| // Copyright 2014 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // +build ppc64 ppc64le |
| |
| #include "go_asm.h" |
| #include "go_tls.h" |
| #include "funcdata.h" |
| #include "textflag.h" |
| #include "asm_ppc64x.h" |
| |
| TEXT runtime·rt0_go(SB),NOSPLIT,$0 |
| // R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer |
| |
| // initialize essential registers |
| BL runtime·reginit(SB) |
| |
| SUB $(FIXED_FRAME+16), R1 |
| MOVD R2, 24(R1) // stash the TOC pointer away again now we've created a new frame |
| MOVW R3, FIXED_FRAME+0(R1) // argc |
| MOVD R4, FIXED_FRAME+8(R1) // argv |
| |
| // create istack out of the given (operating system) stack. |
| // _cgo_init may update stackguard. |
| MOVD $runtime·g0(SB), g |
| MOVD $(-64*1024), R31 |
| ADD R31, R1, R3 |
| MOVD R3, g_stackguard0(g) |
| MOVD R3, g_stackguard1(g) |
| MOVD R3, (g_stack+stack_lo)(g) |
| MOVD R1, (g_stack+stack_hi)(g) |
| |
| // if there is a _cgo_init, call it using the gcc ABI. |
| MOVD _cgo_init(SB), R12 |
| CMP R0, R12 |
| BEQ nocgo |
| MOVD R12, CTR // r12 = "global function entry point" |
| MOVD R13, R5 // arg 2: TLS base pointer |
| MOVD $setg_gcc<>(SB), R4 // arg 1: setg |
| MOVD g, R3 // arg 0: G |
| // C functions expect 32 bytes of space on caller stack frame |
| // and a 16-byte aligned R1 |
| MOVD R1, R14 // save current stack |
| SUB $32, R1 // reserve 32 bytes |
| RLDCR $0, R1, $~15, R1 // 16-byte align |
| BL (CTR) // may clobber R0, R3-R12 |
| MOVD R14, R1 // restore stack |
| MOVD 24(R1), R2 |
| XOR R0, R0 // fix R0 |
| |
| nocgo: |
| // update stackguard after _cgo_init |
| MOVD (g_stack+stack_lo)(g), R3 |
| ADD $const__StackGuard, R3 |
| MOVD R3, g_stackguard0(g) |
| MOVD R3, g_stackguard1(g) |
| |
| // set the per-goroutine and per-mach "registers" |
| MOVD $runtime·m0(SB), R3 |
| |
| // save m->g0 = g0 |
| MOVD g, m_g0(R3) |
| // save m0 to g0->m |
| MOVD R3, g_m(g) |
| |
| BL runtime·check(SB) |
| |
| // args are already prepared |
| BL runtime·args(SB) |
| BL runtime·osinit(SB) |
| BL runtime·schedinit(SB) |
| |
| // create a new goroutine to start program |
| MOVD $runtime·mainPC(SB), R3 // entry |
| MOVDU R3, -8(R1) |
| MOVDU R0, -8(R1) |
| MOVDU R0, -8(R1) |
| MOVDU R0, -8(R1) |
| MOVDU R0, -8(R1) |
| MOVDU R0, -8(R1) |
| BL runtime·newproc(SB) |
| ADD $(16+FIXED_FRAME), R1 |
| |
| // start this M |
| BL runtime·mstart(SB) |
| |
| MOVD R0, 0(R0) |
| RET |
| |
| DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) |
| GLOBL runtime·mainPC(SB),RODATA,$8 |
| |
| TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVD R0, 0(R0) // TODO: TD |
| RET |
| |
| TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 |
| RET |
| |
| TEXT _cgo_reginit(SB),NOSPLIT|NOFRAME,$0-0 |
| // crosscall_ppc64 and crosscall2 need to reginit, but can't |
| // get at the 'runtime.reginit' symbol. |
| BR runtime·reginit(SB) |
| |
| TEXT runtime·reginit(SB),NOSPLIT|NOFRAME,$0-0 |
| // set R0 to zero, it's expected by the toolchain |
| XOR R0, R0 |
| RET |
| |
| /* |
| * go-routine |
| */ |
| |
| // void gosave(Gobuf*) |
| // save state in Gobuf; setjmp |
| TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8 |
| MOVD buf+0(FP), R3 |
| MOVD R1, gobuf_sp(R3) |
| MOVD LR, R31 |
| MOVD R31, gobuf_pc(R3) |
| MOVD g, gobuf_g(R3) |
| MOVD R0, gobuf_lr(R3) |
| MOVD R0, gobuf_ret(R3) |
| // Assert ctxt is zero. See func save. |
| MOVD gobuf_ctxt(R3), R3 |
| CMP R0, R3 |
| BEQ 2(PC) |
| BL runtime·badctxt(SB) |
| RET |
| |
| // void gogo(Gobuf*) |
| // restore state from Gobuf; longjmp |
| TEXT runtime·gogo(SB), NOSPLIT, $16-8 |
| MOVD buf+0(FP), R5 |
| |
| // If ctxt is not nil, invoke deletion barrier before overwriting. |
| MOVD gobuf_ctxt(R5), R3 |
| CMP R0, R3 |
| BEQ nilctxt |
| MOVD $gobuf_ctxt(R5), R3 |
| MOVD R3, FIXED_FRAME+0(R1) |
| MOVD R0, FIXED_FRAME+8(R1) |
| BL runtime·writebarrierptr_prewrite(SB) |
| MOVD buf+0(FP), R5 |
| |
| nilctxt: |
| MOVD gobuf_g(R5), g // make sure g is not nil |
| BL runtime·save_g(SB) |
| |
| MOVD 0(g), R4 |
| MOVD gobuf_sp(R5), R1 |
| MOVD gobuf_lr(R5), R31 |
| MOVD R31, LR |
| MOVD gobuf_ret(R5), R3 |
| MOVD gobuf_ctxt(R5), R11 |
| MOVD R0, gobuf_sp(R5) |
| MOVD R0, gobuf_ret(R5) |
| MOVD R0, gobuf_lr(R5) |
| MOVD R0, gobuf_ctxt(R5) |
| CMP R0, R0 // set condition codes for == test, needed by stack split |
| MOVD gobuf_pc(R5), R12 |
| MOVD R12, CTR |
| BR (CTR) |
| |
| // void mcall(fn func(*g)) |
| // Switch to m->g0's stack, call fn(g). |
| // Fn must never return. It should gogo(&g->sched) |
| // to keep running g. |
| TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 |
| // Save caller state in g->sched |
| MOVD R1, (g_sched+gobuf_sp)(g) |
| MOVD LR, R31 |
| MOVD R31, (g_sched+gobuf_pc)(g) |
| MOVD R0, (g_sched+gobuf_lr)(g) |
| MOVD g, (g_sched+gobuf_g)(g) |
| |
| // Switch to m->g0 & its stack, call fn. |
| MOVD g, R3 |
| MOVD g_m(g), R8 |
| MOVD m_g0(R8), g |
| BL runtime·save_g(SB) |
| CMP g, R3 |
| BNE 2(PC) |
| BR runtime·badmcall(SB) |
| MOVD fn+0(FP), R11 // context |
