| // Derived from Inferno utils/6l/obj.c and utils/6l/span.c |
| // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/obj.c |
| // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/span.c |
| // |
| // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. |
| // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) |
| // Portions Copyright © 1997-1999 Vita Nuova Limited |
| // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) |
| // Portions Copyright © 2004,2006 Bruce Ellis |
| // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) |
| // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others |
| // Portions Copyright © 2009 The Go Authors. All rights reserved. |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| package ld |
| |
| import ( |
| "bufio" |
| "bytes" |
| "cmd/internal/gcprog" |
| "cmd/internal/objabi" |
| "cmd/internal/sys" |
| "cmd/oldlink/internal/sym" |
| "compress/zlib" |
| "encoding/binary" |
| "fmt" |
| "log" |
| "os" |
| "sort" |
| "strconv" |
| "strings" |
| "sync" |
| ) |
| |
| // isRuntimeDepPkg reports whether pkg is the runtime package or its dependency |
| func isRuntimeDepPkg(pkg string) bool { |
| switch pkg { |
| case "runtime", |
| "sync/atomic", // runtime may call to sync/atomic, due to go:linkname |
| "internal/bytealg", // for IndexByte |
| "internal/cpu": // for cpu features |
| return true |
| } |
| return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") |
| } |
| |
| // Estimate the max size needed to hold any new trampolines created for this function. This |
| // is used to determine when the section can be split if it becomes too large, to ensure that |
| // the trampolines are in the same section as the function that uses them. |
| func maxSizeTrampolinesPPC64(s *sym.Symbol, isTramp bool) uint64 { |
| // If thearch.Trampoline is nil, then trampoline support is not available on this arch. |
| // A trampoline does not need any dependent trampolines. |
| if thearch.Trampoline == nil || isTramp { |
| return 0 |
| } |
| |
| n := uint64(0) |
| for ri := range s.R { |
| r := &s.R[ri] |
| if r.Type.IsDirectCallOrJump() { |
| n++ |
| } |
| } |
| // Trampolines in ppc64 are 4 instructions. |
| return n * 16 |
| } |
| |
| // detect too-far jumps in function s, and add trampolines if necessary |
| // ARM, PPC64 & PPC64LE support trampoline insertion for internal and external linking |
| // On PPC64 & PPC64LE the text sections might be split but will still insert trampolines |
| // where necessary. |
| func trampoline(ctxt *Link, s *sym.Symbol) { |
| if thearch.Trampoline == nil { |
| return // no need or no support of trampolines on this arch |
| } |
| |
| for ri := range s.R { |
| r := &s.R[ri] |
| if !r.Type.IsDirectCallOrJump() { |
| continue |
| } |
| if Symaddr(r.Sym) == 0 && (r.Sym.Type != sym.SDYNIMPORT && r.Sym.Type != sym.SUNDEFEXT) { |
| if r.Sym.File != s.File { |
| if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) { |
| ctxt.ErrorUnresolved(s, r) |
| } |
| // runtime and its dependent packages may call to each other. |
| // they are fine, as they will be laid down together. |
| } |
| continue |
| } |
| |
| thearch.Trampoline(ctxt, r, s) |
| } |
| |
| } |
| |
| // relocsym resolve relocations in "s". The main loop walks through |
| // the list of relocations attached to "s" and resolves them where |
| // applicable. Relocations are often architecture-specific, requiring |
| // calls into the 'archreloc' and/or 'archrelocvariant' functions for |
| // the architecture. When external linking is in effect, it may not be |
| // possible to completely resolve the address/offset for a symbol, in |
| // which case the goal is to lay the groundwork for turning a given |
| // relocation into an external reloc (to be applied by the external |
| // linker). For more on how relocations work in general, see |
| // |
| // "Linkers and Loaders", by John R. Levine (Morgan Kaufmann, 1999), ch. 7 |
| // |
| // This is a performance-critical function for the linker; be careful |
| // to avoid introducing unnecessary allocations in the main loop. |
| func relocsym(ctxt *Link, s *sym.Symbol) { |
