| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package rand implements pseudo-random number generators. |
| // |
| // Random numbers are generated by a Source. Top-level functions, such as |
| // Float64 and Int, use a default shared Source that produces a deterministic |
| // sequence of values each time a program is run. Use the Seed function to |
| // initialize the default Source if different behavior is required for each run. |
| // The default Source is safe for concurrent use by multiple goroutines, but |
| // Sources created by NewSource are not. |
| // |
| // Mathematical interval notation such as [0, n) is used throughout the |
| // documentation for this package. |
| // |
| // For random numbers suitable for security-sensitive work, see the crypto/rand |
| // package. |
| package rand |
| |
| import "sync" |
| |
| // A Source represents a source of uniformly-distributed |
| // pseudo-random int64 values in the range [0, 1<<63). |
| type Source interface { |
| Int63() int64 |
| Seed(seed int64) |
| } |
| |
| // A Source64 is a Source that can also generate |
| // uniformly-distributed pseudo-random uint64 values in |
| // the range [0, 1<<64) directly. |
| // If a Rand r's underlying Source s implements Source64, |
| // then r.Uint64 returns the result of one call to s.Uint64 |
| // instead of making two calls to s.Int63. |
| type Source64 interface { |
| Source |
| Uint64() uint64 |
| } |
| |
| // NewSource returns a new pseudo-random Source seeded with the given value. |
| // Unlike the default Source used by top-level functions, this source is not |
| // safe for concurrent use by multiple goroutines. |
| func NewSource(seed int64) Source { |
| var rng rngSource |
| rng.Seed(seed) |
| return &rng |
| } |
| |
| // A Rand is a source of random numbers. |
| type Rand struct { |
| src Source |
| s64 Source64 // non-nil if src is source64 |
| |
| // readVal contains remainder of 63-bit integer used for bytes |
| // generation during most recent Read call. |
| // It is saved so next Read call can start where the previous |
| // one finished. |
| readVal int64 |
| // readPos indicates the number of low-order bytes of readVal |
| // that are still valid. |
| readPos int8 |
| } |
| |
| // New returns a new Rand that uses random values from src |
| // to generate other random values. |
| func New(src Source) *Rand { |
| s64, _ := src.(Source64) |
| return &Rand{src: src, s64: s64} |
| } |
| |
| // Seed uses the provided seed value to initialize the generator to a deterministic state. |
| // Seed should not be called concurrently with any other Rand method. |
| func (r *Rand) Seed(seed int64) { |
| if lk, ok := r.src.(*lockedSource); ok { |
| lk.seedPos(seed, &r.readPos) |
| return |
| } |
| |
| r.src.Seed(seed) |
| r.readPos = 0 |
| } |
| |
| // Int63 returns a non-negative pseudo-random 63-bit integer as an int64. |
| func (r *Rand) Int63() int64 { return r.src.Int63() } |
| |
| // Uint32 returns a pseudo-random 32-bit value as a uint32. |
| func (r *Rand) Uint32() uint32 { return uint32(r.Int63() >> 31) } |
| |
| // Uint64 returns a pseudo-random 64-bit value as a uint64. |
| func (r *Rand) Uint64() uint64 { |
| if r.s64 != nil { |
| return r.s64.Uint64() |
| } |
| return uint64(r.Int63())>>31 | uint64(r.Int63())<<32 |
| } |
| |
| // Int31 returns a non-negative pseudo-random 31-bit integer as an int32. |
| func (r *Rand) Int31() int32 { return int32(r.Int63() >> 32) } |
| |
| // Int returns a non-negative pseudo-random int. |
| func (r *Rand) Int() int { |
| u := uint(r.Int63()) |
| return int(u << 1 >> 1) // clear sign bit if int == int32 |
| } |
| |
| // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n). |
| // It panics if n <= 0. |
| func (r *Rand) Int63n(n int64) int64 { |
| if n <= 0 { |
| panic("invalid argument to Int63n") |
| } |
| if n&(n-1) == 0 { // n is power of two, can mask |
| return r.Int63() & (n - 1) |
| } |
| max := int64((1 << 63) - 1 - (1<<63)%uint64(n)) |
| v := r.Int63() |
| for v > max { |
| v = r.Int63() |
| } |
| return v % n |
| } |
| |
| // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n). |
| // It panics if n <= 0. |
| func (r *Rand) Int31n(n int32) int32 { |
| if n <= 0 { |
| panic("invalid argument to Int31n") |
| } |
| if n&(n-1) == 0 { // n is power of two, can mask |
| return r.Int31() & (n - 1) |
| } |
| max := int32((1 << 31) - 1 - (1<<31)%uint32(n)) |
| v := r.Int31() |
| for v > max { |
| v = r.Int31() |
| } |
| return v % n |
| } |
| |
| // int31n returns, as an int32, a non-negative pseudo-random number in [0,n). |
| // n must be > 0, but int31n does not check this; the caller must ensure it. |
| // int31n exists because Int31n is inefficient, but Go 1 compatibility |