| MOVD 0(R11), R12 // code pointer |
| MOVD R12, CTR |
| MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp |
| MOVDU R3, -8(R1) |
| MOVDU R0, -8(R1) |
| MOVDU R0, -8(R1) |
| MOVDU R0, -8(R1) |
| MOVDU R0, -8(R1) |
| BL (CTR) |
| MOVD 24(R1), R2 |
| BR runtime·badmcall2(SB) |
| |
| // systemstack_switch is a dummy routine that systemstack leaves at the bottom |
| // of the G stack. We need to distinguish the routine that |
| // lives at the bottom of the G stack from the one that lives |
| // at the top of the system stack because the one at the top of |
| // the system stack terminates the stack walk (see topofstack()). |
| TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 |
| // We have several undefs here so that 16 bytes past |
| // $runtime·systemstack_switch lies within them whether or not the |
| // instructions that derive r2 from r12 are there. |
| UNDEF |
| UNDEF |
| UNDEF |
| BL (LR) // make sure this function is not leaf |
| RET |
| |
| // func systemstack(fn func()) |
| TEXT runtime·systemstack(SB), NOSPLIT, $0-8 |
| MOVD fn+0(FP), R3 // R3 = fn |
| MOVD R3, R11 // context |
| MOVD g_m(g), R4 // R4 = m |
| |
| MOVD m_gsignal(R4), R5 // R5 = gsignal |
| CMP g, R5 |
| BEQ noswitch |
| |
| MOVD m_g0(R4), R5 // R5 = g0 |
| CMP g, R5 |
| BEQ noswitch |
| |
| MOVD m_curg(R4), R6 |
| CMP g, R6 |
| BEQ switch |
| |
| // Bad: g is not gsignal, not g0, not curg. What is it? |
| // Hide call from linker nosplit analysis. |
| MOVD $runtime·badsystemstack(SB), R12 |
| MOVD R12, CTR |
| BL (CTR) |
| |
| switch: |
| // save our state in g->sched. Pretend to |
| // be systemstack_switch if the G stack is scanned. |
| MOVD $runtime·systemstack_switch(SB), R6 |
| ADD $16, R6 // get past prologue (including r2-setting instructions when they're there) |
| MOVD R6, (g_sched+gobuf_pc)(g) |
| MOVD R1, (g_sched+gobuf_sp)(g) |
| MOVD R0, (g_sched+gobuf_lr)(g) |
| MOVD g, (g_sched+gobuf_g)(g) |
| |
| // switch to g0 |
| MOVD R5, g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R3 |
| // make it look like mstart called systemstack on g0, to stop traceback |
| SUB $FIXED_FRAME, R3 |
| MOVD $runtime·mstart(SB), R4 |
| MOVD R4, 0(R3) |
| MOVD R3, R1 |
| |
| // call target function |
| MOVD 0(R11), R12 // code pointer |
| MOVD R12, CTR |
| BL (CTR) |
| |
| // restore TOC pointer. It seems unlikely that we will use systemstack |
| // to call a function defined in another module, but the results of |
| // doing so would be so confusing that it's worth doing this. |
| MOVD g_m(g), R3 |
| MOVD m_curg(R3), g |
| MOVD (g_sched+gobuf_sp)(g), R3 |
| MOVD 24(R3), R2 |
| // switch back to g |
| MOVD g_m(g), R3 |
| MOVD m_curg(R3), g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R1 |
| MOVD R0, (g_sched+gobuf_sp)(g) |
| RET |
| |
| noswitch: |
| // already on m stack, just call directly |
| MOVD 0(R11), R12 // code pointer |
| MOVD R12, CTR |
| BL (CTR) |
| MOVD 24(R1), R2 |
| RET |
| |
| /* |
| * support for morestack |
| */ |
| |
| // Called during function prolog when more stack is needed. |
| // Caller has already loaded: |
| // R3: framesize, R4: argsize, R5: LR |
| // |
| // The traceback routines see morestack on a g0 as being |
| // the top of a stack (for example, morestack calling newstack |
| // calling the scheduler calling newm calling gc), so we must |
| // record an argument size. For that purpose, it has no arguments. |
| TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 |
| // Cannot grow scheduler stack (m->g0). |
| MOVD g_m(g), R7 |
| MOVD m_g0(R7), R8 |
| CMP g, R8 |
| BNE 3(PC) |
| BL runtime·badmorestackg0(SB) |
| BL runtime·abort(SB) |
| |
| // Cannot grow signal stack (m->gsignal). |
| MOVD m_gsignal(R7), R8 |
| CMP g, R8 |
| BNE 3(PC) |
| BL runtime·badmorestackgsignal(SB) |
| BL runtime·abort(SB) |
| |
| // Called from f. |
| // Set g->sched to context in f. |
| MOVD R1, (g_sched+gobuf_sp)(g) |
| MOVD LR, R8 |
| MOVD R8, (g_sched+gobuf_pc)(g) |
| MOVD R5, (g_sched+gobuf_lr)(g) |
| // newstack will fill gobuf.ctxt. |
| |
| // Called from f. |
| // Set m->morebuf to f's caller. |
| MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC |
| MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP |
| MOVD g, (m_morebuf+gobuf_g)(R7) |
| |
| // Call newstack on m->g0's stack. |
| MOVD m_g0(R7), g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R1 |
| MOVDU R0, -(FIXED_FRAME+8)(R1) // create a call frame on g0 |
| MOVD R11, FIXED_FRAME+0(R1) // ctxt argument |
| BL runtime·newstack(SB) |
| |
| // Not reached, but make sure the return PC from the call to newstack |
| // is still in this function, and not the beginning of the next. |
| UNDEF |
| |
| TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVD R0, R11 |
| BR runtime·morestack(SB) |
| |
| // reflectcall: call a function with the given argument list |
| // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). |
| // we don't have variable-sized frames, so we use a small number |
| // of constant-sized-frame functions to encode a few bits of size in the pc. |