| if len(s.R) == 0 { |
| return |
| } |
| if s.Attr.ReadOnly() { |
| // The symbol's content is backed by read-only memory. |
| // Copy it to writable memory to apply relocations. |
| s.P = append([]byte(nil), s.P...) |
| s.Attr.Set(sym.AttrReadOnly, false) |
| } |
| for ri := int32(0); ri < int32(len(s.R)); ri++ { |
| r := &s.R[ri] |
| if r.Done { |
| // Relocation already processed by an earlier phase. |
| continue |
| } |
| r.Done = true |
| off := r.Off |
| siz := int32(r.Siz) |
| if off < 0 || off+siz > int32(len(s.P)) { |
| rname := "" |
| if r.Sym != nil { |
| rname = r.Sym.Name |
| } |
| Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P)) |
| continue |
| } |
| |
| if r.Sym != nil && ((r.Sym.Type == sym.Sxxx && !r.Sym.Attr.VisibilityHidden()) || r.Sym.Type == sym.SXREF) { |
| // When putting the runtime but not main into a shared library |
| // these symbols are undefined and that's OK. |
| if ctxt.BuildMode == BuildModeShared || ctxt.BuildMode == BuildModePlugin { |
| if r.Sym.Name == "main.main" || (ctxt.BuildMode != BuildModePlugin && r.Sym.Name == "main..inittask") { |
| r.Sym.Type = sym.SDYNIMPORT |
| } else if strings.HasPrefix(r.Sym.Name, "go.info.") { |
| // Skip go.info symbols. They are only needed to communicate |
| // DWARF info between the compiler and linker. |
| continue |
| } |
| } else { |
| ctxt.ErrorUnresolved(s, r) |
| continue |
| } |
| } |
| |
| if r.Type >= objabi.ElfRelocOffset { |
| continue |
| } |
| if r.Siz == 0 { // informational relocation - no work to do |
| continue |
| } |
| |
| // We need to be able to reference dynimport symbols when linking against |
| // shared libraries, and Solaris, Darwin and AIX need it always |
| if ctxt.HeadType != objabi.Hsolaris && ctxt.HeadType != objabi.Hdarwin && ctxt.HeadType != objabi.Haix && r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT && !ctxt.DynlinkingGo() && !r.Sym.Attr.SubSymbol() { |
| if !(ctxt.Arch.Family == sys.PPC64 && ctxt.LinkMode == LinkExternal && r.Sym.Name == ".TOC.") { |
| Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", r.Sym.Name, r.Sym.Type, r.Sym.Type, r.Type, sym.RelocName(ctxt.Arch, r.Type)) |
| } |
| } |
| if r.Sym != nil && r.Sym.Type != sym.STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() { |
| Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name) |
| } |
| |
| if ctxt.LinkMode == LinkExternal { |
| r.InitExt() |
| } |
| |
| // TODO(mundaym): remove this special case - see issue 14218. |
| if ctxt.Arch.Family == sys.S390X { |
| switch r.Type { |
| case objabi.R_PCRELDBL: |
| r.InitExt() |
| r.Type = objabi.R_PCREL |
| r.Variant = sym.RV_390_DBL |
| case objabi.R_CALL: |
| r.InitExt() |
| r.Variant = sym.RV_390_DBL |
| } |
| } |
| |
| var o int64 |
| switch r.Type { |
| default: |
| switch siz { |
| default: |
| Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) |
| case 1: |
| o = int64(s.P[off]) |
| case 2: |
| o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:])) |
| case 4: |
| o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:])) |
| case 8: |
| o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:])) |
| } |
| if offset, ok := thearch.Archreloc(ctxt, r, s, o); ok { |
| o = offset |
| } else { |
| Errorf(s, "unknown reloc to %v: %d (%s)", r.Sym.Name, r.Type, sym.RelocName(ctxt.Arch, r.Type)) |
| } |
| case objabi.R_TLS_LE: |
| if ctxt.LinkMode == LinkExternal && ctxt.IsELF { |
| r.Done = false |
| if r.Sym == nil { |
| r.Sym = ctxt.Tlsg |
| } |
| r.Xsym = r.Sym |
| r.Xadd = r.Add |
| o = 0 |
| if ctxt.Arch.Family != sys.AMD64 { |
| o = r.Add |
| } |
| break |
| } |
| |
| if ctxt.IsELF && ctxt.Arch.Family == sys.ARM { |
| // On ELF ARM, the thread pointer is 8 bytes before |
| // the start of the thread-local data block, so add 8 |
| // to the actual TLS offset (r->sym->value). |
| // This 8 seems to be a fundamental constant of |
| // ELF on ARM (or maybe Glibc on ARM); it is not |
| // related to the fact that our own TLS storage happens |
| // to take up 8 bytes. |
| o = 8 + r.Sym.Value |
| } else if ctxt.IsELF || ctxt.HeadType == objabi.Hplan9 || ctxt.HeadType == objabi.Hdarwin { |
| o = int64(ctxt.Tlsoffset) + r.Add |