| // requires that the stream of values produced by math/rand remain unchanged. |
| // int31n can thus only be used internally, by newly introduced APIs. |
| // |
| // For implementation details, see: |
| // https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction |
| // https://lemire.me/blog/2016/06/30/fast-random-shuffling |
| func (r *Rand) int31n(n int32) int32 { |
| v := r.Uint32() |
| prod := uint64(v) * uint64(n) |
| low := uint32(prod) |
| if low < uint32(n) { |
| thresh := uint32(-n) % uint32(n) |
| for low < thresh { |
| v = r.Uint32() |
| prod = uint64(v) * uint64(n) |
| low = uint32(prod) |
| } |
| } |
| return int32(prod >> 32) |
| } |
| |
| // Intn returns, as an int, a non-negative pseudo-random number in [0,n). |
| // It panics if n <= 0. |
| func (r *Rand) Intn(n int) int { |
| if n <= 0 { |
| panic("invalid argument to Intn") |
| } |
| if n <= 1<<31-1 { |
| return int(r.Int31n(int32(n))) |
| } |
| return int(r.Int63n(int64(n))) |
| } |
| |
| // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0). |
| func (r *Rand) Float64() float64 { |
| // A clearer, simpler implementation would be: |
| // return float64(r.Int63n(1<<53)) / (1<<53) |
| // However, Go 1 shipped with |
| // return float64(r.Int63()) / (1 << 63) |
| // and we want to preserve that value stream. |
| // |
| // There is one bug in the value stream: r.Int63() may be so close |
| // to 1<<63 that the division rounds up to 1.0, and we've guaranteed |
| // that the result is always less than 1.0. |
| // |
| // We tried to fix this by mapping 1.0 back to 0.0, but since float64 |
| // values near 0 are much denser than near 1, mapping 1 to 0 caused |
| // a theoretically significant overshoot in the probability of returning 0. |
| // Instead of that, if we round up to 1, just try again. |
| // Getting 1 only happens 1/2⁵³ of the time, so most clients |
| // will not observe it anyway. |
| again: |
| f := float64(r.Int63()) / (1 << 63) |
| if f == 1 { |
| goto again // resample; this branch is taken O(never) |
| } |
| return f |
| } |
| |
| // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0). |
| func (r *Rand) Float32() float32 { |
| // Same rationale as in Float64: we want to preserve the Go 1 value |
| // stream except we want to fix it not to return 1.0 |
| // This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64). |
| again: |
| f := float32(r.Float64()) |
| if f == 1 { |
| goto again // resample; this branch is taken O(very rarely) |
| } |
| return f |
| } |
| |
| // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n). |
| func (r *Rand) Perm(n int) []int { |
| m := make([]int, n) |
| // In the following loop, the iteration when i=0 always swaps m[0] with m[0]. |
| // A change to remove this useless iteration is to assign 1 to i in the init |
| // statement. But Perm also effects r. Making this change will affect |
| // the final state of r. So this change can't be made for compatibility |
| // reasons for Go 1. |
| for i := 0; i < n; i++ { |
| j := r.Intn(i + 1) |
| m[i] = m[j] |
| m[j] = i |
| } |
| return m |
| } |
| |
| // Shuffle pseudo-randomizes the order of elements. |
| // n is the number of elements. Shuffle panics if n < 0. |
| // swap swaps the elements with indexes i and j. |
| func (r *Rand) Shuffle(n int, swap func(i, j int)) { |
| if n < 0 { |
| panic("invalid argument to Shuffle") |
| } |
| |
| // Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle |
| // Shuffle really ought not be called with n that doesn't fit in 32 bits. |
| // Not only will it take a very long time, but with 2³¹! possible permutations, |
| // there's no way that any PRNG can have a big enough internal state to |
| // generate even a minuscule percentage of the possible permutations. |
| // Nevertheless, the right API signature accepts an int n, so handle it as best we can. |
| i := n - 1 |
| for ; i > 1<<31-1-1; i-- { |
| j := int(r.Int63n(int64(i + 1))) |
| swap(i, j) |
| } |
| for ; i > 0; i-- { |
| j := int(r.int31n(int32(i + 1))) |
| swap(i, j) |
| } |
| } |
| |
| // Read generates len(p) random bytes and writes them into p. It |
| // always returns len(p) and a nil error. |
| // Read should not be called concurrently with any other Rand method. |
| func (r *Rand) Read(p []byte) (n int, err error) { |
| if lk, ok := r.src.(*lockedSource); ok { |
| return lk.read(p, &r.readVal, &r.readPos) |
| } |
| return read(p, r.Int63, &r.readVal, &r.readPos) |
| } |
| |
| func read(p []byte, int63 func() int64, readVal *int64, readPos *int8) (n int, err error) { |
| pos := *readPos |
| val := *readVal |
| for n = 0; n < len(p); n++ { |
| if pos == 0 { |
| val = int63() |
| pos = 7 |
| } |
| p[n] = byte(val) |
| val >>= 8 |
| pos-- |
| } |
| *readPos = pos |
| *readVal = val |
| return |
| } |
| |
| /* |