| // Caution: ugly multiline assembly macros in your future! |
| |
| #define DISPATCH(NAME,MAXSIZE) \ |
| MOVD $MAXSIZE, R31; \ |
| CMP R3, R31; \ |
| BGT 4(PC); \ |
| MOVD $NAME(SB), R12; \ |
| MOVD R12, CTR; \ |
| BR (CTR) |
| // Note: can't just "BR NAME(SB)" - bad inlining results. |
| |
| TEXT reflect·call(SB), NOSPLIT, $0-0 |
| BR ·reflectcall(SB) |
| |
| TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32 |
| MOVWZ argsize+24(FP), R3 |
| DISPATCH(runtime·call32, 32) |
| DISPATCH(runtime·call64, 64) |
| DISPATCH(runtime·call128, 128) |
| DISPATCH(runtime·call256, 256) |
| DISPATCH(runtime·call512, 512) |
| DISPATCH(runtime·call1024, 1024) |
| DISPATCH(runtime·call2048, 2048) |
| DISPATCH(runtime·call4096, 4096) |
| DISPATCH(runtime·call8192, 8192) |
| DISPATCH(runtime·call16384, 16384) |
| DISPATCH(runtime·call32768, 32768) |
| DISPATCH(runtime·call65536, 65536) |
| DISPATCH(runtime·call131072, 131072) |
| DISPATCH(runtime·call262144, 262144) |
| DISPATCH(runtime·call524288, 524288) |
| DISPATCH(runtime·call1048576, 1048576) |
| DISPATCH(runtime·call2097152, 2097152) |
| DISPATCH(runtime·call4194304, 4194304) |
| DISPATCH(runtime·call8388608, 8388608) |
| DISPATCH(runtime·call16777216, 16777216) |
| DISPATCH(runtime·call33554432, 33554432) |
| DISPATCH(runtime·call67108864, 67108864) |
| DISPATCH(runtime·call134217728, 134217728) |
| DISPATCH(runtime·call268435456, 268435456) |
| DISPATCH(runtime·call536870912, 536870912) |
| DISPATCH(runtime·call1073741824, 1073741824) |
| MOVD $runtime·badreflectcall(SB), R12 |
| MOVD R12, CTR |
| BR (CTR) |
| |
| #define CALLFN(NAME,MAXSIZE) \ |
| TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ |
| NO_LOCAL_POINTERS; \ |
| /* copy arguments to stack */ \ |
| MOVD arg+16(FP), R3; \ |
| MOVWZ argsize+24(FP), R4; \ |
| MOVD R1, R5; \ |
| ADD $(FIXED_FRAME-1), R5; \ |
| SUB $1, R3; \ |
| ADD R5, R4; \ |
| CMP R5, R4; \ |
| BEQ 4(PC); \ |
| MOVBZU 1(R3), R6; \ |
| MOVBZU R6, 1(R5); \ |
| BR -4(PC); \ |
| /* call function */ \ |
| MOVD f+8(FP), R11; \ |
| MOVD (R11), R12; \ |
| MOVD R12, CTR; \ |
| PCDATA $PCDATA_StackMapIndex, $0; \ |
| BL (CTR); \ |
| MOVD 24(R1), R2; \ |
| /* copy return values back */ \ |
| MOVD argtype+0(FP), R7; \ |
| MOVD arg+16(FP), R3; \ |
| MOVWZ n+24(FP), R4; \ |
| MOVWZ retoffset+28(FP), R6; \ |
| ADD $FIXED_FRAME, R1, R5; \ |
| ADD R6, R5; \ |
| ADD R6, R3; \ |
| SUB R6, R4; \ |
| BL callRet<>(SB); \ |
| RET |
| |
| // callRet copies return values back at the end of call*. This is a |
| // separate function so it can allocate stack space for the arguments |
| // to reflectcallmove. It does not follow the Go ABI; it expects its |
| // arguments in registers. |
| TEXT callRet<>(SB), NOSPLIT, $32-0 |
| MOVD R7, FIXED_FRAME+0(R1) |
| MOVD R3, FIXED_FRAME+8(R1) |
| MOVD R5, FIXED_FRAME+16(R1) |
| MOVD R4, FIXED_FRAME+24(R1) |
| BL runtime·reflectcallmove(SB) |
| RET |
| |
| CALLFN(·call32, 32) |
| CALLFN(·call64, 64) |
| CALLFN(·call128, 128) |
| CALLFN(·call256, 256) |
| CALLFN(·call512, 512) |
| CALLFN(·call1024, 1024) |
| CALLFN(·call2048, 2048) |
| CALLFN(·call4096, 4096) |
| CALLFN(·call8192, 8192) |
| CALLFN(·call16384, 16384) |
| CALLFN(·call32768, 32768) |
| CALLFN(·call65536, 65536) |
| CALLFN(·call131072, 131072) |
| CALLFN(·call262144, 262144) |
| CALLFN(·call524288, 524288) |
| CALLFN(·call1048576, 1048576) |
| CALLFN(·call2097152, 2097152) |
| CALLFN(·call4194304, 4194304) |
| CALLFN(·call8388608, 8388608) |
| CALLFN(·call16777216, 16777216) |
| CALLFN(·call33554432, 33554432) |
| CALLFN(·call67108864, 67108864) |
| CALLFN(·call134217728, 134217728) |
| CALLFN(·call268435456, 268435456) |
| CALLFN(·call536870912, 536870912) |
| CALLFN(·call1073741824, 1073741824) |
| |
| TEXT runtime·procyield(SB),NOSPLIT,$0-0 |
| RET |
| |
| // void jmpdefer(fv, sp); |
| // called from deferreturn. |
| // 1. grab stored LR for caller |
| // 2. sub 8 bytes to get back to either nop or toc reload before deferreturn |
| // 3. BR to fn |
| // When dynamically linking Go, it is not sufficient to rewind to the BL |
| // deferreturn -- we might be jumping between modules and so we need to reset |
| // the TOC pointer in r2. To do this, codegen inserts MOVD 24(R1), R2 *before* |
| // the BL deferreturn and jmpdefer rewinds to that. |
| TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16 |
| MOVD 0(R1), R31 |
| SUB $8, R31 |
| MOVD R31, LR |
| |
| MOVD fv+0(FP), R11 |
| MOVD argp+8(FP), R1 |
| SUB $FIXED_FRAME, R1 |
| MOVD 0(R11), R12 |
| MOVD R12, CTR |
| BR (CTR) |
| |
| // Save state of caller into g->sched. Smashes R31. |
| TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 |
| MOVD LR, R31 |
| MOVD R31, (g_sched+gobuf_pc)(g) |
| MOVD R1, (g_sched+gobuf_sp)(g) |
| MOVD R0, (g_sched+gobuf_lr)(g) |
| MOVD R0, (g_sched+gobuf_ret)(g) |
| // Assert ctxt is zero. See func save. |
| MOVD (g_sched+gobuf_ctxt)(g), R31 |
| CMP R0, R31 |
| BEQ 2(PC) |
| BL runtime·badctxt(SB) |
| RET |
| |
| // func asmcgocall(fn, arg unsafe.Pointer) int32 |
