| // Inferno utils/5l/asm.c |
| // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c |
| // |
| // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. |
| // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) |
| // Portions Copyright © 1997-1999 Vita Nuova Limited |
| // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) |
| // Portions Copyright © 2004,2006 Bruce Ellis |
| // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) |
| // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others |
| // Portions Copyright © 2009 The Go Authors. All rights reserved. |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| package ppc64 |
| |
| import ( |
| "cmd/internal/objabi" |
| "cmd/internal/sys" |
| "cmd/link/internal/ld" |
| "cmd/link/internal/loader" |
| "cmd/link/internal/sym" |
| "debug/elf" |
| "encoding/binary" |
| "fmt" |
| "log" |
| "strconv" |
| "strings" |
| ) |
| |
| func genpltstub(ctxt *ld.Link, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (sym loader.Sym, firstUse bool) { |
| // The ppc64 ABI PLT has similar concepts to other |
| // architectures, but is laid out quite differently. When we |
| // see an R_PPC64_REL24 relocation to a dynamic symbol |
| // (indicating that the call needs to go through the PLT), we |
| // generate up to three stubs and reserve a PLT slot. |
| // |
| // 1) The call site will be bl x; nop (where the relocation |
| // applies to the bl). We rewrite this to bl x_stub; ld |
| // r2,24(r1). The ld is necessary because x_stub will save |
| // r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). |
| // |
| // 2) We reserve space for a pointer in the .plt section (once |
| // per referenced dynamic function). .plt is a data |
| // section filled solely by the dynamic linker (more like |
| // .plt.got on other architectures). Initially, the |
| // dynamic linker will fill each slot with a pointer to the |
| // corresponding x@plt entry point. |
| // |
| // 3) We generate the "call stub" x_stub (once per dynamic |
| // function/object file pair). This saves the TOC in the |
| // TOC save slot, reads the function pointer from x's .plt |
| // slot and calls it like any other global entry point |
| // (including setting r12 to the function address). |
| // |
| // 4) We generate the "symbol resolver stub" x@plt (once per |
| // dynamic function). This is solely a branch to the glink |
| // resolver stub. |
| // |
| // 5) We generate the glink resolver stub (only once). This |
| // computes which symbol resolver stub we came through and |
| // invokes the dynamic resolver via a pointer provided by |
| // the dynamic linker. This will patch up the .plt slot to |
| // point directly at the function so future calls go |
| // straight from the call stub to the real function, and |
| // then call the function. |
| |
| // NOTE: It's possible we could make ppc64 closer to other |
| // architectures: ppc64's .plt is like .plt.got on other |
| // platforms and ppc64's .glink is like .plt on other |
| // platforms. |
| |
| // Find all R_PPC64_REL24 relocations that reference dynamic |
| // imports. Reserve PLT entries for these symbols and |
| // generate call stubs. The call stubs need to live in .text, |
| // which is why we need to do this pass this early. |
| // |
| // This assumes "case 1" from the ABI, where the caller needs |
| // us to save and restore the TOC pointer. |
| |
| // Reserve PLT entry and generate symbol |
| // resolver |
| addpltsym(ctxt, ldr, r.Sym()) |
| |
| // Generate call stub. Important to note that we're looking |
| // up the stub using the same version as the parent symbol (s), |
| // needed so that symtoc() will select the right .TOC. symbol |
| // when processing the stub. In older versions of the linker |
| // this was done by setting stub.Outer to the parent, but |
| // if the stub has the right version initially this is not needed. |
| n := fmt.Sprintf("%s.%s", ldr.SymName(s), ldr.SymName(r.Sym())) |
| stub := ldr.CreateSymForUpdate(n, ldr.SymVersion(s)) |
| firstUse = stub.Size() == 0 |
| if firstUse { |
| gencallstub(ctxt, ldr, 1, stub, r.Sym()) |
| } |
| |
| // Update the relocation to use the call stub |
| r.SetSym(stub.Sym()) |
| |
| // Make the symbol writeable so we can fixup toc. |
| su := ldr.MakeSymbolUpdater(s) |
| su.MakeWritable() |
| p := su.Data() |
| |
| // Check for toc restore slot (a nop), and replace with toc restore. |
| var nop uint32 |
| if len(p) >= int(r.Off()+8) { |
| nop = ctxt.Arch.ByteOrder.Uint32(p[r.Off()+4:]) |
| } |
| if nop != 0x60000000 { |
| ldr.Errorf(s, "Symbol %s is missing toc restoration slot at offset %d", ldr.SymName(s), r.Off()+4) |
| } |
| const o1 = 0xe8410018 // ld r2,24(r1) |
| ctxt.Arch.ByteOrder.PutUint32(p[r.Off()+4:], o1) |
| |
| return stub.Sym(), firstUse |
| } |
| |
| // Scan relocs and generate PLT stubs and generate/fixup ABI defined functions created by the linker. |
| func genstubs(ctxt *ld.Link, ldr *loader.Loader) { |
| var stubs []loader.Sym |
| var abifuncs []loader.Sym |
| for _, s := range ctxt.Textp { |
| relocs := ldr.Relocs(s) |
| for i := 0; i < relocs.Count(); i++ { |
| r := relocs.At(i) |
| switch r.Type() { |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24): |
| switch ldr.SymType(r.Sym()) { |
| case sym.SDYNIMPORT: |
| // This call goes through the PLT, generate and call through a PLT stub. |
| if sym, firstUse := genpltstub(ctxt, ldr, r, s); firstUse { |
| stubs = append(stubs, sym) |
| } |
| |
| case sym.SXREF: |
| // Is this an ELF ABI defined function which is (in practice) |
| // generated by the linker to save/restore callee save registers? |
| // These are defined similarly for both PPC64 ELF and ELFv2. |
| targName := ldr.SymName(r.Sym()) |
| if strings.HasPrefix(targName, "_save") || strings.HasPrefix(targName, "_rest") { |
| if sym, firstUse := rewriteABIFuncReloc(ctxt, ldr, targName, r); firstUse { |
| abifuncs = append(abifuncs, sym) |
| } |
| } |
| } |
| |
| // Handle objects compiled with -fno-plt. Rewrite local calls to avoid indirect calling. |
| // These are 0 sized relocs. They mark the mtctr r12, or bctrl + ld r2,24(r1). |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLTSEQ): |
| if ldr.SymType(r.Sym()) == sym.STEXT { |
| // This should be an mtctr instruction. Turn it into a nop. |
| su := ldr.MakeSymbolUpdater(s) |
| const OP_MTCTR = 31<<26 | 0x9<<16 | 467<<1 |
| const MASK_OP_MTCTR = 63<<26 | 0x3FF<<11 | 0x1FF<<1 |
| rewritetonop(&ctxt.Target, ldr, su, int64(r.Off()), MASK_OP_MTCTR, OP_MTCTR) |
| } |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLTCALL): |
| if ldr.SymType(r.Sym()) == sym.STEXT { |
| // This relocation should point to a bctrl followed by a ld r2, 24(41) |
