| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| import "math/big" |
| |
| // So you want to compute x / c for some constant c? |
| // Machine division instructions are slow, so we try to |
| // compute this division with a multiplication + a few |
| // other cheap instructions instead. |
| // (We assume here that c != 0, +/- 1, or +/- 2^i. Those |
| // cases are easy to handle in different ways). |
| |
| // Technique from https://gmplib.org/~tege/divcnst-pldi94.pdf |
| |
| // First consider unsigned division. |
| // Our strategy is to precompute 1/c then do |
| // ⎣x / c⎦ = ⎣x * (1/c)⎦. |
| // 1/c is less than 1, so we can't compute it directly in |
| // integer arithmetic. Let's instead compute 2^e/c |
| // for a value of e TBD (^ = exponentiation). Then |
| // ⎣x / c⎦ = ⎣x * (2^e/c) / 2^e⎦. |
| // Dividing by 2^e is easy. 2^e/c isn't an integer, unfortunately. |
| // So we must approximate it. Let's call its approximation m. |
| // We'll then compute |
| // ⎣x * m / 2^e⎦ |
| // Which we want to be equal to ⎣x / c⎦ for 0 <= x < 2^n-1 |
| // where n is the word size. |
| // Setting x = c gives us c * m >= 2^e. |
| // We'll chose m = ⎡2^e/c⎤ to satisfy that equation. |
| // What remains is to choose e. |
| // Let m = 2^e/c + delta, 0 <= delta < 1 |
| // ⎣x * (2^e/c + delta) / 2^e⎦ |
| // ⎣x / c + x * delta / 2^e⎦ |
| // We must have x * delta / 2^e < 1/c so that this |
| // additional term never rounds differently than ⎣x / c⎦ does. |
| // Rearranging, |
| // 2^e > x * delta * c |
| // x can be at most 2^n-1 and delta can be at most 1. |
| // So it is sufficient to have 2^e >= 2^n*c. |
| // So we'll choose e = n + s, with s = ⎡log2(c)⎤. |
| // |
| // An additional complication arises because m has n+1 bits in it. |
| // Hardware restricts us to n bit by n bit multiplies. |
| // We divide into 3 cases: |
| // |
| // Case 1: m is even. |
| // ⎣x / c⎦ = ⎣x * m / 2^(n+s)⎦ |
| // ⎣x / c⎦ = ⎣x * (m/2) / 2^(n+s-1)⎦ |
| // ⎣x / c⎦ = ⎣x * (m/2) / 2^n / 2^(s-1)⎦ |
| // ⎣x / c⎦ = ⎣⎣x * (m/2) / 2^n⎦ / 2^(s-1)⎦ |
| // multiply + shift |
| // |
| // Case 2: c is even. |
| // ⎣x / c⎦ = ⎣(x/2) / (c/2)⎦ |
| // ⎣x / c⎦ = ⎣⎣x/2⎦ / (c/2)⎦ |
| // This is just the original problem, with x' = ⎣x/2⎦, c' = c/2, n' = n-1. |
| // s' = s-1 |
| // m' = ⎡2^(n'+s')/c'⎤ |
| // = ⎡2^(n+s-1)/c⎤ |
| // = ⎡m/2⎤ |
| // ⎣x / c⎦ = ⎣x' * m' / 2^(n'+s')⎦ |
| // ⎣x / c⎦ = ⎣⎣x/2⎦ * ⎡m/2⎤ / 2^(n+s-2)⎦ |
| // ⎣x / c⎦ = ⎣⎣⎣x/2⎦ * ⎡m/2⎤ / 2^n⎦ / 2^(s-2)⎦ |
| // shift + multiply + shift |
| // |
| // Case 3: everything else |
| // let k = m - 2^n. k fits in n bits. |
| // ⎣x / c⎦ = ⎣x * m / 2^(n+s)⎦ |
| // ⎣x / c⎦ = ⎣x * (2^n + k) / 2^(n+s)⎦ |
| // ⎣x / c⎦ = ⎣(x + x * k / 2^n) / 2^s⎦ |
| // ⎣x / c⎦ = ⎣(x + ⎣x * k / 2^n⎦) / 2^s⎦ |
| // ⎣x / c⎦ = ⎣(x + ⎣x * k / 2^n⎦) / 2^s⎦ |
| // ⎣x / c⎦ = ⎣⎣(x + ⎣x * k / 2^n⎦) / 2⎦ / 2^(s-1)⎦ |
| // multiply + avg + shift |
| // |
| // These can be implemented in hardware using: |
| // ⎣a * b / 2^n⎦ - aka high n bits of an n-bit by n-bit multiply. |
| // ⎣(a+b) / 2⎦ - aka "average" of two n-bit numbers. |
| // (Not just a regular add & shift because the intermediate result |
| // a+b has n+1 bits in it. Nevertheless, can be done |