| // Call fn(arg) on the scheduler stack, |
| // aligned appropriately for the gcc ABI. |
| // See cgocall.go for more details. |
| TEXT ·asmcgocall(SB),NOSPLIT,$0-20 |
| MOVD fn+0(FP), R3 |
| MOVD arg+8(FP), R4 |
| |
| MOVD R1, R7 // save original stack pointer |
| MOVD g, R5 |
| |
| // Figure out if we need to switch to m->g0 stack. |
| // We get called to create new OS threads too, and those |
| // come in on the m->g0 stack already. |
| MOVD g_m(g), R6 |
| MOVD m_g0(R6), R6 |
| CMP R6, g |
| BEQ g0 |
| BL gosave<>(SB) |
| MOVD R6, g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R1 |
| |
| // Now on a scheduling stack (a pthread-created stack). |
| g0: |
| // Save room for two of our pointers, plus 32 bytes of callee |
| // save area that lives on the caller stack. |
| SUB $48, R1 |
| RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI |
| MOVD R5, 40(R1) // save old g on stack |
| MOVD (g_stack+stack_hi)(R5), R5 |
| SUB R7, R5 |
| MOVD R5, 32(R1) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) |
| MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?) |
| // This is a "global call", so put the global entry point in r12 |
| MOVD R3, R12 |
| MOVD R12, CTR |
| MOVD R4, R3 // arg in r3 |
| BL (CTR) |
| |
| // C code can clobber R0, so set it back to 0. F27-F31 are |
| // callee save, so we don't need to recover those. |
| XOR R0, R0 |
| // Restore g, stack pointer, toc pointer. |
| // R3 is errno, so don't touch it |
| MOVD 40(R1), g |
| MOVD (g_stack+stack_hi)(g), R5 |
| MOVD 32(R1), R6 |
| SUB R6, R5 |
| MOVD 24(R5), R2 |
| BL runtime·save_g(SB) |
| MOVD (g_stack+stack_hi)(g), R5 |
| MOVD 32(R1), R6 |
| SUB R6, R5 |
| MOVD R5, R1 |
| |
| MOVW R3, ret+16(FP) |
| RET |
| |
| // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) |
| // Turn the fn into a Go func (by taking its address) and call |
| // cgocallback_gofunc. |
| TEXT runtime·cgocallback(SB),NOSPLIT,$32-32 |
| MOVD $fn+0(FP), R3 |
| MOVD R3, FIXED_FRAME+0(R1) |
| MOVD frame+8(FP), R3 |
| MOVD R3, FIXED_FRAME+8(R1) |
| MOVD framesize+16(FP), R3 |
| MOVD R3, FIXED_FRAME+16(R1) |
| MOVD ctxt+24(FP), R3 |
| MOVD R3, FIXED_FRAME+24(R1) |
| MOVD $runtime·cgocallback_gofunc(SB), R12 |
| MOVD R12, CTR |
| BL (CTR) |
| RET |
| |
| // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) |
| // See cgocall.go for more details. |
| TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32 |
| NO_LOCAL_POINTERS |
| |
| // Load m and g from thread-local storage. |
| MOVB runtime·iscgo(SB), R3 |
| CMP R3, $0 |
| BEQ nocgo |
| BL runtime·load_g(SB) |
| nocgo: |
| |
| // If g is nil, Go did not create the current thread. |
| // Call needm to obtain one for temporary use. |
| // In this case, we're running on the thread stack, so there's |
| // lots of space, but the linker doesn't know. Hide the call from |
| // the linker analysis by using an indirect call. |
| CMP g, $0 |
| BEQ needm |
| |
| MOVD g_m(g), R8 |
| MOVD R8, savedm-8(SP) |
| BR havem |
| |
| needm: |
| MOVD g, savedm-8(SP) // g is zero, so is m. |
| MOVD $runtime·needm(SB), R12 |
| MOVD R12, CTR |
| BL (CTR) |
| |
| // Set m->sched.sp = SP, so that if a panic happens |
| // during the function we are about to execute, it will |
| // have a valid SP to run on the g0 stack. |
| // The next few lines (after the havem label) |
| // will save this SP onto the stack and then write |
| // the same SP back to m->sched.sp. That seems redundant, |
| // but if an unrecovered panic happens, unwindm will |
| // restore the g->sched.sp from the stack location |
| // and then systemstack will try to use it. If we don't set it here, |
| // that restored SP will be uninitialized (typically 0) and |
| // will not be usable. |
| MOVD g_m(g), R8 |
| MOVD m_g0(R8), R3 |
| MOVD R1, (g_sched+gobuf_sp)(R3) |
| |
| havem: |
| // Now there's a valid m, and we're running on its m->g0. |
| // Save current m->g0->sched.sp on stack and then set it to SP. |
| // Save current sp in m->g0->sched.sp in preparation for |
| // switch back to m->curg stack. |
| // NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP). |
| MOVD m_g0(R8), R3 |
| MOVD (g_sched+gobuf_sp)(R3), R4 |
| MOVD R4, savedsp-16(SP) |
| MOVD R1, (g_sched+gobuf_sp)(R3) |
| |
| // Switch to m->curg stack and call runtime.cgocallbackg. |
| // Because we are taking over the execution of m->curg |
| // but *not* resuming what had been running, we need to |
| // save that information (m->curg->sched) so we can restore it. |
| // We can restore m->curg->sched.sp easily, because calling |
| // runtime.cgocallbackg leaves SP unchanged upon return. |
| // To save m->curg->sched.pc, we push it onto the stack. |
| // This has the added benefit that it looks to the traceback |
| // routine like cgocallbackg is going to return to that |
| // PC (because the frame we allocate below has the same |
| // size as cgocallback_gofunc's frame declared above) |
| // so that the traceback will seamlessly trace back into |
| // the earlier calls. |
| // |
| // In the new goroutine, -8(SP) is unused (where SP refers to |
