blob: 7fa9ed4fd68236d7dcb2198fc95c97f91fcd7626 [file] [log] [blame]
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package abt
import (
"fmt"
"strconv"
"testing"
)
func makeTree(te *testing.T, x []int32, check bool) (t *T, k int, min, max int32) {
t = &T{}
k = 0
min = int32(0x7fffffff)
max = int32(-0x80000000)
history := []*T{}
for _, d := range x {
d = d + d // double everything for Glb/Lub testing.
if check {
history = append(history, t.Copy())
}
t.Insert(d, stringer(fmt.Sprintf("%v", d)))
k++
if d < min {
min = d
}
if d > max {
max = d
}
if !check {
continue
}
for j, old := range history {
s, i := old.wellFormed()
if s != "" {
te.Errorf("Old tree consistency problem %v at k=%d, j=%d, old=\n%v, t=\n%v", s, k, j, old.DebugString(), t.DebugString())
return
}
if i != j {
te.Errorf("Wrong tree size %v, expected %v for old %v", i, j, old.DebugString())
}
}
s, i := t.wellFormed()
if s != "" {
te.Errorf("Tree consistency problem at %v", s)
return
}
if i != k {
te.Errorf("Wrong tree size %v, expected %v for %v", i, k, t.DebugString())
return
}
if t.Size() != k {
te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), k, t.DebugString())
return
}
}
return
}
func applicInsert(te *testing.T, x []int32) {
makeTree(te, x, true)
}
func applicFind(te *testing.T, x []int32) {
t, _, _, _ := makeTree(te, x, false)
for _, d := range x {
d = d + d // double everything for Glb/Lub testing.
s := fmt.Sprintf("%v", d)
f := t.Find(d)
// data
if s != fmt.Sprint(f) {
te.Errorf("s(%v) != f(%v)", s, f)
}
}
}
func applicBounds(te *testing.T, x []int32) {
t, _, min, max := makeTree(te, x, false)
for _, d := range x {
d = d + d // double everything for Glb/Lub testing.
s := fmt.Sprintf("%v", d)
kg, g := t.Glb(d + 1)
kge, ge := t.GlbEq(d)
kl, l := t.Lub(d - 1)
kle, le := t.LubEq(d)
// keys
if d != kg {
te.Errorf("d(%v) != kg(%v)", d, kg)
}
if d != kl {
te.Errorf("d(%v) != kl(%v)", d, kl)
}
if d != kge {
te.Errorf("d(%v) != kge(%v)", d, kge)
}
if d != kle {
te.Errorf("d(%v) != kle(%v)", d, kle)
}
// data
if s != fmt.Sprint(g) {
te.Errorf("s(%v) != g(%v)", s, g)
}
if s != fmt.Sprint(l) {
te.Errorf("s(%v) != l(%v)", s, l)
}
if s != fmt.Sprint(ge) {
te.Errorf("s(%v) != ge(%v)", s, ge)
}
if s != fmt.Sprint(le) {
te.Errorf("s(%v) != le(%v)", s, le)
}
}
for _, d := range x {
d = d + d // double everything for Glb/Lub testing.
s := fmt.Sprintf("%v", d)
kge, ge := t.GlbEq(d + 1)
kle, le := t.LubEq(d - 1)
if d != kge {
te.Errorf("d(%v) != kge(%v)", d, kge)
}
if d != kle {
te.Errorf("d(%v) != kle(%v)", d, kle)
}
if s != fmt.Sprint(ge) {
te.Errorf("s(%v) != ge(%v)", s, ge)
}
if s != fmt.Sprint(le) {
te.Errorf("s(%v) != le(%v)", s, le)
}
}
kg, g := t.Glb(min)
kge, ge := t.GlbEq(min - 1)
kl, l := t.Lub(max)
kle, le := t.LubEq(max + 1)
fmin := t.Find(min - 1)
fmax := t.Find(max + 1)
if kg != NOT_KEY32 || kge != NOT_KEY32 || kl != NOT_KEY32 || kle != NOT_KEY32 {
te.Errorf("Got non-error-key for missing query")
}
if g != nil || ge != nil || l != nil || le != nil || fmin != nil || fmax != nil {
te.Errorf("Got non-error-data for missing query")
}
}
func applicDeleteMin(te *testing.T, x []int32) {
t, _, _, _ := makeTree(te, x, false)
_, size := t.wellFormed()
history := []*T{}
for !t.IsEmpty() {
k, _ := t.Min()
history = append(history, t.Copy())
kd, _ := t.DeleteMin()
if kd != k {
te.Errorf("Deleted minimum key %v not equal to minimum %v", kd, k)
}
for j, old := range history {
s, i := old.wellFormed()
if s != "" {
te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString())
return
}
if i != len(x)-j {
te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString())
return
}
}
size--
s, i := t.wellFormed()
if s != "" {
te.Errorf("Tree consistency problem at %v after DeleteMin, tree=\n%v", s, t.DebugString())
return
}
if i != size {
te.Errorf("Wrong tree size %v, expected %v after DeleteMin", i, size)
return
}
if t.Size() != size {
te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString())
return
}
}
}
func applicDeleteMax(te *testing.T, x []int32) {
t, _, _, _ := makeTree(te, x, false)
_, size := t.wellFormed()
history := []*T{}
for !t.IsEmpty() {
k, _ := t.Max()
history = append(history, t.Copy())
kd, _ := t.DeleteMax()
if kd != k {
te.Errorf("Deleted maximum key %v not equal to maximum %v", kd, k)
}