| const OP_BL = 0x48000001 // bl 0 |
| const OP_TOCRESTORE = 0xe8410018 // ld r2,24(r1) |
| const OP_BCTRL = 0x4e800421 // bctrl |
| |
| // Convert the bctrl into a bl. |
| su := ldr.MakeSymbolUpdater(s) |
| rewritetoinsn(&ctxt.Target, ldr, su, int64(r.Off()), 0xFFFFFFFF, OP_BCTRL, OP_BL) |
| |
| // Turn this reloc into an R_CALLPOWER, and convert the TOC restore into a nop. |
| su.SetRelocType(i, objabi.R_CALLPOWER) |
| su.SetRelocAdd(i, r.Add()+int64(ldr.SymLocalentry(r.Sym()))) |
| r.SetSiz(4) |
| rewritetonop(&ctxt.Target, ldr, su, int64(r.Off()+4), 0xFFFFFFFF, OP_TOCRESTORE) |
| } |
| } |
| } |
| } |
| |
| // Append any usage of the go versions of ELF save/restore |
| // functions to the end of the callstub list to minimize |
| // chances a trampoline might be needed. |
| stubs = append(stubs, abifuncs...) |
| |
| // Put stubs at the beginning (instead of the end). |
| // So when resolving the relocations to calls to the stubs, |
| // the addresses are known and trampolines can be inserted |
| // when necessary. |
| ctxt.Textp = append(stubs, ctxt.Textp...) |
| } |
| |
| func genaddmoduledata(ctxt *ld.Link, ldr *loader.Loader) { |
| initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt) |
| if initfunc == nil { |
| return |
| } |
| |
| o := func(op uint32) { |
| initfunc.AddUint32(ctxt.Arch, op) |
| } |
| |
| // addis r2, r12, .TOC.-func@ha |
| toc := ctxt.DotTOC[0] |
| rel1, _ := initfunc.AddRel(objabi.R_ADDRPOWER_PCREL) |
| rel1.SetOff(0) |
| rel1.SetSiz(8) |
| rel1.SetSym(toc) |
| o(0x3c4c0000) |
| // addi r2, r2, .TOC.-func@l |
| o(0x38420000) |
| // mflr r31 |
| o(0x7c0802a6) |
| // stdu r31, -32(r1) |
| o(0xf801ffe1) |
| // addis r3, r2, local.moduledata@got@ha |
| var tgt loader.Sym |
| if s := ldr.Lookup("local.moduledata", 0); s != 0 { |
| tgt = s |
| } else if s := ldr.Lookup("local.pluginmoduledata", 0); s != 0 { |
| tgt = s |
| } else { |
| tgt = ldr.LookupOrCreateSym("runtime.firstmoduledata", 0) |
| } |
| rel2, _ := initfunc.AddRel(objabi.R_ADDRPOWER_GOT) |
| rel2.SetOff(int32(initfunc.Size())) |
| rel2.SetSiz(8) |
| rel2.SetSym(tgt) |
| o(0x3c620000) |
| // ld r3, local.moduledata@got@l(r3) |
| o(0xe8630000) |
| // bl runtime.addmoduledata |
| rel3, _ := initfunc.AddRel(objabi.R_CALLPOWER) |
| rel3.SetOff(int32(initfunc.Size())) |
| rel3.SetSiz(4) |
| rel3.SetSym(addmoduledata) |
| o(0x48000001) |
| // nop |
| o(0x60000000) |
| // ld r31, 0(r1) |
| o(0xe8010000) |
| // mtlr r31 |
| o(0x7c0803a6) |
| // addi r1,r1,32 |
| o(0x38210020) |
| // blr |
| o(0x4e800020) |
| } |
| |
| // Rewrite ELF (v1 or v2) calls to _savegpr0_n, _savegpr1_n, _savefpr_n, _restfpr_n, _savevr_m, or |
| // _restvr_m (14<=n<=31, 20<=m<=31). Redirect them to runtime.elf_restgpr0+(n-14)*4, |
| // runtime.elf_restvr+(m-20)*8, and similar. |
| // |
| // These functions are defined in the ELFv2 ABI (generated when using gcc -Os option) to save and |
| // restore callee-saved registers (as defined in the PPC64 ELF ABIs) from registers n or m to 31 of |
| // the named type. R12 and R0 are sometimes used in exceptional ways described in the ABI. |
| // |
| // Final note, this is only needed when linking internally. The external linker will generate these |
| // functions if they are used. |
| func rewriteABIFuncReloc(ctxt *ld.Link, ldr *loader.Loader, tname string, r loader.Reloc) (sym loader.Sym, firstUse bool) { |
| s := strings.Split(tname, "_") |
| // A valid call will split like {"", "savegpr0", "20"} |
| if len(s) != 3 { |
| return 0, false // Not an abi func. |
| } |
| minReg := 14 // _savegpr0_{n}, _savegpr1_{n}, _savefpr_{n}, 14 <= n <= 31 |
| offMul := 4 // 1 instruction per register op. |
| switch s[1] { |
| case "savegpr0", "savegpr1", "savefpr": |
| case "restgpr0", "restgpr1", "restfpr": |
| case "savevr", "restvr": |
| minReg = 20 // _savevr_{n} or _restvr_{n}, 20 <= n <= 31 |
| offMul = 8 // 2 instructions per register op. |
| default: |
| return 0, false // Not an abi func |
| } |
| n, e := strconv.Atoi(s[2]) |
| if e != nil || n < minReg || n > 31 || r.Add() != 0 { |
| return 0, false // Invalid register number, or non-zero addend. Not an abi func. |
| } |
| |
| // tname is a valid relocation to an ABI defined register save/restore function. Re-relocate |
| // them to a go version of these functions in runtime/asm_ppc64x.s |
| ts := ldr.LookupOrCreateSym("runtime.elf_"+s[1], 0) |
| r.SetSym(ts) |
| r.SetAdd(int64((n - minReg) * offMul)) |
| firstUse = !ldr.AttrReachable(ts) |
| if firstUse { |
| ldr.SetAttrReachable(ts, true) |
| // This function only becomes reachable now. It has been dropped from |
| // the text section (it was unreachable until now), it needs included. |
| // |
| // Similarly, TOC regeneration should not happen for these functions, |
| // remove it from this save/restore function. |
| if ldr.AttrShared(ts) { |
| sb := ldr.MakeSymbolUpdater(ts) |
| sb.SetData(sb.Data()[8:]) |
| sb.SetSize(sb.Size() - 8) |
| relocs := sb.Relocs() |
| // Only one PCREL reloc to .TOC. should be present. |
| if relocs.Count() != 1 { |
| log.Fatalf("Unexpected number of relocs in %s\n", ldr.SymName(ts)) |
| } |
| sb.ResetRelocs() |
| |
| } |
| } |
| return ts, firstUse |
| } |
| |
| func gentext(ctxt *ld.Link, ldr *loader.Loader) { |
| if ctxt.DynlinkingGo() { |
| genaddmoduledata(ctxt, ldr) |
| } |
| |
| if ctxt.LinkMode == ld.LinkInternal { |
| genstubs(ctxt, ldr) |
| } |
| } |
| |
| // Construct a call stub in stub that calls symbol targ via its PLT |
| // entry. |
| func gencallstub(ctxt *ld.Link, ldr *loader.Loader, abicase int, stub *loader.SymbolBuilder, targ loader.Sym) { |
| if abicase != 1 { |
| // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC |
| // relocations, we'll need to implement cases 2 and 3. |
| log.Fatalf("gencallstub only implements case 1 calls") |
| } |
| |
| plt := ctxt.PLT |
| |
| stub.SetType(sym.STEXT) |
| |
| // Save TOC pointer in TOC save slot |
| stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1) |
| |
| // Load the function pointer from the PLT. |
| rel, ri1 := stub.AddRel(objabi.R_POWER_TOC) |
| rel.SetOff(int32(stub.Size())) |
| rel.SetSiz(2) |
| rel.SetAdd(int64(ldr.SymPlt(targ))) |
| rel.SetSym(plt) |
| if ctxt.Arch.ByteOrder == binary.BigEndian { |
| rel.SetOff(rel.Off() + int32(rel.Siz())) |
| } |
| ldr.SetRelocVariant(stub.Sym(), int(ri1), sym.RV_POWER_HA) |
| stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha |
| |
| rel2, ri2 := stub.AddRel(objabi.R_POWER_TOC) |
| rel2.SetOff(int32(stub.Size())) |
| rel2.SetSiz(2) |
| rel2.SetAdd(int64(ldr.SymPlt(targ))) |
| rel2.SetSym(plt) |
| if ctxt.Arch.ByteOrder == binary.BigEndian { |
| rel2.SetOff(rel2.Off() + int32(rel2.Siz())) |
| } |
| ldr.SetRelocVariant(stub.Sym(), int(ri2), sym.RV_POWER_LO) |
| stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) |
| |
| // Jump to the loaded pointer |
| stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 |
| stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr |
| } |
| |
| // Rewrite the instruction at offset into newinsn. Also, verify the |
| // existing instruction under mask matches the check value. |
| func rewritetoinsn(target *ld.Target, ldr *loader.Loader, su *loader.SymbolBuilder, offset int64, mask, check, newinsn uint32) { |
| su.MakeWritable() |
| op := target.Arch.ByteOrder.Uint32(su.Data()[offset:]) |
| if op&mask != check { |
| ldr.Errorf(su.Sym(), "Rewrite offset 0x%x to 0x%08X failed check (0x%08X&0x%08X != 0x%08X)", offset, newinsn, op, mask, check) |
| } |
| su.SetUint32(target.Arch, offset, newinsn) |
| } |
| |
| // Rewrite the instruction at offset into a hardware nop instruction. Also, verify the |
| // existing instruction under mask matches the check value. |
| func rewritetonop(target *ld.Target, ldr *loader.Loader, su *loader.SymbolBuilder, offset int64, mask, check uint32) { |
| const NOP = 0x60000000 |
| rewritetoinsn(target, ldr, su, offset, mask, check, NOP) |
| } |
| |
| func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool { |
| if target.IsElf() { |
| return addelfdynrel(target, ldr, syms, s, r, rIdx) |
| } else if target.IsAIX() { |
| return ld.Xcoffadddynrel(target, ldr, syms, s, r, rIdx) |
| } |
| return false |
| } |
| |
| func addelfdynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool { |
| targ := r.Sym() |
| var targType sym.SymKind |
| if targ != 0 { |
| targType = ldr.SymType(targ) |
| } |
| |
| switch r.Type() { |
| default: |
| if r.Type() >= objabi.ElfRelocOffset { |
| ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type())) |
| return false |
| } |
| |
| // Handle relocations found in ELF object files. |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_CALLPOWER) |
| |
| // This is a local call, so the caller isn't setting |
| // up r12 and r2 is the same for the caller and |
| // callee. Hence, we need to go to the local entry |
| // point. (If we don't do this, the callee will try |
| // to use r12 to compute r2.) |
| su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymLocalentry(targ))) |
| |
| if targType == sym.SDYNIMPORT { |
| // Should have been handled in elfsetupplt |
| ldr.Errorf(s, "unexpected R_PPC64_REL24 for dyn import") |
| } |
| |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_PCREL) |
| su.SetRelocAdd(rIdx, r.Add()+4) |
| |
| if targType == sym.SDYNIMPORT { |
| ldr.Errorf(s, "unexpected R_PPC_REL32 for dyn import") |
| } |
| |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_ADDR) |
| if targType == sym.SDYNIMPORT { |
| // These happen in .toc sections |
| ld.Adddynsym(ldr, target, syms, targ) |
| |
| rela := ldr.MakeSymbolUpdater(syms.Rela) |
| rela.AddAddrPlus(target.Arch, s, int64(r.Off())) |
| rela.AddUint64(target.Arch, elf.R_INFO(uint32(ldr.SymDynid(targ)), uint32(elf.R_PPC64_ADDR64))) |
| rela.AddUint64(target.Arch, uint64(r.Add())) |
| su.SetRelocType(rIdx, objabi.ElfRelocOffset) // ignore during relocsym |
| } else if target.IsPIE() && target.IsInternal() { |
| // For internal linking PIE, this R_ADDR relocation cannot |
| // be resolved statically. We need to generate a dynamic |
| // relocation. Let the code below handle it. |
| break |
| } |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_POWER_TOC) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO|sym.RV_CHECK_OVERFLOW) |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_POWER_TOC) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO) |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_POWER_TOC) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW) |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_POWER_TOC) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW) |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_POWER_TOC) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS|sym.RV_CHECK_OVERFLOW) |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_POWER_TOC) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS) |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_PCREL) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO) |
| su.SetRelocAdd(rIdx, r.Add()+2) // Compensate for relocation size of 2 |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_PCREL) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW) |
| su.SetRelocAdd(rIdx, r.Add()+2) |
| return true |
| |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA): |
| su := ldr.MakeSymbolUpdater(s) |
| su.SetRelocType(rIdx, objabi.R_PCREL) |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW) |
| su.SetRelocAdd(rIdx, r.Add()+2) |
| return true |
| |
| // When compiling with gcc's -fno-plt option (no PLT), the following code and relocation |
| // sequences may be present to call an external function: |
| // |
| // 1. addis Rx,foo@R_PPC64_PLT16_HA |
| // 2. ld 12,foo@R_PPC64_PLT16_LO_DS(Rx) |
| // 3. mtctr 12 ; foo@R_PPC64_PLTSEQ |
| // 4. bctrl ; foo@R_PPC64_PLTCALL |
| // 5. ld r2,24(r1) |
| // |
| // Note, 5 is required to follow the R_PPC64_PLTCALL. Similarly, relocations targeting |
| // instructions 3 and 4 are zero sized informational relocations. |
| case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLT16_HA), |
| objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLT16_LO_DS): |
| su := ldr.MakeSymbolUpdater(s) |
| isPLT16_LO_DS := r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_PLT16_LO_DS) |
| if isPLT16_LO_DS { |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS) |
| } else { |
| ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW) |
| } |
| su.SetRelocType(rIdx, objabi.R_POWER_TOC) |
| if targType == sym.SDYNIMPORT { |
| // This is an external symbol, make space in the GOT and retarget the reloc. |
| ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_PPC64_GLOB_DAT)) |
| su.SetRelocSym(rIdx, syms.GOT) |
| su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) |
| } else if targType == sym.STEXT { |
| if isPLT16_LO_DS { |
| // Expect an ld opcode to nop |
| const MASK_OP_LD = 63<<26 | 0x3 |
| const OP_LD = 58 << 26 |
| rewritetonop(target, ldr, su, int64(r.Off()), MASK_OP_LD, OP_LD) |
| } else { |
| // Expect an addis opcode to nop |
| const MASK_OP_ADDIS = 63 << 26 |
| const OP_ADDIS = 15 << 26 |
| rewritetonop(target, ldr, su, int64(r.Off()), MASK_OP_ADDIS, OP_ADDIS) |
| } |
| // And we can ignore this reloc now. |
| su.SetRelocType(rIdx, objabi.ElfRelocOffset) |
| } else { |
| ldr.Errorf(s, "unexpected PLT relocation target symbol type %s", targType.String()) |
| } |
| return true |
| } |
| |