| // m->curg's SP while we're setting it up, before we've adjusted it). |
| MOVD m_curg(R8), g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 |
| MOVD (g_sched+gobuf_pc)(g), R5 |
| MOVD R5, -(FIXED_FRAME+16)(R4) |
| MOVD ctxt+24(FP), R3 |
| MOVD R3, -16(R4) |
| MOVD $-(FIXED_FRAME+16)(R4), R1 |
| BL runtime·cgocallbackg(SB) |
| |
| // Restore g->sched (== m->curg->sched) from saved values. |
| MOVD 0(R1), R5 |
| MOVD R5, (g_sched+gobuf_pc)(g) |
| MOVD $(FIXED_FRAME+16)(R1), R4 |
| MOVD R4, (g_sched+gobuf_sp)(g) |
| |
| // Switch back to m->g0's stack and restore m->g0->sched.sp. |
| // (Unlike m->curg, the g0 goroutine never uses sched.pc, |
| // so we do not have to restore it.) |
| MOVD g_m(g), R8 |
| MOVD m_g0(R8), g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R1 |
| MOVD savedsp-16(SP), R4 |
| MOVD R4, (g_sched+gobuf_sp)(g) |
| |
| // If the m on entry was nil, we called needm above to borrow an m |
| // for the duration of the call. Since the call is over, return it with dropm. |
| MOVD savedm-8(SP), R6 |
| CMP R6, $0 |
| BNE droppedm |
| MOVD $runtime·dropm(SB), R12 |
| MOVD R12, CTR |
| BL (CTR) |
| droppedm: |
| |
| // Done! |
| RET |
| |
| // void setg(G*); set g. for use by needm. |
| TEXT runtime·setg(SB), NOSPLIT, $0-8 |
| MOVD gg+0(FP), g |
| // This only happens if iscgo, so jump straight to save_g |
| BL runtime·save_g(SB) |
| RET |
| |
| // void setg_gcc(G*); set g in C TLS. |
| // Must obey the gcc calling convention. |
| TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0 |
| // The standard prologue clobbers R31, which is callee-save in |
| // the C ABI, so we have to use $-8-0 and save LR ourselves. |
| MOVD LR, R4 |
| // Also save g and R31, since they're callee-save in C ABI |
| MOVD R31, R5 |
| MOVD g, R6 |
| |
| MOVD R3, g |
| BL runtime·save_g(SB) |
| |
| MOVD R6, g |
| MOVD R5, R31 |
| MOVD R4, LR |
| RET |
| |
| TEXT runtime·getcallerpc(SB),NOSPLIT|NOFRAME,$0-8 |
| MOVD 0(R1), R3 // LR saved by caller |
| MOVD R3, ret+0(FP) |
| RET |
| |
| TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVW (R0), R0 |
| UNDEF |
| |
| #define TBRL 268 |
| #define TBRU 269 /* Time base Upper/Lower */ |
| |
| // int64 runtime·cputicks(void) |
| TEXT runtime·cputicks(SB),NOSPLIT,$0-8 |
| MOVW SPR(TBRU), R4 |
| MOVW SPR(TBRL), R3 |
| MOVW SPR(TBRU), R5 |
| CMPW R4, R5 |
| BNE -4(PC) |
| SLD $32, R5 |
| OR R5, R3 |
| MOVD R3, ret+0(FP) |
| RET |
| |
| // AES hashing not implemented for ppc64 |
| TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVW (R0), R1 |
| TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVW (R0), R1 |
| TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVW (R0), R1 |
| TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVW (R0), R1 |
| |
| TEXT runtime·memequal(SB),NOSPLIT,$0-25 |
| MOVD a+0(FP), R3 |
| MOVD b+8(FP), R4 |
| MOVD size+16(FP), R5 |
| |
| BL runtime·memeqbody(SB) |
| MOVB R9, ret+24(FP) |
| RET |
| |
| // memequal_varlen(a, b unsafe.Pointer) bool |
| TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17 |
| MOVD a+0(FP), R3 |
| MOVD b+8(FP), R4 |
| CMP R3, R4 |
| BEQ eq |
| MOVD 8(R11), R5 // compiler stores size at offset 8 in the closure |
| BL runtime·memeqbody(SB) |
| MOVB R9, ret+16(FP) |
| RET |
| eq: |
| MOVD $1, R3 |
| MOVB R3, ret+16(FP) |
| RET |
| |
| // Do an efficient memcmp for ppc64le |
| // R3 = s1 len |
| // R4 = s2 len |
| // R5 = s1 addr |
| // R6 = s2 addr |
| // R7 = addr of return value |
| TEXT cmpbodyLE<>(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVD R3,R8 // set up length |
| CMP R3,R4,CR2 // unequal? |
| BC 12,8,setuplen // BLT CR2 |
| MOVD R4,R8 // use R4 for comparison len |
| setuplen: |
| MOVD R8,CTR // set up loop counter |
| CMP R8,$8 // only optimize >=8 |
| BLT simplecheck |
| DCBT (R5) // cache hint |
| DCBT (R6) |
| CMP R8,$32 // optimize >= 32 |
| MOVD R8,R9 |
| BLT setup8a // 8 byte moves only |
| setup32a: |
| SRADCC $5,R8,R9 // number of 32 byte chunks |
| MOVD R9,CTR |
| |
| // Special processing for 32 bytes or longer. |
| // Loading this way is faster and correct as long as the |
| // doublewords being compared are equal. Once they |
| // are found unequal, reload them in proper byte order |
| // to determine greater or less than. |
| loop32a: |
| MOVD 0(R5),R9 // doublewords to compare |
| MOVD 0(R6),R10 // get 4 doublewords |
| MOVD 8(R5),R14 |
| MOVD 8(R6),R15 |
| CMPU R9,R10 // bytes equal? |
| MOVD $0,R16 // set up for cmpne |
| BNE cmpne // further compare for LT or GT |
| MOVD 16(R5),R9 // get next pair of doublewords |
| MOVD 16(R6),R10 |
| CMPU R14,R15 // bytes match? |
| MOVD $8,R16 // set up for cmpne |
| BNE cmpne // further compare for LT or GT |
| MOVD 24(R5),R14 // get next pair of doublewords |
| MOVD 24(R6),R15 |
| CMPU R9,R10 // bytes match? |
| MOVD $16,R16 // set up for cmpne |
| BNE cmpne // further compare for LT or GT |
| MOVD $-8,R16 // for cmpne, R5,R6 already inc by 32 |
| ADD $32,R5 // bump up to next 32 |
| ADD $32,R6 |
| CMPU R14,R15 // bytes match? |
