| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package base32 implements base32 encoding as specified by RFC 4648. |
| package base32 |
| |
| import ( |
| "bytes" |
| "io" |
| "strconv" |
| "strings" |
| ) |
| |
| /* |
| * Encodings |
| */ |
| |
| // An Encoding is a radix 32 encoding/decoding scheme, defined by a |
| // 32-character alphabet. The most common is the "base32" encoding |
| // introduced for SASL GSSAPI and standardized in RFC 4648. |
| // The alternate "base32hex" encoding is used in DNSSEC. |
| type Encoding struct { |
| encode [32]byte |
| decodeMap [256]byte |
| padChar rune |
| } |
| |
| const ( |
| StdPadding rune = '=' // Standard padding character |
| NoPadding rune = -1 // No padding |
| ) |
| |
| const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" |
| const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV" |
| |
| // NewEncoding returns a new Encoding defined by the given alphabet, |
| // which must be a 32-byte string. |
| func NewEncoding(encoder string) *Encoding { |
| if len(encoder) != 32 { |
| panic("encoding alphabet is not 32-bytes long") |
| } |
| |
| e := new(Encoding) |
| copy(e.encode[:], encoder) |
| e.padChar = StdPadding |
| |
| for i := 0; i < len(e.decodeMap); i++ { |
| e.decodeMap[i] = 0xFF |
| } |
| for i := 0; i < len(encoder); i++ { |
| e.decodeMap[encoder[i]] = byte(i) |
| } |
| return e |
| } |
| |
| // StdEncoding is the standard base32 encoding, as defined in |
| // RFC 4648. |
| var StdEncoding = NewEncoding(encodeStd) |
| |
| // HexEncoding is the ``Extended Hex Alphabet'' defined in RFC 4648. |
| // It is typically used in DNS. |
| var HexEncoding = NewEncoding(encodeHex) |
| |
| var removeNewlinesMapper = func(r rune) rune { |
| if r == '\r' || r == '\n' { |
| return -1 |
| } |
| return r |
| } |
| |
| // WithPadding creates a new encoding identical to enc except |
| // with a specified padding character, or NoPadding to disable padding. |
| // The padding character must not be '\r' or '\n', must not |
| // be contained in the encoding's alphabet and must be a rune equal or |
| // below '\xff'. |
| func (enc Encoding) WithPadding(padding rune) *Encoding { |
| if padding == '\r' || padding == '\n' || padding > 0xff { |
| panic("invalid padding") |
| } |
| |
| for i := 0; i < len(enc.encode); i++ { |
| if rune(enc.encode[i]) == padding { |
| panic("padding contained in alphabet") |
| } |
| } |
| |
| enc.padChar = padding |
| return &enc |
| } |
| |
| /* |
| * Encoder |
| */ |
| |
| // Encode encodes src using the encoding enc, writing |
| // EncodedLen(len(src)) bytes to dst. |
| // |
| // The encoding pads the output to a multiple of 8 bytes, |
| // so Encode is not appropriate for use on individual blocks |
| // of a large data stream. Use NewEncoder() instead. |
| func (enc *Encoding) Encode(dst, src []byte) { |
| for len(src) > 0 { |
| var b [8]byte |
| |
| // Unpack 8x 5-bit source blocks into a 5 byte |
| // destination quantum |
| switch len(src) { |
| default: |
| b[7] = src[4] & 0x1F |
| b[6] = src[4] >> 5 |
| fallthrough |
| case 4: |
| b[6] |= (src[3] << 3) & 0x1F |
| b[5] = (src[3] >> 2) & 0x1F |
| b[4] = src[3] >> 7 |
| fallthrough |
| case 3: |
| b[4] |= (src[2] << 1) & 0x1F |
| b[3] = (src[2] >> 4) & 0x1F |
| fallthrough |
| case 2: |
| b[3] |= (src[1] << 4) & 0x1F |
| b[2] = (src[1] >> 1) & 0x1F |
| b[1] = (src[1] >> 6) & 0x1F |
| fallthrough |
| case 1: |
| b[1] |= (src[0] << 2) & 0x1F |
| b[0] = src[0] >> 3 |
| } |
| |
| // Encode 5-bit blocks using the base32 alphabet |
| size := len(dst) |
