|  | // being used to break the Write and/or clean up resources and | 
|  | // avoid sending the alertCloseNotify, which may block | 
|  | // waiting on handshakeMutex or the c.out mutex. | 
|  | return c.conn.Close() | 
|  | } | 
|  |  | 
|  | var alertErr error | 
|  |  | 
|  | c.handshakeMutex.Lock() | 
|  | if c.handshakeComplete { | 
|  | alertErr = c.closeNotify() | 
|  | } | 
|  | c.handshakeMutex.Unlock() | 
|  |  | 
|  | if err := c.conn.Close(); err != nil { | 
|  | return err | 
|  | } | 
|  | return alertErr | 
|  | } | 
|  |  | 
|  | var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") | 
|  |  | 
|  | // CloseWrite shuts down the writing side of the connection. It should only be | 
|  | // called once the handshake has completed and does not call CloseWrite on the | 
|  | // underlying connection. Most callers should just use Close. | 
|  | func (c *Conn) CloseWrite() error { | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  | if !c.handshakeComplete { | 
|  | return errEarlyCloseWrite | 
|  | } | 
|  |  | 
|  | return c.closeNotify() | 
|  | } | 
|  |  | 
|  | func (c *Conn) closeNotify() error { | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  |  | 
|  | if !c.closeNotifySent { | 
|  | c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) | 
|  | c.closeNotifySent = true | 
|  | } | 
|  | return c.closeNotifyErr | 
|  | } | 
|  |  | 
|  | // Handshake runs the client or server handshake | 
|  | // protocol if it has not yet been run. | 
|  | // Most uses of this package need not call Handshake | 
|  | // explicitly: the first Read or Write will call it automatically. | 
|  | func (c *Conn) Handshake() error { | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  |  | 
|  | if err := c.handshakeErr; err != nil { | 
|  | return err | 
|  | } | 
|  | if c.handshakeComplete { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | c.in.Lock() | 
|  | defer c.in.Unlock() | 
|  |  | 
|  | if c.isClient { | 
|  | c.handshakeErr = c.clientHandshake() | 
|  | } else { | 
|  | c.handshakeErr = c.serverHandshake() | 
|  | } | 
|  | if c.handshakeErr == nil { | 
|  | c.handshakes++ | 
|  | } else { | 
|  | // If an error occurred during the hadshake try to flush the | 
|  | // alert that might be left in the buffer. | 
|  | c.flush() | 
|  | } | 
|  |  | 
|  | if c.handshakeErr == nil && !c.handshakeComplete { | 
|  | panic("handshake should have had a result.") | 
|  | } | 
|  |  | 
|  | return c.handshakeErr | 
|  | } | 
|  |  | 
|  | // ConnectionState returns basic TLS details about the connection. | 
|  | func (c *Conn) ConnectionState() ConnectionState { | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  |  | 
|  | var state ConnectionState | 
|  | state.HandshakeComplete = c.handshakeComplete | 
|  | state.ServerName = c.serverName | 
|  |  | 
|  | if c.handshakeComplete { | 
|  | state.Version = c.vers | 
|  | state.NegotiatedProtocol = c.clientProtocol | 
|  | state.DidResume = c.didResume | 
|  | state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback | 
|  | state.CipherSuite = c.cipherSuite | 
|  | state.PeerCertificates = c.peerCertificates | 
|  | state.VerifiedChains = c.verifiedChains | 
|  | state.SignedCertificateTimestamps = c.scts | 
|  | state.OCSPResponse = c.ocspResponse | 
|  | if !c.didResume { | 
|  | if c.clientFinishedIsFirst { | 
|  | state.TLSUnique = c.clientFinished[:] | 
|  | } else { | 
|  | state.TLSUnique = c.serverFinished[:] | 
|  | } | 
|  | } | 
|  | if c.config.Renegotiation != RenegotiateNever { | 
|  | state.ExportKeyingMaterial = noExportedKeyingMaterial | 
|  | } else { | 
|  | state.ExportKeyingMaterial = c.ekm | 
|  | } | 
|  | } | 
|  |  | 
|  | return state | 
|  | } | 
|  |  | 
|  | // OCSPResponse returns the stapled OCSP response from the TLS server, if | 
|  | // any. (Only valid for client connections.) | 
|  | func (c *Conn) OCSPResponse() []byte { | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  |  | 
|  | return c.ocspResponse | 
|  | } | 
|  |  | 
|  | // VerifyHostname checks that the peer certificate chain is valid for | 
|  | // connecting to host. If so, it returns nil; if not, it returns an error | 
|  | // describing the problem. | 
|  | func (c *Conn) VerifyHostname(host string) error { | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  | if !c.isClient { | 
|  | return errors.New("tls: VerifyHostname called on TLS server connection") | 
|  | } | 
|  | if !c.handshakeComplete { | 
|  | return errors.New("tls: handshake has not yet been performed") | 
|  | } | 
|  | if len(c.verifiedChains) == 0 { | 
|  | return errors.New("tls: handshake did not verify certificate chain") | 
|  | } | 
|  | return c.peerCertificates[0].VerifyHostname(host) | 
|  | } |