| } else if ctxt.HeadType == objabi.Hwindows { |
| o = r.Add |
| } else { |
| log.Fatalf("unexpected R_TLS_LE relocation for %v", ctxt.HeadType) |
| } |
| case objabi.R_TLS_IE: |
| if ctxt.LinkMode == LinkExternal && ctxt.IsELF { |
| r.Done = false |
| if r.Sym == nil { |
| r.Sym = ctxt.Tlsg |
| } |
| r.Xsym = r.Sym |
| r.Xadd = r.Add |
| o = 0 |
| if ctxt.Arch.Family != sys.AMD64 { |
| o = r.Add |
| } |
| break |
| } |
| if ctxt.BuildMode == BuildModePIE && ctxt.IsELF { |
| // We are linking the final executable, so we |
| // can optimize any TLS IE relocation to LE. |
| if thearch.TLSIEtoLE == nil { |
| log.Fatalf("internal linking of TLS IE not supported on %v", ctxt.Arch.Family) |
| } |
| thearch.TLSIEtoLE(s, int(off), int(r.Siz)) |
| o = int64(ctxt.Tlsoffset) |
| // TODO: o += r.Add when ctxt.Arch.Family != sys.AMD64? |
| // Why do we treat r.Add differently on AMD64? |
| // Is the external linker using Xadd at all? |
| } else { |
| log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name) |
| } |
| case objabi.R_ADDR: |
| if ctxt.LinkMode == LinkExternal && r.Sym.Type != sym.SCONST { |
| r.Done = false |
| |
| // set up addend for eventual relocation via outer symbol. |
| rs := r.Sym |
| |
| r.Xadd = r.Add |
| for rs.Outer != nil { |
| r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) |
| rs = rs.Outer |
| } |
| |
| if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Type != sym.SUNDEFEXT && rs.Sect == nil { |
| Errorf(s, "missing section for relocation target %s", rs.Name) |
| } |
| r.Xsym = rs |
| |
| o = r.Xadd |
| if ctxt.IsELF { |
| if ctxt.Arch.Family == sys.AMD64 { |
| o = 0 |
| } |
| } else if ctxt.HeadType == objabi.Hdarwin { |
| if rs.Type != sym.SHOSTOBJ { |
| o += Symaddr(rs) |
| } |
| } else if ctxt.HeadType == objabi.Hwindows { |
| // nothing to do |
| } else if ctxt.HeadType == objabi.Haix { |
| o = Symaddr(r.Sym) + r.Add |
| } else { |
| Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, ctxt.HeadType) |
| } |
| |
| break |
| } |
| |
| // On AIX, a second relocation must be done by the loader, |
| // as section addresses can change once loaded. |
| // The "default" symbol address is still needed by the loader so |
| // the current relocation can't be skipped. |
| if ctxt.HeadType == objabi.Haix && r.Sym.Type != sym.SDYNIMPORT { |
| // It's not possible to make a loader relocation in a |
| // symbol which is not inside .data section. |
| // FIXME: It should be forbidden to have R_ADDR from a |
| // symbol which isn't in .data. However, as .text has the |
| // same address once loaded, this is possible. |
| if s.Sect.Seg == &Segdata { |
| Xcoffadddynrel(ctxt, s, r) |
| } |
| } |
| |
| o = Symaddr(r.Sym) + r.Add |
| |
| // On amd64, 4-byte offsets will be sign-extended, so it is impossible to |
| // access more than 2GB of static data; fail at link time is better than |
| // fail at runtime. See https://golang.org/issue/7980. |
| // Instead of special casing only amd64, we treat this as an error on all |
| // 64-bit architectures so as to be future-proof. |
| if int32(o) < 0 && ctxt.Arch.PtrSize > 4 && siz == 4 { |
| Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add) |
| errorexit() |
| } |
| case objabi.R_DWARFSECREF: |
| if r.Sym.Sect == nil { |
| Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name) |
| } |
| |
| if ctxt.LinkMode == LinkExternal { |
| r.Done = false |
| |
| // On most platforms, the external linker needs to adjust DWARF references |
| // as it combines DWARF sections. However, on Darwin, dsymutil does the |
| // DWARF linking, and it understands how to follow section offsets. |
| // Leaving in the relocation records confuses it (see |
| // https://golang.org/issue/22068) so drop them for Darwin. |
| if ctxt.HeadType == objabi.Hdarwin { |
| r.Done = true |
| } |
| |
| // PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL |
| // for R_DWARFSECREF relocations, while R_ADDR is replaced with |
| // IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32. |
| // Do not replace R_DWARFSECREF with R_ADDR for windows - |
| // let PE code emit correct relocations. |
| if ctxt.HeadType != objabi.Hwindows { |