| BC 8,2,loop32a // br ctr and cr |
| BNE cmpne |
| ANDCC $24,R8,R9 // Any 8 byte chunks? |
| BEQ leftover // and result is 0 |
| setup8a: |
| SRADCC $3,R9,R9 // get the 8 byte count |
| BEQ leftover // shifted value is 0 |
| MOVD R9,CTR // loop count for doublewords |
| loop8: |
| MOVDBR (R5+R0),R9 // doublewords to compare |
| MOVDBR (R6+R0),R10 // LE compare order |
| ADD $8,R5 |
| ADD $8,R6 |
| CMPU R9,R10 // match? |
| BC 8,2,loop8 // bt ctr <> 0 && cr |
| BGT greater |
| BLT less |
| leftover: |
| ANDCC $7,R8,R9 // check for leftover bytes |
| MOVD R9,CTR // save the ctr |
| BNE simple // leftover bytes |
| BC 12,10,equal // test CR2 for length comparison |
| BC 12,8,less |
| BR greater |
| simplecheck: |
| CMP R8,$0 // remaining compare length 0 |
| BNE simple // do simple compare |
| BC 12,10,equal // test CR2 for length comparison |
| BC 12,8,less // 1st len < 2nd len, result less |
| BR greater // 1st len > 2nd len must be greater |
| simple: |
| MOVBZ 0(R5), R9 // get byte from 1st operand |
| ADD $1,R5 |
| MOVBZ 0(R6), R10 // get byte from 2nd operand |
| ADD $1,R6 |
| CMPU R9, R10 |
| BC 8,2,simple // bc ctr <> 0 && cr |
| BGT greater // 1st > 2nd |
| BLT less // 1st < 2nd |
| BC 12,10,equal // test CR2 for length comparison |
| BC 12,9,greater // 2nd len > 1st len |
| BR less // must be less |
| cmpne: // only here is not equal |
| MOVDBR (R5+R16),R8 // reload in reverse order |
| MOVDBR (R6+R16),R9 |
| CMPU R8,R9 // compare correct endianness |
| BGT greater // here only if NE |
| less: |
| MOVD $-1,R3 |
| MOVD R3,(R7) // return value if A < B |
| RET |
| equal: |
| MOVD $0,(R7) // return value if A == B |
| RET |
| greater: |
| MOVD $1,R3 |
| MOVD R3,(R7) // return value if A > B |
| RET |
| |
| // Do an efficient memcmp for ppc64 (BE) |
| // R3 = s1 len |
| // R4 = s2 len |
| // R5 = s1 addr |
| // R6 = s2 addr |
| // R7 = addr of return value |
| TEXT cmpbodyBE<>(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVD R3,R8 // set up length |
| CMP R3,R4,CR2 // unequal? |
| BC 12,8,setuplen // BLT CR2 |
| MOVD R4,R8 // use R4 for comparison len |
| setuplen: |
| MOVD R8,CTR // set up loop counter |
| CMP R8,$8 // only optimize >=8 |
| BLT simplecheck |
| DCBT (R5) // cache hint |
| DCBT (R6) |
| CMP R8,$32 // optimize >= 32 |
| MOVD R8,R9 |
| BLT setup8a // 8 byte moves only |
| |
| setup32a: |
| SRADCC $5,R8,R9 // number of 32 byte chunks |
| MOVD R9,CTR |
| loop32a: |
| MOVD 0(R5),R9 // doublewords to compare |
| MOVD 0(R6),R10 // get 4 doublewords |
| MOVD 8(R5),R14 |
| MOVD 8(R6),R15 |
| CMPU R9,R10 // bytes equal? |
| BLT less // found to be less |
| BGT greater // found to be greater |
| MOVD 16(R5),R9 // get next pair of doublewords |
| MOVD 16(R6),R10 |
| CMPU R14,R15 // bytes match? |
| BLT less // found less |
| BGT greater // found greater |
| MOVD 24(R5),R14 // get next pair of doublewords |
| MOVD 24(R6),R15 |
| CMPU R9,R10 // bytes match? |
| BLT less // found to be less |
| BGT greater // found to be greater |
| ADD $32,R5 // bump up to next 32 |
| ADD $32,R6 |
| CMPU R14,R15 // bytes match? |
| BC 8,2,loop32a // br ctr and cr |
| BLT less // with BE, byte ordering is |
| BGT greater // good for compare |
| ANDCC $24,R8,R9 // Any 8 byte chunks? |
| BEQ leftover // and result is 0 |
| setup8a: |
| SRADCC $3,R9,R9 // get the 8 byte count |
| BEQ leftover // shifted value is 0 |
| MOVD R9,CTR // loop count for doublewords |
| loop8: |
| MOVD (R5),R9 |
| MOVD (R6),R10 |
| ADD $8,R5 |
| ADD $8,R6 |
| CMPU R9,R10 // match? |
| BC 8,2,loop8 // bt ctr <> 0 && cr |
| BGT greater |
| BLT less |
| leftover: |
| ANDCC $7,R8,R9 // check for leftover bytes |
| MOVD R9,CTR // save the ctr |
| BNE simple // leftover bytes |
| BC 12,10,equal // test CR2 for length comparison |
| BC 12,8,less |
| BR greater |
| simplecheck: |
| CMP R8,$0 // remaining compare length 0 |
| BNE simple // do simple compare |
| BC 12,10,equal // test CR2 for length comparison |
| BC 12,8,less // 1st len < 2nd len, result less |
| BR greater // same len, must be equal |
| simple: |
| MOVBZ 0(R5),R9 // get byte from 1st operand |
| ADD $1,R5 |
| MOVBZ 0(R6),R10 // get byte from 2nd operand |
| ADD $1,R6 |
| CMPU R9,R10 |
| BC 8,2,simple // bc ctr <> 0 && cr |
| BGT greater // 1st > 2nd |
| BLT less // 1st < 2nd |
| BC 12,10,equal // test CR2 for length comparison |
| BC 12,9,greater // 2nd len > 1st len |
| less: |
| MOVD $-1,R3 |
| MOVD R3,(R7) // return value if A < B |
| RET |
| equal: |
| MOVD $0,(R7) // return value if A == B |
| RET |
| greater: |
| MOVD $1,R3 |
| MOVD R3,(R7) // return value if A > B |
| RET |
| |
| // Do an efficient memequal for ppc64 |
| // R3 = s1 |
| // R4 = s2 |
| // R5 = len |
| // R9 = return value |
| TEXT runtime·memeqbody(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVD R5,CTR |
| CMP R5,$8 // only optimize >=8 |
| BLT simplecheck |
| DCBT (R3) // cache hint |
| DCBT (R4) |
| CMP R5,$32 // optimize >= 32 |
| MOVD R5,R6 // needed if setup8a branch |
| BLT setup8a // 8 byte moves only |