| if size >= 8 { |
| // Common case, unrolled for extra performance |
| dst[0] = enc.encode[b[0]&31] |
| dst[1] = enc.encode[b[1]&31] |
| dst[2] = enc.encode[b[2]&31] |
| dst[3] = enc.encode[b[3]&31] |
| dst[4] = enc.encode[b[4]&31] |
| dst[5] = enc.encode[b[5]&31] |
| dst[6] = enc.encode[b[6]&31] |
| dst[7] = enc.encode[b[7]&31] |
| } else { |
| for i := 0; i < size; i++ { |
| dst[i] = enc.encode[b[i]&31] |
| } |
| } |
| |
| // Pad the final quantum |
| if len(src) < 5 { |
| if enc.padChar == NoPadding { |
| break |
| } |
| |
| dst[7] = byte(enc.padChar) |
| if len(src) < 4 { |
| dst[6] = byte(enc.padChar) |
| dst[5] = byte(enc.padChar) |
| if len(src) < 3 { |
| dst[4] = byte(enc.padChar) |
| if len(src) < 2 { |
| dst[3] = byte(enc.padChar) |
| dst[2] = byte(enc.padChar) |
| } |
| } |
| } |
| |
| break |
| } |
| |
| src = src[5:] |
| dst = dst[8:] |
| } |
| } |
| |
| // EncodeToString returns the base32 encoding of src. |
| func (enc *Encoding) EncodeToString(src []byte) string { |
| buf := make([]byte, enc.EncodedLen(len(src))) |
| enc.Encode(buf, src) |
| return string(buf) |
| } |
| |
| type encoder struct { |
| err error |
| enc *Encoding |
| w io.Writer |
| buf [5]byte // buffered data waiting to be encoded |
| nbuf int // number of bytes in buf |
| out [1024]byte // output buffer |
| } |
| |
| func (e *encoder) Write(p []byte) (n int, err error) { |
| if e.err != nil { |
| return 0, e.err |
| } |
| |
| // Leading fringe. |
| if e.nbuf > 0 { |
| var i int |
| for i = 0; i < len(p) && e.nbuf < 5; i++ { |
| e.buf[e.nbuf] = p[i] |
| e.nbuf++ |
| } |
| n += i |
| p = p[i:] |
| if e.nbuf < 5 { |
| return |
| } |
| e.enc.Encode(e.out[0:], e.buf[0:]) |
| if _, e.err = e.w.Write(e.out[0:8]); e.err != nil { |
| return n, e.err |
| } |
| e.nbuf = 0 |
| } |
| |
| // Large interior chunks. |
| for len(p) >= 5 { |
| nn := len(e.out) / 8 * 5 |
| if nn > len(p) { |
| nn = len(p) |
| nn -= nn % 5 |
| } |
| e.enc.Encode(e.out[0:], p[0:nn]) |
| if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil { |
| return n, e.err |
| } |
| n += nn |
| p = p[nn:] |
| } |
| |
| // Trailing fringe. |
| for i := 0; i < len(p); i++ { |
| e.buf[i] = p[i] |
| } |
| e.nbuf = len(p) |
| n += len(p) |
| return |
| } |
| |
| // Close flushes any pending output from the encoder. |
| // It is an error to call Write after calling Close. |
| func (e *encoder) Close() error { |
| // If there's anything left in the buffer, flush it out |
| if e.err == nil && e.nbuf > 0 { |
| e.enc.Encode(e.out[0:], e.buf[0:e.nbuf]) |
| encodedLen := e.enc.EncodedLen(e.nbuf) |
| e.nbuf = 0 |
| _, e.err = e.w.Write(e.out[0:encodedLen]) |
| } |
| return e.err |
| } |
| |
| // NewEncoder returns a new base32 stream encoder. Data written to |
| // the returned writer will be encoded using enc and then written to w. |
| // Base32 encodings operate in 5-byte blocks; when finished |
| // writing, the caller must Close the returned encoder to flush any |
| // partially written blocks. |
| func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser { |
| return &encoder{enc: enc, w: w} |
| } |
| |
| // EncodedLen returns the length in bytes of the base32 encoding |
| // of an input buffer of length n. |
| func (enc *Encoding) EncodedLen(n int) int { |
| if enc.padChar == NoPadding { |
| return (n*8 + 4) / 5 |
| } |
| return (n + 4) / 5 * 8 |
| } |
| |
| /* |
| * Decoder |
| */ |
| |
| type CorruptInputError int64 |
| |
| func (e CorruptInputError) Error() string { |
| return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10) |