| r.Type = objabi.R_ADDR |
| } |
| |
| r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0) |
| r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) |
| |
| o = r.Xadd |
| if ctxt.IsELF && ctxt.Arch.Family == sys.AMD64 { |
| o = 0 |
| } |
| break |
| } |
| o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr) |
| case objabi.R_WEAKADDROFF: |
| if !r.Sym.Attr.Reachable() { |
| continue |
| } |
| fallthrough |
| case objabi.R_ADDROFF: |
| // The method offset tables using this relocation expect the offset to be relative |
| // to the start of the first text section, even if there are multiple. |
| if r.Sym.Sect.Name == ".text" { |
| o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add |
| } else { |
| o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add |
| } |
| |
| case objabi.R_ADDRCUOFF: |
| // debug_range and debug_loc elements use this relocation type to get an |
| // offset from the start of the compile unit. |
| o = Symaddr(r.Sym) + r.Add - Symaddr(r.Sym.Unit.Textp[0]) |
| |
| // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. |
| case objabi.R_GOTPCREL: |
| if ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin && r.Sym != nil && r.Sym.Type != sym.SCONST { |
| r.Done = false |
| r.Xadd = r.Add |
| r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk |
| r.Xsym = r.Sym |
| |
| o = r.Xadd |
| o += int64(r.Siz) |
| break |
| } |
| fallthrough |
| case objabi.R_CALL, objabi.R_PCREL: |
| if ctxt.LinkMode == LinkExternal && r.Sym != nil && r.Sym.Type == sym.SUNDEFEXT { |
| // pass through to the external linker. |
| r.Done = false |
| r.Xadd = 0 |
| if ctxt.IsELF { |
| r.Xadd -= int64(r.Siz) |
| } |
| r.Xsym = r.Sym |
| o = 0 |
| break |
| } |
| if ctxt.LinkMode == LinkExternal && r.Sym != nil && r.Sym.Type != sym.SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) { |
| r.Done = false |
| |
| // set up addend for eventual relocation via outer symbol. |
| rs := r.Sym |
| |
| r.Xadd = r.Add |
| for rs.Outer != nil { |
| r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) |
| rs = rs.Outer |
| } |
| |
| r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk |
| if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil { |
| Errorf(s, "missing section for relocation target %s", rs.Name) |
| } |
| r.Xsym = rs |
| |
| o = r.Xadd |
| if ctxt.IsELF { |
| if ctxt.Arch.Family == sys.AMD64 { |
| o = 0 |
| } |
| } else if ctxt.HeadType == objabi.Hdarwin { |
| if r.Type == objabi.R_CALL { |
| if ctxt.LinkMode == LinkExternal && rs.Type == sym.SDYNIMPORT { |
| if ctxt.Arch.Family == sys.AMD64 { |
| // AMD64 dynamic relocations are relative to the end of the relocation. |
| o += int64(r.Siz) |
| } |
| } else { |
| if rs.Type != sym.SHOSTOBJ { |
| o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) |
| } |
| o -= int64(r.Off) // relative to section offset, not symbol |
| } |
| } else { |
| o += int64(r.Siz) |
| } |
| } else if ctxt.HeadType == objabi.Hwindows && ctxt.Arch.Family == sys.AMD64 { // only amd64 needs PCREL |
| // PE/COFF's PC32 relocation uses the address after the relocated |
| // bytes as the base. Compensate by skewing the addend. |
| o += int64(r.Siz) |
| } else { |
| Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, ctxt.HeadType) |
| } |
| |
| break |
| } |
| |
| o = 0 |
| if r.Sym != nil { |
| o += Symaddr(r.Sym) |
| } |
| |
| o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz)) |
| case objabi.R_SIZE: |
| o = r.Sym.Size + r.Add |
| |
| case objabi.R_XCOFFREF: |
| if ctxt.HeadType != objabi.Haix { |
| Errorf(s, "find XCOFF R_REF on non-XCOFF files") |
| } |
| if ctxt.LinkMode != LinkExternal { |
| Errorf(s, "find XCOFF R_REF with internal linking") |
| } |
| r.Xsym = r.Sym |
| r.Xadd = r.Add |
| r.Done = false |
| |
| // This isn't a real relocation so it must not update |
| // its offset value. |
| continue |
| |
| case objabi.R_DWARFFILEREF: |
| // The final file index is saved in r.Add in dwarf.go:writelines. |
| o = r.Add |
| } |
| |
| if ctxt.Arch.Family == sys.PPC64 || ctxt.Arch.Family == sys.S390X { |
| r.InitExt() |
| if r.Variant != sym.RV_NONE { |