| // Handle references to ELF symbols from our own object files. |
| relocs := ldr.Relocs(s) |
| r = relocs.At(rIdx) |
| |
| switch r.Type() { |
| case objabi.R_ADDR: |
| if ldr.SymType(s) == sym.STEXT { |
| log.Fatalf("R_ADDR relocation in text symbol %s is unsupported\n", ldr.SymName(s)) |
| } |
| if target.IsPIE() && target.IsInternal() { |
| // When internally linking, generate dynamic relocations |
| // for all typical R_ADDR relocations. The exception |
| // are those R_ADDR that are created as part of generating |
| // the dynamic relocations and must be resolved statically. |
| // |
| // There are three phases relevant to understanding this: |
| // |
| // dodata() // we are here |
| // address() // symbol address assignment |
| // reloc() // resolution of static R_ADDR relocs |
| // |
| // At this point symbol addresses have not been |
| // assigned yet (as the final size of the .rela section |
| // will affect the addresses), and so we cannot write |
| // the Elf64_Rela.r_offset now. Instead we delay it |
| // until after the 'address' phase of the linker is |
| // complete. We do this via Addaddrplus, which creates |
| // a new R_ADDR relocation which will be resolved in |
| // the 'reloc' phase. |
| // |
| // These synthetic static R_ADDR relocs must be skipped |
| // now, or else we will be caught in an infinite loop |
| // of generating synthetic relocs for our synthetic |
| // relocs. |
| // |
| // Furthermore, the rela sections contain dynamic |
| // relocations with R_ADDR relocations on |
| // Elf64_Rela.r_offset. This field should contain the |
| // symbol offset as determined by reloc(), not the |
| // final dynamically linked address as a dynamic |
| // relocation would provide. |
| switch ldr.SymName(s) { |
| case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic": |
| return false |
| } |
| } else { |
| // Either internally linking a static executable, |
| // in which case we can resolve these relocations |
| // statically in the 'reloc' phase, or externally |
| // linking, in which case the relocation will be |
| // prepared in the 'reloc' phase and passed to the |
| // external linker in the 'asmb' phase. |
| if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA { |
| break |
| } |
| } |
| // Generate R_PPC64_RELATIVE relocations for best |
| // efficiency in the dynamic linker. |
| // |
| // As noted above, symbol addresses have not been |
| // assigned yet, so we can't generate the final reloc |
| // entry yet. We ultimately want: |
| // |
| // r_offset = s + r.Off |
| // r_info = R_PPC64_RELATIVE |
| // r_addend = targ + r.Add |
| // |
| // The dynamic linker will set *offset = base address + |
| // addend. |
| // |
| // AddAddrPlus is used for r_offset and r_addend to |
| // generate new R_ADDR relocations that will update |
| // these fields in the 'reloc' phase. |
| rela := ldr.MakeSymbolUpdater(syms.Rela) |
| rela.AddAddrPlus(target.Arch, s, int64(r.Off())) |
| if r.Siz() == 8 { |
| rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_PPC64_RELATIVE))) |
| } else { |
| ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) |
| } |
| rela.AddAddrPlus(target.Arch, targ, int64(r.Add())) |
| |
| // Not mark r done here. So we still apply it statically, |
| // so in the file content we'll also have the right offset |
| // to the relocation target. So it can be examined statically |
| // (e.g. go version). |
| return true |
| } |
| |
| return false |
| } |
| |
| func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool { |
| rs := r.Xsym |
| |
| emitReloc := func(v uint16, off uint64) { |
| out.Write64(uint64(sectoff) + off) |
| out.Write32(uint32(ldr.SymDynid(rs))) |
| out.Write16(v) |
| } |
| |
| var v uint16 |
| switch r.Type { |
| default: |
| return false |
| case objabi.R_ADDR, objabi.R_DWARFSECREF: |
| v = ld.XCOFF_R_POS |
| if r.Size == 4 { |
| v |= 0x1F << 8 |
| } else { |
| v |= 0x3F << 8 |
| } |
| emitReloc(v, 0) |
| case objabi.R_ADDRPOWER_TOCREL: |
| case objabi.R_ADDRPOWER_TOCREL_DS: |
| emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2) |
| emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6) |
| case objabi.R_POWER_TLS_LE: |
| // This only supports 16b relocations. It is fixed up in archreloc. |
| emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2) |
| case objabi.R_CALLPOWER: |
| if r.Size != 4 { |
| return false |
| } |
| emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0) |
| case objabi.R_XCOFFREF: |
| emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0) |
| } |
| return true |
| |
| } |
| |
| func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool { |
| // Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines. |
| rt := r.Type |
| if rt == objabi.R_ADDR || rt == objabi.R_POWER_TLS || rt == objabi.R_CALLPOWER { |
| } else { |
| if ctxt.Arch.ByteOrder == binary.BigEndian { |
| sectoff += 2 |
| } |
| } |
| out.Write64(uint64(sectoff)) |
| |
| elfsym := ld.ElfSymForReloc(ctxt, r.Xsym) |
| switch rt { |
| default: |
| return false |
| case objabi.R_ADDR, objabi.R_DWARFSECREF: |
| switch r.Size { |
| case 4: |
| out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32) |
| case 8: |
| out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32) |
| default: |
| return false |
| } |
| case objabi.R_ADDRPOWER_D34: |
| out.Write64(uint64(elf.R_PPC64_D34) | uint64(elfsym)<<32) |
| case objabi.R_ADDRPOWER_PCREL34: |
| out.Write64(uint64(elf.R_PPC64_PCREL34) | uint64(elfsym)<<32) |
| case objabi.R_POWER_TLS: |
| out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32) |
| case objabi.R_POWER_TLS_LE: |
| out.Write64(uint64(elf.R_PPC64_TPREL16_HA) | uint64(elfsym)<<32) |
| out.Write64(uint64(r.Xadd)) |
| out.Write64(uint64(sectoff + 4)) |
| out.Write64(uint64(elf.R_PPC64_TPREL16_LO) | uint64(elfsym)<<32) |
| case objabi.R_POWER_TLS_LE_TPREL34: |
| out.Write64(uint64(elf.R_PPC64_TPREL34) | uint64(elfsym)<<32) |
| case objabi.R_POWER_TLS_IE_PCREL34: |
| out.Write64(uint64(elf.R_PPC64_GOT_TPREL_PCREL34) | uint64(elfsym)<<32) |
| case objabi.R_POWER_TLS_IE: |
| out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32) |
| out.Write64(uint64(r.Xadd)) |
| out.Write64(uint64(sectoff + 4)) |
| out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32) |
| case objabi.R_ADDRPOWER: |
| out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) |
| out.Write64(uint64(r.Xadd)) |
| out.Write64(uint64(sectoff + 4)) |
| out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32) |
| case objabi.R_ADDRPOWER_DS: |
| out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) |
| out.Write64(uint64(r.Xadd)) |
| out.Write64(uint64(sectoff + 4)) |
| out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32) |
| case objabi.R_ADDRPOWER_GOT: |