for j, old := range history {
s, i := old.wellFormed()
if s != "" {
te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString())
return
}
if i != len(x)-j {
te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString())
return
}
}
size--
s, i := t.wellFormed()
if s != "" {
te.Errorf("Tree consistency problem at %v after DeleteMax, tree=\n%v", s, t.DebugString())
return
}
if i != size {
te.Errorf("Wrong tree size %v, expected %v after DeleteMax", i, size)
return
}
if t.Size() != size {
te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString())
return
}
}
}
func applicDelete(te *testing.T, x []int32) {
t, _, _, _ := makeTree(te, x, false)
_, size := t.wellFormed()
history := []*T{}
missing := t.Delete(11)
if missing != nil {
te.Errorf("Returned a value when there should have been none, %v", missing)
return
}
s, i := t.wellFormed()
if s != "" {
te.Errorf("Tree consistency problem at %v after delete of missing value, tree=\n%v", s, t.DebugString())
return
}
if size != i {
te.Errorf("Delete of missing data should not change tree size, expected %d, got %d", size, i)
return
}
for _, d := range x {
d += d // double
vWant := fmt.Sprintf("%v", d)
history = append(history, t.Copy())
v := t.Delete(d)
for j, old := range history {
s, i := old.wellFormed()
if s != "" {
te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString())
return
}
if i != len(x)-j {
te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString())
return
}
}
if v.(*sstring).s != vWant {
te.Errorf("Deleted %v expected %v but got %v", d, vWant, v)
return
}
size--
s, i := t.wellFormed()
if s != "" {
te.Errorf("Tree consistency problem at %v after Delete %d, tree=\n%v", s, d, t.DebugString())
return
}
if i != size {
te.Errorf("Wrong tree size %v, expected %v after Delete", i, size)
return
}
if t.Size() != size {
te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString())
return
}
}
}
func applicIterator(te *testing.T, x []int32) {
t, _, _, _ := makeTree(te, x, false)
it := t.Iterator()
for !it.Done() {
k0, d0 := it.Next()
k1, d1 := t.DeleteMin()
if k0 != k1 || d0 != d1 {
te.Errorf("Iterator and deleteMin mismatch, k0, k1, d0, d1 = %v, %v, %v, %v", k0, k1, d0, d1)
return
}
}
if t.Size() != 0 {
te.Errorf("Iterator ended early, remaining tree = \n%s", t.DebugString())
return
}
}
func equiv(a, b interface{}) bool {
sa, sb := a.(*sstring), b.(*sstring)
return *sa == *sb
}
func applicEquals(te *testing.T, x, y []int32) {
t, _, _, _ := makeTree(te, x, false)
u, _, _, _ := makeTree(te, y, false)
if !t.Equiv(t, equiv) {
te.Errorf("Equiv failure, t == t, =\n%v", t.DebugString())
return
}
if !t.Equiv(t.Copy(), equiv) {
te.Errorf("Equiv failure, t == t.Copy(), =\n%v", t.DebugString())
return
}
if !t.Equiv(u, equiv) {
te.Errorf("Equiv failure, t == u, =\n%v", t.DebugString())
return
}
v := t.Copy()
v.DeleteMax()
if t.Equiv(v, equiv) {
te.Errorf("!Equiv failure, t != v, =\n%v\nand%v\n", t.DebugString(), v.DebugString())
return
}
if v.Equiv(u, equiv) {
te.Errorf("!Equiv failure, v != u, =\n%v\nand%v\n", v.DebugString(), u.DebugString())
return
}
}
func tree(x []int32) *T {
t := &T{}
for _, d := range x {
t.Insert(d, stringer(fmt.Sprintf("%v", d)))
}
return t
}
func treePlus1(x []int32) *T {
t := &T{}
for _, d := range x {
t.Insert(d, stringer(fmt.Sprintf("%v", d+1)))
}
return t
}
func TestApplicInsert(t *testing.T) {
applicInsert(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
applicInsert(t, []int32{1, 2, 3, 4})
applicInsert(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
applicInsert(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
applicInsert(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicInsert(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicInsert(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
applicInsert(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
}
func TestApplicFind(t *testing.T) {
applicFind(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
applicFind(t, []int32{1, 2, 3, 4})
applicFind(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
applicFind(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
applicFind(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicFind(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicFind(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