| o = thearch.Archrelocvariant(ctxt, r, s, o) |
| } |
| } |
| |
| if false { |
| nam := "<nil>" |
| var addr int64 |
| if r.Sym != nil { |
| nam = r.Sym.Name |
| addr = Symaddr(r.Sym) |
| } |
| xnam := "<nil>" |
| if r.Xsym != nil { |
| xnam = r.Xsym.Name |
| } |
| fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x (xsym: %s +%#x) [type %d (%s)/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, addr, r.Add, xnam, r.Xadd, r.Type, sym.RelocName(ctxt.Arch, r.Type), r.Variant, o) |
| } |
| switch siz { |
| default: |
| Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) |
| fallthrough |
| |
| // TODO(rsc): Remove. |
| case 1: |
| s.P[off] = byte(int8(o)) |
| case 2: |
| if o != int64(int16(o)) { |
| Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o) |
| } |
| i16 := int16(o) |
| ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) |
| case 4: |
| if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL { |
| if o != int64(int32(o)) { |
| Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o) |
| } |
| } else { |
| if o != int64(int32(o)) && o != int64(uint32(o)) { |
| Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o)) |
| } |
| } |
| |
| fl := int32(o) |
| ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) |
| case 8: |
| ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) |
| } |
| } |
| } |
| |
| func (ctxt *Link) reloc() { |
| for _, s := range ctxt.Textp { |
| relocsym(ctxt, s) |
| } |
| for _, s := range datap { |
| relocsym(ctxt, s) |
| } |
| for _, s := range dwarfp { |
| relocsym(ctxt, s) |
| } |
| } |
| |
| func windynrelocsym(ctxt *Link, rel, s *sym.Symbol) { |
| for ri := range s.R { |
| r := &s.R[ri] |
| targ := r.Sym |
| if targ == nil { |
| continue |
| } |
| if !targ.Attr.Reachable() { |
| if r.Type == objabi.R_WEAKADDROFF { |
| continue |
| } |
| Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name) |
| } |
| if r.Sym.Plt() == -2 && r.Sym.Got() != -2 { // make dynimport JMP table for PE object files. |
| targ.SetPlt(int32(rel.Size)) |
| r.Sym = rel |
| r.Add = int64(targ.Plt()) |
| |
| // jmp *addr |
| switch ctxt.Arch.Family { |
| default: |
| Errorf(s, "unsupported arch %v", ctxt.Arch.Family) |
| return |
| case sys.I386: |
| rel.AddUint8(0xff) |
| rel.AddUint8(0x25) |
| rel.AddAddr(ctxt.Arch, targ) |
| rel.AddUint8(0x90) |
| rel.AddUint8(0x90) |
| case sys.AMD64: |
| rel.AddUint8(0xff) |
| rel.AddUint8(0x24) |
| rel.AddUint8(0x25) |
| rel.AddAddrPlus4(targ, 0) |
| rel.AddUint8(0x90) |
| } |
| } else if r.Sym.Plt() >= 0 { |
| r.Sym = rel |
| r.Add = int64(targ.Plt()) |
| } |
| } |
| } |
| |
| // windynrelocsyms generates jump table to C library functions that will be |
| // added later. windynrelocsyms writes the table into .rel symbol. |
| func (ctxt *Link) windynrelocsyms() { |
| if !(ctxt.HeadType == objabi.Hwindows && iscgo && ctxt.LinkMode == LinkInternal) { |
| return |
| } |
| |
| /* relocation table */ |
| rel := ctxt.Syms.Lookup(".rel", 0) |
| rel.Attr |= sym.AttrReachable |
| rel.Type = sym.STEXT |
| ctxt.Textp = append(ctxt.Textp, rel) |
| |
| for _, s := range ctxt.Textp { |
| if s == rel { |
| continue |
| } |
| windynrelocsym(ctxt, rel, s) |
| } |
| } |
| |
| func dynrelocsym(ctxt *Link, s *sym.Symbol) { |
| for ri := range s.R { |
| r := &s.R[ri] |
| if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal { |
| // It's expected that some relocations will be done |
| // later by relocsym (R_TLS_LE, R_ADDROFF), so |
| // don't worry if Adddynrel returns false. |
| thearch.Adddynrel(ctxt, s, r) |
| continue |
| } |
| |
| if r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT || r.Type >= objabi.ElfRelocOffset { |
| if r.Sym != nil && !r.Sym.Attr.Reachable() { |
| Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name) |
| } |
| if !thearch.Adddynrel(ctxt, s, r) { |
| Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", r.Sym.Name, r.Type, sym.RelocName(ctxt.Arch, r.Type), r.Sym.Type, r.Sym.Type) |
| } |
| } |
| } |
| } |
| |
| func dynreloc(ctxt *Link, data *[sym.SXREF][]*sym.Symbol) { |
| if ctxt.HeadType == objabi.Hwindows { |
| return |
| } |
| // -d suppresses dynamic loader format, so we may as well not |