| } |
| |
| // decode is like Decode but returns an additional 'end' value, which |
| // indicates if end-of-message padding was encountered and thus any |
| // additional data is an error. This method assumes that src has been |
| // stripped of all supported whitespace ('\r' and '\n'). |
| func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) { |
| olen := len(src) |
| for len(src) > 0 && !end { |
| // Decode quantum using the base32 alphabet |
| var dbuf [8]byte |
| dlen := 8 |
| |
| for j := 0; j < 8; { |
| |
| // We have reached the end and are missing padding |
| if len(src) == 0 && enc.padChar != NoPadding { |
| return n, false, CorruptInputError(olen - len(src) - j) |
| } |
| |
| // We have reached the end and are not expecing any padding |
| if len(src) == 0 && enc.padChar == NoPadding { |
| dlen, end = j, true |
| break |
| } |
| |
| in := src[0] |
| src = src[1:] |
| if in == byte(enc.padChar) && j >= 2 && len(src) < 8 { |
| // We've reached the end and there's padding |
| if len(src)+j < 8-1 { |
| // not enough padding |
| return n, false, CorruptInputError(olen) |
| } |
| for k := 0; k < 8-1-j; k++ { |
| if len(src) > k && src[k] != byte(enc.padChar) { |
| // incorrect padding |
| return n, false, CorruptInputError(olen - len(src) + k - 1) |
| } |
| } |
| dlen, end = j, true |
| // 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not |
| // valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing |
| // the five valid padding lengths, and Section 9 "Illustrations and |
| // Examples" for an illustration for how the 1st, 3rd and 6th base32 |
| // src bytes do not yield enough information to decode a dst byte. |
| if dlen == 1 || dlen == 3 || dlen == 6 { |
| return n, false, CorruptInputError(olen - len(src) - 1) |
| } |
| break |
| } |
| dbuf[j] = enc.decodeMap[in] |
| if dbuf[j] == 0xFF { |
| return n, false, CorruptInputError(olen - len(src) - 1) |
| } |
| j++ |
| } |
| |
| // Pack 8x 5-bit source blocks into 5 byte destination |
| // quantum |
| switch dlen { |
| case 8: |
| dst[4] = dbuf[6]<<5 | dbuf[7] |
| fallthrough |
| case 7: |
| dst[3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3 |
| fallthrough |
| case 5: |
| dst[2] = dbuf[3]<<4 | dbuf[4]>>1 |
| fallthrough |
| case 4: |
| dst[1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4 |
| fallthrough |
| case 2: |
| dst[0] = dbuf[0]<<3 | dbuf[1]>>2 |
| } |
| |
| if !end { |
| dst = dst[5:] |
| } |
| |
| switch dlen { |
| case 2: |
| n += 1 |
| case 4: |
| n += 2 |
| case 5: |
| n += 3 |
| case 7: |
| n += 4 |
| case 8: |
| n += 5 |
| } |
| } |
| return n, end, nil |
| } |
| |
| // Decode decodes src using the encoding enc. It writes at most |
| // DecodedLen(len(src)) bytes to dst and returns the number of bytes |
| // written. If src contains invalid base32 data, it will return the |
| // number of bytes successfully written and CorruptInputError. |
| // New line characters (\r and \n) are ignored. |
| func (enc *Encoding) Decode(dst, src []byte) (n int, err error) { |
| src = bytes.Map(removeNewlinesMapper, src) |
| n, _, err = enc.decode(dst, src) |
| return |
| } |
| |
| // DecodeString returns the bytes represented by the base32 string s. |
| func (enc *Encoding) DecodeString(s string) ([]byte, error) { |
| s = strings.Map(removeNewlinesMapper, s) |
| dbuf := make([]byte, enc.DecodedLen(len(s))) |
| n, _, err := enc.decode(dbuf, []byte(s)) |
| return dbuf[:n], err |
| } |
| |
| type decoder struct { |
| err error |
| enc *Encoding |
| r io.Reader |