applicFind(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
}
func TestBounds(t *testing.T) {
applicBounds(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
applicBounds(t, []int32{1, 2, 3, 4})
applicBounds(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
applicBounds(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
applicBounds(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicBounds(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicBounds(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
applicBounds(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
}
func TestDeleteMin(t *testing.T) {
applicDeleteMin(t, []int32{1, 2, 3, 4})
applicDeleteMin(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
applicDeleteMin(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
applicDeleteMin(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
applicDeleteMin(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicDeleteMin(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicDeleteMin(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
applicDeleteMin(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
}
func TestDeleteMax(t *testing.T) {
applicDeleteMax(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
applicDeleteMax(t, []int32{1, 2, 3, 4})
applicDeleteMax(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
applicDeleteMax(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
applicDeleteMax(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicDeleteMax(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicDeleteMax(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
applicDeleteMax(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
}
func TestDelete(t *testing.T) {
applicDelete(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
applicDelete(t, []int32{1, 2, 3, 4})
applicDelete(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
applicDelete(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
applicDelete(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicDelete(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicDelete(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
applicDelete(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
}
func TestIterator(t *testing.T) {
applicIterator(t, []int32{1, 2, 3, 4})
applicIterator(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
applicIterator(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
applicIterator(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
applicIterator(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicIterator(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicIterator(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
applicIterator(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
}
func TestEquals(t *testing.T) {
applicEquals(t, []int32{1, 2, 3, 4}, []int32{4, 3, 2, 1})
applicEquals(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25},
[]int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
applicEquals(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1},
[]int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
applicEquals(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24},
[]int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
}
func first(x, y interface{}) interface{} {
return x
}
func second(x, y interface{}) interface{} {
return y
}
func alwaysNil(x, y interface{}) interface{} {
return nil
}
func smaller(x, y interface{}) interface{} {
xi, _ := strconv.Atoi(fmt.Sprint(x))
yi, _ := strconv.Atoi(fmt.Sprint(y))
if xi < yi {
return x
}
return y
}
func assert(t *testing.T, expected, got *T, what string) {
s, _ := got.wellFormed()
if s != "" {
t.Errorf("Tree consistency problem %v for 'got' in assert for %s, tree=\n%v", s, what, got.DebugString())
return
}
if !expected.Equiv(got, equiv) {
t.Errorf("%s fail, expected\n%vgot\n%v\n", what, expected.DebugString(), got.DebugString())
}
}
func TestSetOps(t *testing.T) {
A := tree([]int32{1, 2, 3, 4})
B := tree([]int32{3, 4, 5, 6, 7})
AIB := tree([]int32{3, 4})
ADB := tree([]int32{1, 2})
BDA := tree([]int32{5, 6, 7})
AUB := tree([]int32{1, 2, 3, 4, 5, 6, 7})
AXB := tree([]int32{1, 2, 5, 6, 7})
aib1 := A.Intersection(B, first)