| // compute these sections or mark their symbols as reachable. |
| if *FlagD { |
| return |
| } |
| |
| for _, s := range ctxt.Textp { |
| dynrelocsym(ctxt, s) |
| } |
| for _, syms := range data { |
| for _, s := range syms { |
| dynrelocsym(ctxt, s) |
| } |
| } |
| if ctxt.IsELF { |
| elfdynhash(ctxt) |
| } |
| } |
| |
| func Codeblk(ctxt *Link, addr int64, size int64) { |
| CodeblkPad(ctxt, addr, size, zeros[:]) |
| } |
| func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) { |
| if *flagA { |
| ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) |
| } |
| |
| blk(ctxt.Out, ctxt.Textp, addr, size, pad) |
| |
| /* again for printing */ |
| if !*flagA { |
| return |
| } |
| |
| syms := ctxt.Textp |
| for i, s := range syms { |
| if !s.Attr.Reachable() { |
| continue |
| } |
| if s.Value >= addr { |
| syms = syms[i:] |
| break |
| } |
| } |
| |
| eaddr := addr + size |
| for _, s := range syms { |
| if !s.Attr.Reachable() { |
| continue |
| } |
| if s.Value >= eaddr { |
| break |
| } |
| |
| if addr < s.Value { |
| ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) |
| for ; addr < s.Value; addr++ { |
| ctxt.Logf(" %.2x", 0) |
| } |
| ctxt.Logf("\n") |
| } |
| |
| ctxt.Logf("%.6x\t%-20s\n", uint64(addr), s.Name) |
| q := s.P |
| |
| for len(q) >= 16 { |
| ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16]) |
| addr += 16 |
| q = q[16:] |
| } |
| |
| if len(q) > 0 { |
| ctxt.Logf("%.6x\t% x\n", uint64(addr), q) |
| addr += int64(len(q)) |
| } |
| } |
| |
| if addr < eaddr { |
| ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) |
| for ; addr < eaddr; addr++ { |
| ctxt.Logf(" %.2x", 0) |
| } |
| } |
| } |
| |
| func blk(out *OutBuf, syms []*sym.Symbol, addr, size int64, pad []byte) { |
| for i, s := range syms { |
| if !s.Attr.SubSymbol() && s.Value >= addr { |
| syms = syms[i:] |
| break |
| } |
| } |
| |
| // This doesn't distinguish the memory size from the file |
| // size, and it lays out the file based on Symbol.Value, which |
| // is the virtual address. DWARF compression changes file sizes, |
| // so dwarfcompress will fix this up later if necessary. |
| eaddr := addr + size |
| for _, s := range syms { |
| if s.Attr.SubSymbol() { |
| continue |
| } |
| if s.Value >= eaddr { |
| break |
| } |
| if s.Value < addr { |
| Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) |
| errorexit() |
| } |
| if addr < s.Value { |
| out.WriteStringPad("", int(s.Value-addr), pad) |
| addr = s.Value |
| } |
| out.WriteSym(s) |
| addr += int64(len(s.P)) |
| if addr < s.Value+s.Size { |
| out.WriteStringPad("", int(s.Value+s.Size-addr), pad) |
| addr = s.Value + s.Size |
| } |
| if addr != s.Value+s.Size { |
| Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) |
| errorexit() |
| } |
| if s.Value+s.Size >= eaddr { |
| break |
| } |
| } |
| |
| if addr < eaddr { |
| out.WriteStringPad("", int(eaddr-addr), pad) |
| } |
| out.Flush() |
| } |
| |
| func Datblk(ctxt *Link, addr int64, size int64) { |
| writeDatblkToOutBuf(ctxt, ctxt.Out, addr, size) |
| } |
| |
| // Used only on Wasm for now. |
| func DatblkBytes(ctxt *Link, addr int64, size int64) []byte { |
| buf := bytes.NewBuffer(make([]byte, 0, size)) |
| out := &OutBuf{w: bufio.NewWriter(buf)} |
| writeDatblkToOutBuf(ctxt, out, addr, size) |
| out.Flush() |
| return buf.Bytes() |
| } |
| |
| func writeDatblkToOutBuf(ctxt *Link, out *OutBuf, addr int64, size int64) { |
| if *flagA { |
| ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) |
| } |
| |
| blk(out, datap, addr, size, zeros[:]) |
| |
| /* again for printing */ |
| if !*flagA { |
| return |
| } |
| |
| syms := datap |
| for i, sym := range syms { |
| if sym.Value >= addr { |
| syms = syms[i:] |
| break |
| } |
| } |
| |
| eaddr := addr + size |
| for _, sym := range syms { |
| if sym.Value >= eaddr { |
| break |
| } |
| if addr < sym.Value { |
| ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr)) |
| addr = sym.Value |
| } |
| |
| ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr)) |
| for i, b := range sym.P { |
| if i > 0 && i%16 == 0 { |
| ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i)) |
| } |