| // in 2 instructions on x86.) |
| |
| // umagicOK reports whether we should strength reduce a n-bit divide by c. |
| func umagicOK(n uint, c int64) bool { |
| // Convert from ConstX auxint values to the real uint64 constant they represent. |
| d := uint64(c) << (64 - n) >> (64 - n) |
| |
| // Doesn't work for 0. |
| // Don't use for powers of 2. |
| return d&(d-1) != 0 |
| } |
| |
| type umagicData struct { |
| s int64 // ⎡log2(c)⎤ |
| m uint64 // ⎡2^(n+s)/c⎤ - 2^n |
| } |
| |
| // umagic computes the constants needed to strength reduce unsigned n-bit divides by the constant uint64(c). |
| // The return values satisfy for all 0 <= x < 2^n |
| // floor(x / uint64(c)) = x * (m + 2^n) >> (n+s) |
| func umagic(n uint, c int64) umagicData { |
| // Convert from ConstX auxint values to the real uint64 constant they represent. |
| d := uint64(c) << (64 - n) >> (64 - n) |
| |
| C := new(big.Int).SetUint64(d) |
| s := C.BitLen() |
| M := big.NewInt(1) |
| M.Lsh(M, n+uint(s)) // 2^(n+s) |
| M.Add(M, C) // 2^(n+s)+c |
| M.Sub(M, big.NewInt(1)) // 2^(n+s)+c-1 |
| M.Div(M, C) // ⎡2^(n+s)/c⎤ |
| if M.Bit(int(n)) != 1 { |
| panic("n+1st bit isn't set") |
| } |
| M.SetBit(M, int(n), 0) |
| m := M.Uint64() |
| return umagicData{s: int64(s), m: m} |
| } |
| |
| // For signed division, we use a similar strategy. |
| // First, we enforce a positive c. |
| // x / c = -(x / (-c)) |
| // This will require an additional Neg op for c<0. |
| // |
| // If x is positive we're in a very similar state |
| // to the unsigned case above. We define: |
| // s = ⎡log2(c)⎤-1 |
| // m = ⎡2^(n+s)/c⎤ |
| // Then |
| // ⎣x / c⎦ = ⎣x * m / 2^(n+s)⎦ |
| // If x is negative we have |
| // ⎡x / c⎤ = ⎣x * m / 2^(n+s)⎦ + 1 |
| // (TODO: derivation?) |
| // |
| // The multiply is a bit odd, as it is a signed n-bit value |
| // times an unsigned n-bit value. For n smaller than the |
| // word size, we can extend x and m appropriately and use the |
| // signed multiply instruction. For n == word size, |
| // we must use the signed multiply high and correct |
| // the result by adding x*2^n. |
| // |
| // Adding 1 if x<0 is done by subtracting x>>(n-1). |
| |
| func smagicOK(n uint, c int64) bool { |
| if c < 0 { |
| // Doesn't work for negative c. |
| return false |
| } |
| // Doesn't work for 0. |
| // Don't use it for powers of 2. |
| return c&(c-1) != 0 |
| } |
| |
| type smagicData struct { |
| s int64 // ⎡log2(c)⎤-1 |
| m uint64 // ⎡2^(n+s)/c⎤ |
| } |
| |
| // magic computes the constants needed to strength reduce signed n-bit divides by the constant c. |
| // Must have c>0. |
| // The return values satisfy for all -2^(n-1) <= x < 2^(n-1) |
| // trunc(x / c) = x * m >> (n+s) + (x < 0 ? 1 : 0) |
| func smagic(n uint, c int64) smagicData { |
| C := new(big.Int).SetInt64(c) |
| s := C.BitLen() - 1 |
| M := big.NewInt(1) |
| M.Lsh(M, n+uint(s)) // 2^(n+s) |
| M.Add(M, C) // 2^(n+s)+c |
| M.Sub(M, big.NewInt(1)) // 2^(n+s)+c-1 |
| M.Div(M, C) // ⎡2^(n+s)/c⎤ |
| if M.Bit(int(n)) != 0 { |
| panic("n+1st bit is set") |
| } |
| if M.Bit(int(n-1)) == 0 { |
| panic("nth bit is not set") |
| } |
| m := M.Uint64() |
| return smagicData{s: int64(s), m: m} |
| } |