| out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32) |
| out.Write64(uint64(r.Xadd)) |
| out.Write64(uint64(sectoff + 4)) |
| out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32) |
| case objabi.R_ADDRPOWER_GOT_PCREL34: |
| out.Write64(uint64(elf.R_PPC64_GOT_PCREL34) | uint64(elfsym)<<32) |
| case objabi.R_ADDRPOWER_PCREL: |
| out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32) |
| out.Write64(uint64(r.Xadd)) |
| out.Write64(uint64(sectoff + 4)) |
| out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32) |
| r.Xadd += 4 |
| case objabi.R_ADDRPOWER_TOCREL: |
| out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) |
| out.Write64(uint64(r.Xadd)) |
| out.Write64(uint64(sectoff + 4)) |
| out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32) |
| case objabi.R_ADDRPOWER_TOCREL_DS: |
| out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) |
| out.Write64(uint64(r.Xadd)) |
| out.Write64(uint64(sectoff + 4)) |
| out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32) |
| case objabi.R_CALLPOWER: |
| if r.Size != 4 { |
| return false |
| } |
| out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32) |
| |
| } |
| out.Write64(uint64(r.Xadd)) |
| |
| return true |
| } |
| |
| func elfsetupplt(ctxt *ld.Link, plt, got *loader.SymbolBuilder, dynamic loader.Sym) { |
| if plt.Size() == 0 { |
| // The dynamic linker stores the address of the |
| // dynamic resolver and the DSO identifier in the two |
| // doublewords at the beginning of the .plt section |
| // before the PLT array. Reserve space for these. |
| plt.SetSize(16) |
| } |
| } |
| |
| func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool { |
| return false |
| } |
| |
| // Return the value of .TOC. for symbol s |
| func symtoc(ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) int64 { |
| v := ldr.SymVersion(s) |
| if out := ldr.OuterSym(s); out != 0 { |
| v = ldr.SymVersion(out) |
| } |
| |
| toc := syms.DotTOC[v] |
| if toc == 0 { |
| ldr.Errorf(s, "TOC-relative relocation in object without .TOC.") |
| return 0 |
| } |
| |
| return ldr.SymValue(toc) |
| } |
| |
| // archreloctoc relocates a TOC relative symbol. |
| func archreloctoc(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 { |
| rs := r.Sym() |
| var o1, o2 uint32 |
| var t int64 |
| useAddi := false |
| |
| if target.IsBigEndian() { |
| o1 = uint32(val >> 32) |
| o2 = uint32(val) |
| } else { |
| o1 = uint32(val) |
| o2 = uint32(val >> 32) |
| } |
| |
| // On AIX, TOC data accesses are always made indirectly against R2 (a sequence of addis+ld+load/store). If the |
| // The target of the load is known, the sequence can be written into addis+addi+load/store. On Linux, |
| // TOC data accesses are always made directly against R2 (e.g addis+load/store). |
| if target.IsAIX() { |
| if !strings.HasPrefix(ldr.SymName(rs), "TOC.") { |
| ldr.Errorf(s, "archreloctoc called for a symbol without TOC anchor") |
| } |
| relocs := ldr.Relocs(rs) |
| tarSym := relocs.At(0).Sym() |
| |
| if target.IsInternal() && tarSym != 0 && ldr.AttrReachable(tarSym) && ldr.SymSect(tarSym).Seg == &ld.Segdata { |
| t = ldr.SymValue(tarSym) + r.Add() - ldr.SymValue(syms.TOC) |
| // change ld to addi in the second instruction |
| o2 = (o2 & 0x03FF0000) | 0xE<<26 |
| useAddi = true |
| } else { |
| t = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.TOC) |
| } |
| } else { |
| t = ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s) |
| } |
| |
| if t != int64(int32(t)) { |
| ldr.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", ldr.SymName(s), rs, t) |
| } |
| |
| if t&0x8000 != 0 { |
| t += 0x10000 |
| } |
| |
| o1 |= uint32((t >> 16) & 0xFFFF) |
| |
| switch r.Type() { |
| case objabi.R_ADDRPOWER_TOCREL_DS: |
| if useAddi { |
| o2 |= uint32(t) & 0xFFFF |
| } else { |
| if t&3 != 0 { |
| ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs)) |
| } |
| o2 |= uint32(t) & 0xFFFC |
| } |
| case objabi.R_ADDRPOWER_TOCREL: |
| o2 |= uint32(t) & 0xffff |
| default: |
| return -1 |
| } |
| |
| if target.IsBigEndian() { |
| return int64(o1)<<32 | int64(o2) |
| } |
| return int64(o2)<<32 | int64(o1) |
| } |
| |
| // archrelocaddr relocates a symbol address. |
| // This code is for linux only. |
| func archrelocaddr(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 { |
| rs := r.Sym() |
| if target.IsAIX() { |
| ldr.Errorf(s, "archrelocaddr called for %s relocation\n", ldr.SymName(rs)) |
| } |
| o1, o2 := unpackInstPair(target, val) |
| |
| // Verify resulting address fits within a 31 bit (2GB) address space. |
| // This is a restriction arising from the usage of lis (HA) + d-form |
| // (LO) instruction sequences used to implement absolute relocations |
| // on PPC64 prior to ISA 3.1 (P10). For consistency, maintain this |
| // restriction for ISA 3.1 unless it becomes problematic. |
| t := ldr.SymAddr(rs) + r.Add() |
| if t < 0 || t >= 1<<31 { |
| ldr.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", ldr.SymName(s), ldr.SymValue(rs)) |
| } |
| |
| switch r.Type() { |
| case objabi.R_ADDRPOWER_PCREL34: |
| // S + A - P |
| t -= (ldr.SymValue(s) + int64(r.Off())) |
| o1 |= computePrefix34HI(t) |
| o2 |= computeLO(int32(t)) |
| case objabi.R_ADDRPOWER_D34: |
| o1 |= computePrefix34HI(t) |
| o2 |= computeLO(int32(t)) |
| case objabi.R_ADDRPOWER: |
| o1 |= computeHA(int32(t)) |
| o2 |= computeLO(int32(t)) |
| case objabi.R_ADDRPOWER_DS: |
| o1 |= computeHA(int32(t)) |
| o2 |= computeLO(int32(t)) |
| if t&3 != 0 { |
| ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs)) |
| } |
| default: |
| return -1 |
| } |
| |
| return packInstPair(target, o1, o2) |
| } |
| |
| // Determine if the code was compiled so that the TOC register R2 is initialized and maintained. |
| func r2Valid(ctxt *ld.Link) bool { |
| switch ctxt.BuildMode { |
| case ld.BuildModeCArchive, ld.BuildModeCShared, ld.BuildModePIE, ld.BuildModeShared, ld.BuildModePlugin: |
| return true |
| } |
| // -linkshared option |
| return ctxt.IsSharedGoLink() |
| } |
| |
| // resolve direct jump relocation r in s, and add trampoline if necessary. |
| func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) { |
| |
| // Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it. |
| // For internal linking, trampolines are always created for long calls. |
| // For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in |
| // r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created. |
| if ctxt.IsExternal() && r2Valid(ctxt) { |
| // The TOC pointer is valid. The external linker will insert trampolines. |
| return |
| } |
| |
| relocs := ldr.Relocs(s) |
| r := relocs.At(ri) |
| var t int64 |
| // ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet |
| // laid out. Conservatively use a trampoline. This should be rare, as we lay out packages |
| // in dependency order. |
| if ldr.SymValue(rs) != 0 { |
| t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) |
| } |
| switch r.Type() { |
| case objabi.R_CALLPOWER: |
| |
| // If branch offset is too far then create a trampoline. |
| |
| if (ctxt.IsExternal() && ldr.SymSect(s) != ldr.SymSect(rs)) || (ctxt.IsInternal() && int64(int32(t<<6)>>6) != t) || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && ldr.SymPkg(s) != ldr.SymPkg(rs)) { |
| var tramp loader.Sym |
| for i := 0; ; i++ { |
| |
| // Using r.Add as part of the name is significant in functions like duffzero where the call |
| // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as |
| // distinct trampolines. |
| |
| oName := ldr.SymName(rs) |
| name := oName |
| if r.Add() == 0 { |
| name += fmt.Sprintf("-tramp%d", i) |
| } else { |
| name += fmt.Sprintf("%+x-tramp%d", r.Add(), i) |
| } |
| |
| // Look up the trampoline in case it already exists |
| |
| tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs))) |
| if oName == "runtime.deferreturn" { |
| ldr.SetIsDeferReturnTramp(tramp, true) |
| } |
| if ldr.SymValue(tramp) == 0 { |
| break |
| } |
| // Note, the trampoline is always called directly. The addend of the original relocation is accounted for in the |
| // trampoline itself. |
| t = ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off())) |
| |
| // With internal linking, the trampoline can be used if it is not too far. |
| // With external linking, the trampoline must be in this section for it to be reused. |
| if (ctxt.IsInternal() && int64(int32(t<<6)>>6) == t) || (ctxt.IsExternal() && ldr.SymSect(s) == ldr.SymSect(tramp)) { |
| break |
| } |
| } |
| if ldr.SymType(tramp) == 0 { |
| trampb := ldr.MakeSymbolUpdater(tramp) |
| ctxt.AddTramp(trampb) |
| gentramp(ctxt, ldr, trampb, rs, r.Add()) |
| } |
| sb := ldr.MakeSymbolUpdater(s) |
| relocs := sb.Relocs() |
| r := relocs.At(ri) |
| r.SetSym(tramp) |
| r.SetAdd(0) // This was folded into the trampoline target address |
| } |
| default: |
| ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type())) |
| } |
| } |
| |
| func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) { |
| tramp.SetSize(16) // 4 instructions |
| P := make([]byte, tramp.Size()) |
| var o1, o2 uint32 |
| |
| if ctxt.IsAIX() { |
| // On AIX, the address is retrieved with a TOC symbol. |
| // For internal linking, the "Linux" way might still be used. |
| // However, all text symbols are accessed with a TOC symbol as |
| // text relocations aren't supposed to be possible. |
| // So, keep using the external linking way to be more AIX friendly. |
| o1 = uint32(0x3c000000) | 12<<21 | 2<<16 // addis r12, r2, toctargetaddr hi |
| o2 = uint32(0xe8000000) | 12<<21 | 12<<16 // ld r12, r12, toctargetaddr lo |
| |
| toctramp := ldr.CreateSymForUpdate("TOC."+ldr.SymName(tramp.Sym()), 0) |
| toctramp.SetType(sym.SXCOFFTOC) |
| toctramp.AddAddrPlus(ctxt.Arch, target, offset) |
| |
| r, _ := tramp.AddRel(objabi.R_ADDRPOWER_TOCREL_DS) |
| r.SetOff(0) |
| r.SetSiz(8) // generates 2 relocations: HA + LO |
| r.SetSym(toctramp.Sym()) |
| } else { |
| // Used for default build mode for an executable |
| // Address of the call target is generated using |
| // relocation and doesn't depend on r2 (TOC). |
| o1 = uint32(0x3c000000) | 12<<21 // lis r12,targetaddr hi |
| o2 = uint32(0x38000000) | 12<<21 | 12<<16 // addi r12,r12,targetaddr lo |
| |
| // ELFv2 save/restore functions use R0/R12 in special ways, therefore trampolines |
| // as generated here will not always work correctly. |
| if strings.HasPrefix(ldr.SymName(target), "runtime.elf_") { |
| log.Fatalf("Internal linker does not support trampolines to ELFv2 ABI"+ |
| " register save/restore function %s", ldr.SymName(target)) |
| } |
| |
| t := ldr.SymValue(target) |
| if t == 0 || r2Valid(ctxt) || ctxt.IsExternal() { |
| // Target address is unknown, generate relocations |
| r, _ := tramp.AddRel(objabi.R_ADDRPOWER) |
| if r2Valid(ctxt) { |
| // Use a TOC relative address if R2 holds the TOC pointer |
| o1 |= uint32(2 << 16) // Transform lis r31,ha into addis r31,r2,ha |
| r.SetType(objabi.R_ADDRPOWER_TOCREL) |
| } |
| r.SetOff(0) |
| r.SetSiz(8) // generates 2 relocations: HA + LO |
| r.SetSym(target) |
| r.SetAdd(offset) |
| } else { |
| // The target address is known, resolve it |
| t += offset |
| o1 |= (uint32(t) + 0x8000) >> 16 // HA |
| o2 |= uint32(t) & 0xFFFF // LO |
| } |
| } |
| |
| o3 := uint32(0x7c0903a6) | 12<<21 // mtctr r12 |
| o4 := uint32(0x4e800420) // bctr |
| ctxt.Arch.ByteOrder.PutUint32(P, o1) |
| ctxt.Arch.ByteOrder.PutUint32(P[4:], o2) |
| ctxt.Arch.ByteOrder.PutUint32(P[8:], o3) |
| ctxt.Arch.ByteOrder.PutUint32(P[12:], o4) |
| tramp.SetData(P) |
| } |
| |
| // Unpack a pair of 32 bit instruction words from |
| // a 64 bit relocation into instN and instN+1 in endian order. |
| func unpackInstPair(target *ld.Target, r int64) (uint32, uint32) { |
| if target.IsBigEndian() { |
| return uint32(r >> 32), uint32(r) |
| } |
| return uint32(r), uint32(r >> 32) |
| } |
| |
| // Pack a pair of 32 bit instruction words o1, o2 into 64 bit relocation |
| // in endian order. |
| func packInstPair(target *ld.Target, o1, o2 uint32) int64 { |
| if target.IsBigEndian() { |
| return (int64(o1) << 32) | int64(o2) |
| } |
| return int64(o1) | (int64(o2) << 32) |
| } |
| |
| // Compute the high-adjusted value (always a signed 32b value) per the ELF ABI. |
| // The returned value is always 0 <= x <= 0xFFFF. |
| func computeHA(val int32) uint32 { |
| return uint32(uint16((val + 0x8000) >> 16)) |
| } |
| |
| // Compute the low value (the lower 16 bits of any 32b value) per the ELF ABI. |
| // The returned value is always 0 <= x <= 0xFFFF. |
| func computeLO(val int32) uint32 { |
| return uint32(uint16(val)) |
| } |
| |
| // Compute the high 18 bits of a signed 34b constant. Used to pack the high 18 bits |
| // of a prefix34 relocation field. This assumes the input is already restricted to |
| // 34 bits. |
| func computePrefix34HI(val int64) uint32 { |
| return uint32((val >> 16) & 0x3FFFF) |
| } |
| |
| func computeTLSLEReloc(target *ld.Target, ldr *loader.Loader, rs, s loader.Sym) int64 { |
| // The thread pointer points 0x7000 bytes after the start of the |
| // thread local storage area as documented in section "3.7.2 TLS |
| // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI |
| // Specification". |
| v := ldr.SymValue(rs) - 0x7000 |
| if target.IsAIX() { |
| // On AIX, the thread pointer points 0x7800 bytes after |
| // the TLS. |
| v -= 0x800 |
| } |
| |
| if int64(int32(v)) != v { |
| ldr.Errorf(s, "TLS offset out of range %d", v) |
| } |