| ctxt.Logf(" %.2x", b) |
| } |
| |
| addr += int64(len(sym.P)) |
| for ; addr < sym.Value+sym.Size; addr++ { |
| ctxt.Logf(" %.2x", 0) |
| } |
| ctxt.Logf("\n") |
| |
| if ctxt.LinkMode != LinkExternal { |
| continue |
| } |
| for i := range sym.R { |
| r := &sym.R[i] // Copying sym.Reloc has measurable impact on performance |
| rsname := "" |
| rsval := int64(0) |
| if r.Sym != nil { |
| rsname = r.Sym.Name |
| rsval = r.Sym.Value |
| } |
| typ := "?" |
| switch r.Type { |
| case objabi.R_ADDR: |
| typ = "addr" |
| case objabi.R_PCREL: |
| typ = "pcrel" |
| case objabi.R_CALL: |
| typ = "call" |
| } |
| ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, rsval+r.Add) |
| } |
| } |
| |
| if addr < eaddr { |
| ctxt.Logf("\t%.8x| 00 ...\n", uint(addr)) |
| } |
| ctxt.Logf("\t%.8x|\n", uint(eaddr)) |
| } |
| |
| func Dwarfblk(ctxt *Link, addr int64, size int64) { |
| if *flagA { |
| ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) |
| } |
| |
| blk(ctxt.Out, dwarfp, addr, size, zeros[:]) |
| } |
| |
| var zeros [512]byte |
| |
| var ( |
| strdata = make(map[string]string) |
| strnames []string |
| ) |
| |
| func addstrdata1(ctxt *Link, arg string) { |
| eq := strings.Index(arg, "=") |
| dot := strings.LastIndex(arg[:eq+1], ".") |
| if eq < 0 || dot < 0 { |
| Exitf("-X flag requires argument of the form importpath.name=value") |
| } |
| pkg := arg[:dot] |
| if ctxt.BuildMode == BuildModePlugin && pkg == "main" { |
| pkg = *flagPluginPath |
| } |
| pkg = objabi.PathToPrefix(pkg) |
| name := pkg + arg[dot:eq] |
| value := arg[eq+1:] |
| if _, ok := strdata[name]; !ok { |
| strnames = append(strnames, name) |
| } |
| strdata[name] = value |
| } |
| |
| // addstrdata sets the initial value of the string variable name to value. |
| func addstrdata(ctxt *Link, name, value string) { |
| s := ctxt.Syms.ROLookup(name, 0) |
| if s == nil || s.Gotype == nil { |
| // Not defined in the loaded packages. |
| return |
| } |
| if s.Gotype.Name != "type.string" { |
| Errorf(s, "cannot set with -X: not a var of type string (%s)", s.Gotype.Name) |
| return |
| } |
| if s.Type == sym.SBSS { |
| s.Type = sym.SDATA |
| } |
| |
| p := fmt.Sprintf("%s.str", s.Name) |
| sp := ctxt.Syms.Lookup(p, 0) |
| |
| Addstring(sp, value) |
| sp.Type = sym.SRODATA |
| |
| s.Size = 0 |
| s.P = s.P[:0] |
| if s.Attr.ReadOnly() { |
| s.P = make([]byte, 0, ctxt.Arch.PtrSize*2) |
| s.Attr.Set(sym.AttrReadOnly, false) |
| } |
| s.R = s.R[:0] |
| reachable := s.Attr.Reachable() |
| s.AddAddr(ctxt.Arch, sp) |
| s.AddUint(ctxt.Arch, uint64(len(value))) |
| |
| // addstring, addaddr, etc., mark the symbols as reachable. |
| // In this case that is not necessarily true, so stick to what |
| // we know before entering this function. |
| s.Attr.Set(sym.AttrReachable, reachable) |
| |
| sp.Attr.Set(sym.AttrReachable, reachable) |
| } |
| |
| func (ctxt *Link) dostrdata() { |
| for _, name := range strnames { |
| addstrdata(ctxt, name, strdata[name]) |
| } |
| } |
| |
| func Addstring(s *sym.Symbol, str string) int64 { |
| if s.Type == 0 { |
| s.Type = sym.SNOPTRDATA |
| } |
| s.Attr |= sym.AttrReachable |
| r := s.Size |
| if s.Name == ".shstrtab" { |
| elfsetstring(s, str, int(r)) |
| } |
| s.P = append(s.P, str...) |
| s.P = append(s.P, 0) |
| s.Size = int64(len(s.P)) |
| return r |
| } |
| |
| // addgostring adds str, as a Go string value, to s. symname is the name of the |
| // symbol used to define the string data and must be unique per linked object. |
| func addgostring(ctxt *Link, s *sym.Symbol, symname, str string) { |
| sdata := ctxt.Syms.Lookup(symname, 0) |
| if sdata.Type != sym.Sxxx { |
| Errorf(s, "duplicate symname in addgostring: %s", symname) |
| } |
| sdata.Attr |= sym.AttrReachable |
| sdata.Attr |= sym.AttrLocal |
| sdata.Type = sym.SRODATA |
| sdata.Size = int64(len(str)) |
| sdata.P = []byte(str) |
| s.AddAddr(ctxt.Arch, sdata) |
| s.AddUint(ctxt.Arch, uint64(len(str))) |
| } |
| |
| func addinitarrdata(ctxt *Link, s *sym.Symbol) { |
| p := s.Name + ".ptr" |
| sp := ctxt.Syms.Lookup(p, 0) |
| sp.Type = sym.SINITARR |
| sp.Size = 0 |
| sp.Attr |= sym.AttrDuplicateOK |
| sp.AddAddr(ctxt.Arch, s) |