assert(t, AIB, aib1, "aib1")
if A.Find(3) != aib1.Find(3) {
t.Errorf("Failed aliasing/reuse check, A/aib1")
}
aib2 := A.Intersection(B, second)
assert(t, AIB, aib2, "aib2")
if B.Find(3) != aib2.Find(3) {
t.Errorf("Failed aliasing/reuse check, B/aib2")
}
aib3 := B.Intersection(A, first)
assert(t, AIB, aib3, "aib3")
if A.Find(3) != aib3.Find(3) {
// A is smaller, intersection favors reuse from smaller when function is "first"
t.Errorf("Failed aliasing/reuse check, A/aib3")
}
aib4 := B.Intersection(A, second)
assert(t, AIB, aib4, "aib4")
if A.Find(3) != aib4.Find(3) {
t.Errorf("Failed aliasing/reuse check, A/aib4")
}
aub1 := A.Union(B, first)
assert(t, AUB, aub1, "aub1")
if B.Find(3) != aub1.Find(3) {
// B is larger, union favors reuse from larger when function is "first"
t.Errorf("Failed aliasing/reuse check, A/aub1")
}
aub2 := A.Union(B, second)
assert(t, AUB, aub2, "aub2")
if B.Find(3) != aub2.Find(3) {
t.Errorf("Failed aliasing/reuse check, B/aub2")
}
aub3 := B.Union(A, first)
assert(t, AUB, aub3, "aub3")
if B.Find(3) != aub3.Find(3) {
t.Errorf("Failed aliasing/reuse check, B/aub3")
}
aub4 := B.Union(A, second)
assert(t, AUB, aub4, "aub4")
if A.Find(3) != aub4.Find(3) {
t.Errorf("Failed aliasing/reuse check, A/aub4")
}
axb1 := A.Union(B, alwaysNil)
assert(t, AXB, axb1, "axb1")
axb2 := B.Union(A, alwaysNil)
assert(t, AXB, axb2, "axb2")
adb := A.Difference(B, alwaysNil)
assert(t, ADB, adb, "adb")
bda := B.Difference(A, nil)
assert(t, BDA, bda, "bda")
Ap1 := treePlus1([]int32{1, 2, 3, 4})
ada1_1 := A.Difference(Ap1, smaller)
assert(t, A, ada1_1, "ada1_1")
ada1_2 := Ap1.Difference(A, smaller)
assert(t, A, ada1_2, "ada1_2")
}
type sstring struct {
s string
}
func (s *sstring) String() string {
return s.s
}
func stringer(s string) interface{} {
return &sstring{s}
}
// wellFormed ensures that a red-black tree meets
// all of its invariants and returns a string identifying
// the first problem encountered. If there is no problem
// then the returned string is empty. The size is also
// returned to allow comparison of calculated tree size
// with expected.
func (t *T) wellFormed() (s string, i int) {
if t.root == nil {
s = ""
i = 0
return
}
return t.root.wellFormedSubtree(nil, -0x80000000, 0x7fffffff)
}
// wellFormedSubtree ensures that a red-black subtree meets
// all of its invariants and returns a string identifying
// the first problem encountered. If there is no problem
// then the returned string is empty. The size is also
// returned to allow comparison of calculated tree size
// with expected.
func (t *node32) wellFormedSubtree(parent *node32, keyMin, keyMax int32) (s string, i int) {
i = -1 // initialize to a failing value
s = "" // s is the reason for failure; empty means okay.
if keyMin >= t.key {
s = " min >= t.key"
return
}
if keyMax <= t.key {
s = " max <= t.key"
return
}
l := t.left
r := t.right
lh := l.height()
rh := r.height()
mh := max(lh, rh)
th := t.height()
dh := lh - rh
if dh < 0 {
dh = -dh
}
if dh > 1 {
s = fmt.Sprintf(" dh > 1, t=%d", t.key)
return
}
if l == nil && r == nil {
if th != LEAF_HEIGHT {
s = " leaf height wrong"
return
}
}
if th != mh+1 {
s = " th != mh + 1"
return
}
if l != nil {
if th <= lh {
s = " t.height <= l.height"
} else if th > 2+lh {
s = " t.height > 2+l.height"
} else if t.key <= l.key {
s = " t.key <= l.key"
}
if s != "" {
return
}
}
if r != nil {
if th <= rh {
s = " t.height <= r.height"
} else if th > 2+rh {
s = " t.height > 2+r.height"
} else if t.key >= r.key {
s = " t.key >= r.key"
}
if s != "" {
return
}
}
ii := 1
if l != nil {
res, il := l.wellFormedSubtree(t, keyMin, t.key)
if res != "" {
s = ".L" + res
return
}
ii += il
}
if r != nil {
res, ir := r.wellFormedSubtree(t, t.key, keyMax)
if res != "" {
s = ".R" + res
return
}
ii += ir
}
i = ii
return
}
func (t *T) DebugString() string {
if t.root == nil {
return ""
}
return t.root.DebugString(0)
}
// DebugString prints the tree with nested information
// to allow an eyeball check on the tree balance.
func (t *node32) DebugString(indent int) string {
s := ""
if t.left != nil {
s = s + t.left.DebugString(indent+1)
}
for i := 0; i < indent; i++ {
s = s + " "
}
s = s + fmt.Sprintf("%v=%v:%d\n", t.key, t.data, t.height_)
if t.right != nil {
s = s + t.right.DebugString(indent+1)
}
return s
}