| * Top-level convenience functions |
| */ |
| |
| var globalRand = New(&lockedSource{src: NewSource(1).(Source64)}) |
| |
| // Seed uses the provided seed value to initialize the default Source to a |
| // deterministic state. If Seed is not called, the generator behaves as |
| // if seeded by Seed(1). Seed values that have the same remainder when |
| // divided by 2^31-1 generate the same pseudo-random sequence. |
| // Seed, unlike the Rand.Seed method, is safe for concurrent use. |
| func Seed(seed int64) { globalRand.Seed(seed) } |
| |
| // Int63 returns a non-negative pseudo-random 63-bit integer as an int64 |
| // from the default Source. |
| func Int63() int64 { return globalRand.Int63() } |
| |
| // Uint32 returns a pseudo-random 32-bit value as a uint32 |
| // from the default Source. |
| func Uint32() uint32 { return globalRand.Uint32() } |
| |
| // Uint64 returns a pseudo-random 64-bit value as a uint64 |
| // from the default Source. |
| func Uint64() uint64 { return globalRand.Uint64() } |
| |
| // Int31 returns a non-negative pseudo-random 31-bit integer as an int32 |
| // from the default Source. |
| func Int31() int32 { return globalRand.Int31() } |
| |
| // Int returns a non-negative pseudo-random int from the default Source. |
| func Int() int { return globalRand.Int() } |
| |
| // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n) |
| // from the default Source. |
| // It panics if n <= 0. |
| func Int63n(n int64) int64 { return globalRand.Int63n(n) } |
| |
| // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n) |
| // from the default Source. |
| // It panics if n <= 0. |
| func Int31n(n int32) int32 { return globalRand.Int31n(n) } |
| |
| // Intn returns, as an int, a non-negative pseudo-random number in [0,n) |
| // from the default Source. |
| // It panics if n <= 0. |
| func Intn(n int) int { return globalRand.Intn(n) } |
| |
| // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0) |
| // from the default Source. |
| func Float64() float64 { return globalRand.Float64() } |
| |
| // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0) |
| // from the default Source. |
| func Float32() float32 { return globalRand.Float32() } |
| |
| // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n) |
| // from the default Source. |
| func Perm(n int) []int { return globalRand.Perm(n) } |
| |
| // Shuffle pseudo-randomizes the order of elements using the default Source. |
| // n is the number of elements. Shuffle panics if n < 0. |
| // swap swaps the elements with indexes i and j. |
| func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) } |
| |
| // Read generates len(p) random bytes from the default Source and |
| // writes them into p. It always returns len(p) and a nil error. |
| // Read, unlike the Rand.Read method, is safe for concurrent use. |
| func Read(p []byte) (n int, err error) { return globalRand.Read(p) } |
| |
| // NormFloat64 returns a normally distributed float64 in the range |
| // [-math.MaxFloat64, +math.MaxFloat64] with |
| // standard normal distribution (mean = 0, stddev = 1) |
| // from the default Source. |
| // To produce a different normal distribution, callers can |
| // adjust the output using: |
| // |
| // sample = NormFloat64() * desiredStdDev + desiredMean |
| // |
| func NormFloat64() float64 { return globalRand.NormFloat64() } |
| |
| // ExpFloat64 returns an exponentially distributed float64 in the range |
| // (0, +math.MaxFloat64] with an exponential distribution whose rate parameter |
| // (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. |
| // To produce a distribution with a different rate parameter, |
| // callers can adjust the output using: |
| // |
| // sample = ExpFloat64() / desiredRateParameter |
| // |
| func ExpFloat64() float64 { return globalRand.ExpFloat64() } |
| |
| type lockedSource struct { |
| lk sync.Mutex |
| src Source64 |
| } |
| |
| func (r *lockedSource) Int63() (n int64) { |
| r.lk.Lock() |
| n = r.src.Int63() |
| r.lk.Unlock() |
| return |
| } |
| |
| func (r *lockedSource) Uint64() (n uint64) { |
| r.lk.Lock() |
| n = r.src.Uint64() |
| r.lk.Unlock() |
| return |
| } |
| |
| func (r *lockedSource) Seed(seed int64) { |
| r.lk.Lock() |
| r.src.Seed(seed) |
| r.lk.Unlock() |
| } |
| |
| // seedPos implements Seed for a lockedSource without a race condition. |
| func (r *lockedSource) seedPos(seed int64, readPos *int8) { |
| r.lk.Lock() |
| r.src.Seed(seed) |
| *readPos = 0 |
| r.lk.Unlock() |
| } |
| |
| // read implements Read for a lockedSource without a race condition. |
| func (r *lockedSource) read(p []byte, readVal *int64, readPos *int8) (n int, err error) { |
| r.lk.Lock() |
| n, err = read(p, r.src.Int63, readVal, readPos) |
| r.lk.Unlock() |
| return |
| } |