| setup32a: // 8 byte aligned, >= 32 bytes |
| SRADCC $5,R5,R6 // number of 32 byte chunks to compare |
| MOVD R6,CTR |
| loop32a: |
| MOVD 0(R3),R6 // doublewords to compare |
| MOVD 0(R4),R7 |
| MOVD 8(R3),R8 // |
| MOVD 8(R4),R9 |
| CMP R6,R7 // bytes batch? |
| BNE noteq |
| MOVD 16(R3),R6 |
| MOVD 16(R4),R7 |
| CMP R8,R9 // bytes match? |
| MOVD 24(R3),R8 |
| MOVD 24(R4),R9 |
| BNE noteq |
| CMP R6,R7 // bytes match? |
| BNE noteq |
| ADD $32,R3 // bump up to next 32 |
| ADD $32,R4 |
| CMP R8,R9 // bytes match? |
| BC 8,2,loop32a // br ctr and cr |
| BNE noteq |
| ANDCC $24,R5,R6 // Any 8 byte chunks? |
| BEQ leftover // and result is 0 |
| setup8a: |
| SRADCC $3,R6,R6 // get the 8 byte count |
| BEQ leftover // shifted value is 0 |
| MOVD R6,CTR |
| loop8: |
| MOVD 0(R3),R6 // doublewords to compare |
| ADD $8,R3 |
| MOVD 0(R4),R7 |
| ADD $8,R4 |
| CMP R6,R7 // match? |
| BC 8,2,loop8 // bt ctr <> 0 && cr |
| BNE noteq |
| leftover: |
| ANDCC $7,R5,R6 // check for leftover bytes |
| BEQ equal |
| MOVD R6,CTR |
| BR simple |
| simplecheck: |
| CMP R5,$0 |
| BEQ equal |
| simple: |
| MOVBZ 0(R3), R6 |
| ADD $1,R3 |
| MOVBZ 0(R4), R7 |
| ADD $1,R4 |
| CMP R6, R7 |
| BNE noteq |
| BC 8,2,simple |
| BNE noteq |
| BR equal |
| noteq: |
| MOVD $0, R9 |
| RET |
| equal: |
| MOVD $1, R9 |
| RET |
| |
| TEXT bytes·Equal(SB),NOSPLIT,$0-49 |
| MOVD a_len+8(FP), R4 |
| MOVD b_len+32(FP), R5 |
| CMP R5, R4 // unequal lengths are not equal |
| BNE noteq |
| MOVD a+0(FP), R3 |
| MOVD b+24(FP), R4 |
| BL runtime·memeqbody(SB) |
| |
| MOVBZ R9,ret+48(FP) |
| RET |
| |
| noteq: |
| MOVBZ $0,ret+48(FP) |
| RET |
| |
| equal: |
| MOVD $1,R3 |
| MOVBZ R3,ret+48(FP) |
| RET |
| |
| TEXT bytes·IndexByte(SB),NOSPLIT|NOFRAME,$0-40 |
| MOVD s+0(FP), R3 // R3 = byte array pointer |
| MOVD s_len+8(FP), R4 // R4 = length |
| MOVBZ c+24(FP), R5 // R5 = byte |
| MOVD $ret+32(FP), R14 // R14 = &ret |
| BR runtime·indexbytebody<>(SB) |
| |
| TEXT strings·IndexByte(SB),NOSPLIT|NOFRAME,$0-32 |
| MOVD s+0(FP), R3 // R3 = string |
| MOVD s_len+8(FP), R4 // R4 = length |
| MOVBZ c+16(FP), R5 // R5 = byte |
| MOVD $ret+24(FP), R14 // R14 = &ret |
| BR runtime·indexbytebody<>(SB) |
| |
| TEXT runtime·indexbytebody<>(SB),NOSPLIT|NOFRAME,$0-0 |
| DCBT (R3) // Prepare cache line. |
| MOVD R3,R10 // Save base address for calculating the index later. |
| RLDICR $0,R3,$60,R8 // Align address to doubleword boundary in R8. |
| RLDIMI $8,R5,$48,R5 // Replicating the byte across the register. |
| |
| // Calculate last acceptable address and check for possible overflow |
| // using a saturated add. |
| // Overflows set last acceptable address to 0xffffffffffffffff. |
| ADD R4,R3,R7 |
| SUBC R3,R7,R6 |
| SUBE R0,R0,R9 |
| MOVW R9,R6 |
| OR R6,R7,R7 |
| |
| RLDIMI $16,R5,$32,R5 |
| CMPU R4,$32 // Check if it's a small string (<32 bytes). Those will be processed differently. |
| MOVD $-1,R9 |
| WORD $0x54661EB8 // Calculate padding in R6 (rlwinm r6,r3,3,26,28). |
| RLDIMI $32,R5,$0,R5 |
| ADD $-1,R7,R7 |
| #ifdef GOARCH_ppc64le |
| SLD R6,R9,R9 // Prepare mask for Little Endian |
| #else |
| SRD R6,R9,R9 // Same for Big Endian |
| #endif |
| BLE small_string // Jump to the small string case if it's <32 bytes. |
| |
| // Case for length >32 bytes |
| MOVD 0(R8),R12 // Load one doubleword from the aligned address in R8. |
| CMPB R12,R5,R3 // Check for a match. |
| AND R9,R3,R3 // Mask bytes below s_base |
| RLDICL $0,R7,$61,R4 // length-1 |
| RLDICR $0,R7,$60,R7 // Last doubleword in R7 |
| CMPU R3,$0,CR7 // If we have a match, jump to the final computation |
| BNE CR7,done |
| |
| // Check for doubleword alignment and jump to the loop setup if aligned. |
| MOVFL R8,CR7 |
| BC 12,28,loop_setup |
| |
| // Not aligned, so handle the second doubleword |
| MOVDU 8(R8),R12 |
| CMPB R12,R5,R3 |
| CMPU R3,$0,CR7 |
| BNE CR7,done |
| |
| loop_setup: |
| // We are now aligned to a 16-byte boundary. We will load two doublewords |
| // per loop iteration. The last doubleword is in R7, so our loop counter |
| // starts at (R7-R8)/16. |
| SUB R8,R7,R6 |
| SRD $4,R6,R6 |
| MOVD R6,CTR |
| |
| // Note: when we have an align directive, align this loop to 32 bytes so |
| // it fits in a single icache sector. |
| loop: |
| // Load two doublewords, then compare and merge in a single register. We |
| // will check two doublewords per iteration, then find out which of them |
| // contains the byte later. This speeds up the search. |
| MOVD 8(R8),R12 |
| MOVDU 16(R8),R11 |
| CMPB R12,R5,R3 |
| CMPB R11,R5,R9 |
| OR R3,R9,R6 |
| CMPU R6,$0,CR7 |
| BNE CR7,found |
| BC 16,0,loop |
| |
| // Counter zeroed, but we may have another doubleword to read |
| CMPU R8,R7 |
| BEQ notfound |
| |
| MOVDU 8(R8),R12 |
| CMPB R12,R5,R3 |
| CMPU R3,$0,CR6 |
| BNE CR6,done |
| |
| notfound: |
| MOVD $-1,R3 |
| MOVD R3,(R14) |
| RET |
| |
| found: |
| // One of the doublewords from the loop contains the byte we are looking |
| // for. Check the first doubleword and adjust the address if found. |