| end bool // saw end of message |
| buf [1024]byte // leftover input |
| nbuf int |
| out []byte // leftover decoded output |
| outbuf [1024 / 8 * 5]byte |
| } |
| |
| func readEncodedData(r io.Reader, buf []byte, min int, expectsPadding bool) (n int, err error) { |
| for n < min && err == nil { |
| var nn int |
| nn, err = r.Read(buf[n:]) |
| n += nn |
| } |
| // data was read, less than min bytes could be read |
| if n < min && n > 0 && err == io.EOF { |
| err = io.ErrUnexpectedEOF |
| } |
| // no data was read, the buffer already contains some data |
| // when padding is disabled this is not an error, as the message can be of |
| // any length |
| if expectsPadding && min < 8 && n == 0 && err == io.EOF { |
| err = io.ErrUnexpectedEOF |
| } |
| return |
| } |
| |
| func (d *decoder) Read(p []byte) (n int, err error) { |
| // Use leftover decoded output from last read. |
| if len(d.out) > 0 { |
| n = copy(p, d.out) |
| d.out = d.out[n:] |
| if len(d.out) == 0 { |
| return n, d.err |
| } |
| return n, nil |
| } |
| |
| if d.err != nil { |
| return 0, d.err |
| } |
| |
| // Read a chunk. |
| nn := len(p) / 5 * 8 |
| if nn < 8 { |
| nn = 8 |
| } |
| if nn > len(d.buf) { |
| nn = len(d.buf) |
| } |
| |
| // Minimum amount of bytes that needs to be read each cycle |
| var min int |
| var expectsPadding bool |
| if d.enc.padChar == NoPadding { |
| min = 1 |
| expectsPadding = false |
| } else { |
| min = 8 - d.nbuf |
| expectsPadding = true |
| } |
| |
| nn, d.err = readEncodedData(d.r, d.buf[d.nbuf:nn], min, expectsPadding) |
| d.nbuf += nn |
| if d.nbuf < min { |
| return 0, d.err |
| } |
| |
| // Decode chunk into p, or d.out and then p if p is too small. |
| var nr int |
| if d.enc.padChar == NoPadding { |
| nr = d.nbuf |
| } else { |
| nr = d.nbuf / 8 * 8 |
| } |
| nw := d.enc.DecodedLen(d.nbuf) |
| |
| if nw > len(p) { |
| nw, d.end, err = d.enc.decode(d.outbuf[0:], d.buf[0:nr]) |
| d.out = d.outbuf[0:nw] |
| n = copy(p, d.out) |
| d.out = d.out[n:] |
| } else { |
| n, d.end, err = d.enc.decode(p, d.buf[0:nr]) |
| } |
| d.nbuf -= nr |
| for i := 0; i < d.nbuf; i++ { |
| d.buf[i] = d.buf[i+nr] |
| } |
| |
| if err != nil && (d.err == nil || d.err == io.EOF) { |
| d.err = err |
| } |
| |
| if len(d.out) > 0 { |
| // We cannot return all the decoded bytes to the caller in this |
| // invocation of Read, so we return a nil error to ensure that Read |
| // will be called again. The error stored in d.err, if any, will be |
| // returned with the last set of decoded bytes. |
| return n, nil |
| } |
| |
| return n, d.err |
| } |
| |
| type newlineFilteringReader struct { |
| wrapped io.Reader |
| } |
| |
| func (r *newlineFilteringReader) Read(p []byte) (int, error) { |
| n, err := r.wrapped.Read(p) |
| for n > 0 { |
| offset := 0 |
| for i, b := range p[0:n] { |
| if b != '\r' && b != '\n' { |
| if i != offset { |
| p[offset] = b |
| } |
| offset++ |
| } |
| } |
| if err != nil || offset > 0 { |
| return offset, err |
| } |
| // Previous buffer entirely whitespace, read again |
| n, err = r.wrapped.Read(p) |
| } |
| return n, err |
| } |
| |
| // NewDecoder constructs a new base32 stream decoder. |
| func NewDecoder(enc *Encoding, r io.Reader) io.Reader { |
| return &decoder{enc: enc, r: &newlineFilteringReader{r}} |
| } |
| |
| // DecodedLen returns the maximum length in bytes of the decoded data |
| // corresponding to n bytes of base32-encoded data. |
| func (enc *Encoding) DecodedLen(n int) int { |
| if enc.padChar == NoPadding { |
| return n * 5 / 8 |
| } |
| |
| return n / 8 * 5 |
| } |