| return v |
| } |
| |
| func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (relocatedOffset int64, nExtReloc int, ok bool) { |
| rs := r.Sym() |
| if target.IsExternal() { |
| // On AIX, relocations (except TLS ones) must be also done to the |
| // value with the current addresses. |
| switch rt := r.Type(); rt { |
| default: |
| if !target.IsAIX() { |
| return val, nExtReloc, false |
| } |
| case objabi.R_POWER_TLS, objabi.R_POWER_TLS_IE_PCREL34, objabi.R_POWER_TLS_LE_TPREL34, objabi.R_ADDRPOWER_GOT_PCREL34: |
| nExtReloc = 1 |
| return val, nExtReloc, true |
| case objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE: |
| if target.IsAIX() && rt == objabi.R_POWER_TLS_LE { |
| // Fixup val, an addis/addi pair of instructions, which generate a 32b displacement |
| // from the threadpointer (R13), into a 16b relocation. XCOFF only supports 16b |
| // TLS LE relocations. Likewise, verify this is an addis/addi sequence. |
| const expectedOpcodes = 0x3C00000038000000 |
| const expectedOpmasks = 0xFC000000FC000000 |
| if uint64(val)&expectedOpmasks != expectedOpcodes { |
| ldr.Errorf(s, "relocation for %s+%d is not an addis/addi pair: %16x", ldr.SymName(rs), r.Off(), uint64(val)) |
| } |
| nval := (int64(uint32(0x380d0000)) | val&0x03e00000) << 32 // addi rX, r13, $0 |
| nval |= int64(0x60000000) // nop |
| val = nval |
| nExtReloc = 1 |
| } else { |
| nExtReloc = 2 |
| } |
| return val, nExtReloc, true |
| case objabi.R_ADDRPOWER, |
| objabi.R_ADDRPOWER_DS, |
| objabi.R_ADDRPOWER_TOCREL, |
| objabi.R_ADDRPOWER_TOCREL_DS, |
| objabi.R_ADDRPOWER_GOT, |
| objabi.R_ADDRPOWER_PCREL: |
| nExtReloc = 2 // need two ELF relocations, see elfreloc1 |
| if !target.IsAIX() { |
| return val, nExtReloc, true |
| } |
| case objabi.R_CALLPOWER, objabi.R_ADDRPOWER_D34, objabi.R_ADDRPOWER_PCREL34: |
| nExtReloc = 1 |
| if !target.IsAIX() { |
| return val, nExtReloc, true |
| } |
| } |
| } |
| |
| switch r.Type() { |
| case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS: |
| return archreloctoc(ldr, target, syms, r, s, val), nExtReloc, true |
| case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS, objabi.R_ADDRPOWER_D34, objabi.R_ADDRPOWER_PCREL34: |
| return archrelocaddr(ldr, target, syms, r, s, val), nExtReloc, true |
| case objabi.R_CALLPOWER: |
| // Bits 6 through 29 = (S + A - P) >> 2 |
| |
| t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) |
| |
| tgtName := ldr.SymName(rs) |
| |
| // If we are linking PIE or shared code, all golang generated object files have an extra 2 instruction prologue |
| // to regenerate the TOC pointer from R12. The exception are two special case functions tested below. Note, |
| // local call offsets for externally generated objects are accounted for when converting into golang relocs. |
| if !ldr.AttrExternal(rs) && ldr.AttrShared(rs) && tgtName != "runtime.duffzero" && tgtName != "runtime.duffcopy" { |
| // Furthermore, only apply the offset if the target looks like the start of a function call. |
| if r.Add() == 0 && ldr.SymType(rs) == sym.STEXT { |
| t += 8 |
| } |
| } |
| |
| if t&3 != 0 { |
| ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t) |
| } |
| // If branch offset is too far then create a trampoline. |
| |
| if int64(int32(t<<6)>>6) != t { |
| ldr.Errorf(s, "direct call too far: %s %x", ldr.SymName(rs), t) |
| } |
| return val | int64(uint32(t)&^0xfc000003), nExtReloc, true |
| case objabi.R_POWER_TOC: // S + A - .TOC. |
| return ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s), nExtReloc, true |
| |
| case objabi.R_ADDRPOWER_PCREL: // S + A - P |
| t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) |
| ha, l := unpackInstPair(target, val) |
| l |= computeLO(int32(t)) |
| ha |= computeHA(int32(t)) |
| return packInstPair(target, ha, l), nExtReloc, true |
| |
| case objabi.R_POWER_TLS: |
| const OP_ADD = 31<<26 | 266<<1 |
| const MASK_OP_ADD = 0x3F<<26 | 0x1FF<<1 |
| if val&MASK_OP_ADD != OP_ADD { |
| ldr.Errorf(s, "R_POWER_TLS reloc only supports XO form ADD, not %08X", val) |
| } |
| // Verify RB is R13 in ADD RA,RB,RT. |
| if (val>>11)&0x1F != 13 { |
| // If external linking is made to support this, it may expect the linker to rewrite RB. |
| ldr.Errorf(s, "R_POWER_TLS reloc requires R13 in RB (%08X).", uint32(val)) |
| } |
| return val, nExtReloc, true |
| |
| case objabi.R_POWER_TLS_IE: |
| // Convert TLS_IE relocation to TLS_LE if supported. |
| if !(target.IsPIE() && target.IsElf()) { |
| log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s)) |
| } |
| |
| // We are an ELF binary, we can safely convert to TLS_LE from: |
| // addis to, r2, x@got@tprel@ha |
| // ld to, to, x@got@tprel@l(to) |
| // |
| // to TLS_LE by converting to: |
| // addis to, r0, x@tprel@ha |
| // addi to, to, x@tprel@l(to) |
| |
| const OP_ADDI = 14 << 26 |
| const OP_MASK = 0x3F << 26 |
| const OP_RA_MASK = 0x1F << 16 |
| // convert r2 to r0, and ld to addi |
| mask := packInstPair(target, OP_RA_MASK, OP_MASK) |
| addi_op := packInstPair(target, 0, OP_ADDI) |
| val &^= mask |
| val |= addi_op |
| fallthrough |
| |
| case objabi.R_POWER_TLS_LE: |
| v := computeTLSLEReloc(target, ldr, rs, s) |
| o1, o2 := unpackInstPair(target, val) |
| o1 |= computeHA(int32(v)) |
| o2 |= computeLO(int32(v)) |
| return packInstPair(target, o1, o2), nExtReloc, true |
| |
| case objabi.R_POWER_TLS_IE_PCREL34: |
| // Convert TLS_IE relocation to TLS_LE if supported. |
| if !(target.IsPIE() && target.IsElf()) { |
| log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s)) |
| } |
| |
| // We are an ELF binary, we can safely convert to TLS_LE_TPREL34 from: |
| // pld rX, x@got@tprel@pcrel |
| // |
| // to TLS_LE_TPREL32 by converting to: |
| // pla rX, x@tprel |
| |
| const OP_MASK_PFX = 0xFFFFFFFF // Discard prefix word |
| const OP_MASK = (0x3F << 26) | 0xFFFF // Preserve RT, RA |
| const OP_PFX = 1<<26 | 2<<24 |
| const OP_PLA = 14 << 26 |
| mask := packInstPair(target, OP_MASK_PFX, OP_MASK) |
| pla_op := packInstPair(target, OP_PFX, OP_PLA) |
| val &^= mask |
| val |= pla_op |
| fallthrough |
| |
| case objabi.R_POWER_TLS_LE_TPREL34: |
| v := computeTLSLEReloc(target, ldr, rs, s) |
| o1, o2 := unpackInstPair(target, val) |
| o1 |= computePrefix34HI(v) |
| o2 |= computeLO(int32(v)) |
| return packInstPair(target, o1, o2), nExtReloc, true |
| } |
| |
| return val, nExtReloc, false |
| } |
| |
| func archrelocvariant(target *ld.Target, ldr *loader.Loader, r loader.Reloc, rv sym.RelocVariant, s loader.Sym, t int64, p []byte) (relocatedOffset int64) { |
| rs := r.Sym() |
| switch rv & sym.RV_TYPE_MASK { |
| default: |
| ldr.Errorf(s, "unexpected relocation variant %d", rv) |
| fallthrough |
| |
| case sym.RV_NONE: |
| return t |
| |