| CMPU R3,$0,CR6 |
| ADD $-8,R8,R8 |
| BNE CR6,done |
| |
| // Not found, so it must be in the second doubleword of the merged pair. |
| MOVD R9,R3 |
| ADD $8,R8,R8 |
| |
| done: |
| // At this point, R3 has 0xFF in the same position as the byte we are |
| // looking for in the doubleword. Use that to calculate the exact index |
| // of the byte. |
| #ifdef GOARCH_ppc64le |
| ADD $-1,R3,R11 |
| ANDN R3,R11,R11 |
| POPCNTD R11,R11 // Count trailing zeros (Little Endian). |
| #else |
| CNTLZD R3,R11 // Count leading zeros (Big Endian). |
| #endif |
| CMPU R8,R7 // Check if we are at the last doubleword. |
| SRD $3,R11 // Convert trailing zeros to bytes. |
| ADD R11,R8,R3 |
| CMPU R11,R4,CR7 // If at the last doubleword, check the byte offset. |
| BNE return |
| BLE CR7,return |
| MOVD $-1,R3 |
| MOVD R3,(R14) |
| RET |
| |
| return: |
| SUB R10,R3 // Calculate index. |
| MOVD R3,(R14) |
| RET |
| |
| small_string: |
| // We unroll this loop for better performance. |
| CMPU R4,$0 // Check for length=0 |
| BEQ notfound |
| |
| MOVD 0(R8),R12 // Load one doubleword from the aligned address in R8. |
| CMPB R12,R5,R3 // Check for a match. |
| AND R9,R3,R3 // Mask bytes below s_base. |
| CMPU R3,$0,CR7 // If we have a match, jump to the final computation. |
| RLDICL $0,R7,$61,R4 // length-1 |
| RLDICR $0,R7,$60,R7 // Last doubleword in R7. |
| CMPU R8,R7 |
| BNE CR7,done |
| BEQ notfound // Hit length. |
| |
| MOVDU 8(R8),R12 |
| CMPB R12,R5,R3 |
| CMPU R3,$0,CR6 |
| CMPU R8,R7 |
| BNE CR6,done |
| BEQ notfound |
| |
| MOVDU 8(R8),R12 |
| CMPB R12,R5,R3 |
| CMPU R3,$0,CR6 |
| CMPU R8,R7 |
| BNE CR6,done |
| BEQ notfound |
| |
| MOVDU 8(R8),R12 |
| CMPB R12,R5,R3 |
| CMPU R3,$0,CR6 |
| CMPU R8,R7 |
| BNE CR6,done |
| BEQ notfound |
| |
| MOVDU 8(R8),R12 |
| CMPB R12,R5,R3 |
| CMPU R3,$0,CR6 |
| CMPU R8,R7 |
| BNE CR6,done |
| BR notfound |
| |
| TEXT runtime·cmpstring(SB),NOSPLIT|NOFRAME,$0-40 |
| MOVD s1_base+0(FP), R5 |
| MOVD s2_base+16(FP), R6 |
| MOVD s1_len+8(FP), R3 |
| CMP R5,R6,CR7 |
| MOVD s2_len+24(FP), R4 |
| MOVD $ret+32(FP), R7 |
| CMP R3,R4,CR6 |
| BEQ CR7,equal |
| |
| notequal: |
| #ifdef GOARCH_ppc64le |
| BR cmpbodyLE<>(SB) |
| #else |
| BR cmpbodyBE<>(SB) |
| #endif |
| |
| equal: |
| BEQ CR6,done |
| MOVD $1, R8 |
| BGT CR6,greater |
| NEG R8 |
| |
| greater: |
| MOVD R8, (R7) |
| RET |
| |
| done: |
| MOVD $0, (R7) |
| RET |
| |
| TEXT bytes·Compare(SB),NOSPLIT|NOFRAME,$0-56 |
| MOVD s1+0(FP), R5 |
| MOVD s2+24(FP), R6 |
| MOVD s1+8(FP), R3 |
| CMP R5,R6,CR7 |
| MOVD s2+32(FP), R4 |
| MOVD $ret+48(FP), R7 |
| CMP R3,R4,CR6 |
| BEQ CR7,equal |
| |
| #ifdef GOARCH_ppc64le |
| BR cmpbodyLE<>(SB) |
| #else |
| BR cmpbodyBE<>(SB) |
| #endif |
| |
| equal: |
| BEQ CR6,done |
| MOVD $1, R8 |
| BGT CR6,greater |
| NEG R8 |
| |
| greater: |
| MOVD R8, (R7) |
| RET |
| |
| done: |
| MOVD $0, (R7) |
| RET |
| |
| TEXT runtime·return0(SB), NOSPLIT, $0 |
| MOVW $0, R3 |
| RET |
| |
| // Called from cgo wrappers, this function returns g->m->curg.stack.hi. |
| // Must obey the gcc calling convention. |
| TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0 |
| // g (R30) and R31 are callee-save in the C ABI, so save them |
| MOVD g, R4 |
| MOVD R31, R5 |
| MOVD LR, R6 |
| |
| BL runtime·load_g(SB) // clobbers g (R30), R31 |
| MOVD g_m(g), R3 |
| MOVD m_curg(R3), R3 |
| MOVD (g_stack+stack_hi)(R3), R3 |
| |
| MOVD R4, g |
| MOVD R5, R31 |
| MOVD R6, LR |
| RET |
| |
| // The top-most function running on a goroutine |
| // returns to goexit+PCQuantum. |
| // |
| // When dynamically linking Go, it can be returned to from a function |
| // implemented in a different module and so needs to reload the TOC pointer |
| // from the stack (although this function declares that it does not set up x-a |
| // frame, newproc1 does in fact allocate one for goexit and saves the TOC |
| // pointer in the correct place). |
| // goexit+_PCQuantum is halfway through the usual global entry point prologue |
| // that derives r2 from r12 which is a bit silly, but not harmful. |
| TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVD 24(R1), R2 |
| BL runtime·goexit1(SB) // does not return |
| // traceback from goexit1 must hit code range of goexit |
| MOVD R0, R0 // NOP |
| |
| TEXT runtime·sigreturn(SB),NOSPLIT,$0-0 |
| RET |
| |
| // prepGoExitFrame saves the current TOC pointer (i.e. the TOC pointer for the |
| // module containing runtime) to the frame that goexit will execute in when |
| // the goroutine exits. It's implemented in assembly mainly because that's the |
| // easiest way to get access to R2. |
| TEXT runtime·prepGoExitFrame(SB),NOSPLIT,$0-8 |
| MOVD sp+0(FP), R3 |
| MOVD R2, 24(R3) |
| RET |
| |
| TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0 |
| ADD $-8, R1 |
| MOVD R31, 0(R1) |
| MOVD runtime·lastmoduledatap(SB), R4 |
| MOVD R3, moduledata_next(R4) |
| MOVD R3, runtime·lastmoduledatap(SB) |
| MOVD 0(R1), R31 |
| ADD $8, R1 |
| RET |
| |
| TEXT ·checkASM(SB),NOSPLIT,$0-1 |
| MOVW $1, R3 |
| MOVB R3, ret+0(FP) |
| RET |