| case sym.RV_POWER_LO: |
| if rv&sym.RV_CHECK_OVERFLOW != 0 { |
| // Whether to check for signed or unsigned |
| // overflow depends on the instruction |
| var o1 uint32 |
| if target.IsBigEndian() { |
| o1 = binary.BigEndian.Uint32(p[r.Off()-2:]) |
| |
| } else { |
| o1 = binary.LittleEndian.Uint32(p[r.Off():]) |
| } |
| switch o1 >> 26 { |
| case 24, // ori |
| 26, // xori |
| 28: // andi |
| if t>>16 != 0 { |
| goto overflow |
| } |
| |
| default: |
| if int64(int16(t)) != t { |
| goto overflow |
| } |
| } |
| } |
| |
| return int64(int16(t)) |
| |
| case sym.RV_POWER_HA: |
| t += 0x8000 |
| fallthrough |
| |
| // Fallthrough |
| case sym.RV_POWER_HI: |
| t >>= 16 |
| |
| if rv&sym.RV_CHECK_OVERFLOW != 0 { |
| // Whether to check for signed or unsigned |
| // overflow depends on the instruction |
| var o1 uint32 |
| if target.IsBigEndian() { |
| o1 = binary.BigEndian.Uint32(p[r.Off()-2:]) |
| } else { |
| o1 = binary.LittleEndian.Uint32(p[r.Off():]) |
| } |
| switch o1 >> 26 { |
| case 25, // oris |
| 27, // xoris |
| 29: // andis |
| if t>>16 != 0 { |
| goto overflow |
| } |
| |
| default: |
| if int64(int16(t)) != t { |
| goto overflow |
| } |
| } |
| } |
| |
| return int64(int16(t)) |
| |
| case sym.RV_POWER_DS: |
| var o1 uint32 |
| if target.IsBigEndian() { |
| o1 = uint32(binary.BigEndian.Uint16(p[r.Off():])) |
| } else { |
| o1 = uint32(binary.LittleEndian.Uint16(p[r.Off():])) |
| } |
| if t&3 != 0 { |
| ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t) |
| } |
| if (rv&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { |
| goto overflow |
| } |
| return int64(o1)&0x3 | int64(int16(t)) |
| } |
| |
| overflow: |
| ldr.Errorf(s, "relocation for %s+%d is too big: %d", ldr.SymName(rs), r.Off(), t) |
| return t |
| } |
| |
| func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) { |
| switch r.Type() { |
| case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE, objabi.R_POWER_TLS_IE_PCREL34, objabi.R_POWER_TLS_LE_TPREL34, objabi.R_CALLPOWER: |
| return ld.ExtrelocSimple(ldr, r), true |
| case objabi.R_ADDRPOWER, |
| objabi.R_ADDRPOWER_DS, |
| objabi.R_ADDRPOWER_TOCREL, |
| objabi.R_ADDRPOWER_TOCREL_DS, |
| objabi.R_ADDRPOWER_GOT, |
| objabi.R_ADDRPOWER_GOT_PCREL34, |
| objabi.R_ADDRPOWER_PCREL, |
| objabi.R_ADDRPOWER_D34, |
| objabi.R_ADDRPOWER_PCREL34: |
| return ld.ExtrelocViaOuterSym(ldr, r, s), true |
| } |
| return loader.ExtReloc{}, false |
| } |
| |
| func addpltsym(ctxt *ld.Link, ldr *loader.Loader, s loader.Sym) { |
| if ldr.SymPlt(s) >= 0 { |
| return |
| } |
| |
| ld.Adddynsym(ldr, &ctxt.Target, &ctxt.ArchSyms, s) |
| |
| if ctxt.IsELF { |
| plt := ldr.MakeSymbolUpdater(ctxt.PLT) |
| rela := ldr.MakeSymbolUpdater(ctxt.RelaPLT) |
| if plt.Size() == 0 { |
| panic("plt is not set up") |
| } |
| |
| // Create the glink resolver if necessary |
| glink := ensureglinkresolver(ctxt, ldr) |
| |
| // Write symbol resolver stub (just a branch to the |
| // glink resolver stub) |
| rel, _ := glink.AddRel(objabi.R_CALLPOWER) |
| rel.SetOff(int32(glink.Size())) |
| rel.SetSiz(4) |
| rel.SetSym(glink.Sym()) |
| glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink |
| |
| // In the ppc64 ABI, the dynamic linker is responsible |
| // for writing the entire PLT. We just need to |
| // reserve 8 bytes for each PLT entry and generate a |
| // JMP_SLOT dynamic relocation for it. |
| // |
| // TODO(austin): ABI v1 is different |
| ldr.SetPlt(s, int32(plt.Size())) |
| |
| plt.Grow(plt.Size() + 8) |
| plt.SetSize(plt.Size() + 8) |
| |
| rela.AddAddrPlus(ctxt.Arch, plt.Sym(), int64(ldr.SymPlt(s))) |
| rela.AddUint64(ctxt.Arch, elf.R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_PPC64_JMP_SLOT))) |
| rela.AddUint64(ctxt.Arch, 0) |
| } else { |
| ctxt.Errorf(s, "addpltsym: unsupported binary format") |
| } |
| } |
| |
| // Generate the glink resolver stub if necessary and return the .glink section. |
| func ensureglinkresolver(ctxt *ld.Link, ldr *loader.Loader) *loader.SymbolBuilder { |
| glink := ldr.CreateSymForUpdate(".glink", 0) |
| if glink.Size() != 0 { |
| return glink |
| } |
| |
| // This is essentially the resolver from the ppc64 ELFv2 ABI. |
| // At entry, r12 holds the address of the symbol resolver stub |
| // for the target routine and the argument registers hold the |
| // arguments for the target routine. |
| // |
| // PC-rel offsets are computed once the final codesize of the |
| // resolver is known. |
| // |
| // This stub is PIC, so first get the PC of label 1 into r11. |
| glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0 |
| glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f |
| glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11 |
| glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlr r0 |
| |
| // Compute the .plt array index from the entry point address |
| // into r0. This is computed relative to label 1 above. |
| glink.AddUint32(ctxt.Arch, 0x38000000) // li r0,-(res_0-1b) |
| glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12 |
| glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11 |
| glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2 |
| |
| // Load the PC-rel offset of ".plt - 1b", and add it to 1b. |
| // This is stored after this stub and before the resolvers. |
| glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,res_0-1b-8(r11) |
| glink.AddUint32(ctxt.Arch, 0x7d6b6214) // add r11,r11,r12 |
| |
| // Load r12 = dynamic resolver address and r11 = DSO |
| // identifier from the first two doublewords of the PLT. |
| glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11) |
| glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11) |
| |
| // Jump to the dynamic resolver |
| glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 |
| glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr |
| |
| // Store the PC-rel offset to the PLT |
| r, _ := glink.AddRel(objabi.R_PCREL) |
| r.SetSym(ctxt.PLT) |
| r.SetSiz(8) |
| r.SetOff(int32(glink.Size())) |
| r.SetAdd(glink.Size()) // Adjust the offset to be relative to label 1 above. |
| glink.AddUint64(ctxt.Arch, 0) // The offset to the PLT. |
| |
| // Resolve PC-rel offsets above now the final size of the stub is known. |
| res0m1b := glink.Size() - 8 // res_0 - 1b |
| glink.SetUint32(ctxt.Arch, 16, 0x38000000|uint32(uint16(-res0m1b))) |
| glink.SetUint32(ctxt.Arch, 32, 0xe98b0000|uint32(uint16(res0m1b-8))) |
| |
| // The symbol resolvers must immediately follow. |
| // res_0: |
| |
| // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes |
| // before the first symbol resolver stub. |
| du := ldr.MakeSymbolUpdater(ctxt.Dynamic) |
| ld.Elfwritedynentsymplus(ctxt, du, elf.DT_PPC64_GLINK, glink.Sym(), glink.Size()-32) |
| |
| return glink |
| } |