| } |
| |
| // symalign returns the required alignment for the given symbol s. |
| func symalign(s *sym.Symbol) int32 { |
| min := int32(thearch.Minalign) |
| if s.Align >= min { |
| return s.Align |
| } else if s.Align != 0 { |
| return min |
| } |
| if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") { |
| // String data is just bytes. |
| // If we align it, we waste a lot of space to padding. |
| return min |
| } |
| align := int32(thearch.Maxalign) |
| for int64(align) > s.Size && align > min { |
| align >>= 1 |
| } |
| s.Align = align |
| return align |
| } |
| |
| func aligndatsize(datsize int64, s *sym.Symbol) int64 { |
| return Rnd(datsize, int64(symalign(s))) |
| } |
| |
| const debugGCProg = false |
| |
| type GCProg struct { |
| ctxt *Link |
| sym *sym.Symbol |
| w gcprog.Writer |
| } |
| |
| func (p *GCProg) Init(ctxt *Link, name string) { |
| p.ctxt = ctxt |
| p.sym = ctxt.Syms.Lookup(name, 0) |
| p.w.Init(p.writeByte(ctxt)) |
| if debugGCProg { |
| fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) |
| p.w.Debug(os.Stderr) |
| } |
| } |
| |
| func (p *GCProg) writeByte(ctxt *Link) func(x byte) { |
| return func(x byte) { |
| p.sym.AddUint8(x) |
| } |
| } |
| |
| func (p *GCProg) End(size int64) { |
| p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize)) |
| p.w.End() |
| if debugGCProg { |
| fmt.Fprintf(os.Stderr, "ld: end GCProg\n") |
| } |
| } |
| |
| func (p *GCProg) AddSym(s *sym.Symbol) { |
| typ := s.Gotype |
| // Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS; |
| // everything we see should have pointers and should therefore have a type. |
| if typ == nil { |
| switch s.Name { |
| case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": |
| // Ignore special symbols that are sometimes laid out |
| // as real symbols. See comment about dyld on darwin in |
| // the address function. |
| return |
| } |
| Errorf(s, "missing Go type information for global symbol: size %d", s.Size) |
| return |
| } |
| |
| ptrsize := int64(p.ctxt.Arch.PtrSize) |
| nptr := decodetypePtrdata(p.ctxt.Arch, typ.P) / ptrsize |
| |
| if debugGCProg { |
| fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) |
| } |
| |
| if decodetypeUsegcprog(p.ctxt.Arch, typ.P) == 0 { |
| // Copy pointers from mask into program. |
| mask := decodetypeGcmask(p.ctxt, typ) |
| for i := int64(0); i < nptr; i++ { |
| if (mask[i/8]>>uint(i%8))&1 != 0 { |
| p.w.Ptr(s.Value/ptrsize + i) |
| } |
| } |
| return |
| } |
| |
| // Copy program. |
| prog := decodetypeGcprog(p.ctxt, typ) |
| p.w.ZeroUntil(s.Value / ptrsize) |
| p.w.Append(prog[4:], nptr) |
| } |
| |
| // dataSortKey is used to sort a slice of data symbol *sym.Symbol pointers. |
| // The sort keys are kept inline to improve cache behavior while sorting. |
| type dataSortKey struct { |
| size int64 |
| name string |
| sym *sym.Symbol |
| } |
| |
| type bySizeAndName []dataSortKey |
| |
| func (d bySizeAndName) Len() int { return len(d) } |
| func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } |
| func (d bySizeAndName) Less(i, j int) bool { |
| s1, s2 := d[i], d[j] |
| if s1.size != s2.size { |
| return s1.size < s2.size |
| } |
| return s1.name < s2.name |
| } |
| |
| // cutoff is the maximum data section size permitted by the linker |
| // (see issue #9862). |
| const cutoff = 2e9 // 2 GB (or so; looks better in errors than 2^31) |
| |
| func checkdatsize(ctxt *Link, datsize int64, symn sym.SymKind) { |
| if datsize > cutoff { |
| Errorf(nil, "too much data in section %v (over %v bytes)", symn, cutoff) |
| } |
| } |
| |
| // datap is a collection of reachable data symbols in address order. |
| // Generated by dodata. |
| var datap []*sym.Symbol |
| |
| func (ctxt *Link) dodata() { |
| if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) { |
| // The values in moduledata are filled out by relocations |
| // pointing to the addresses of these special symbols. |
| // Typically these symbols have no size and are not laid |
| // out with their matching section. |
| // |
| // However on darwin, dyld will find the special symbol |
| // in the first loaded module, even though it is local. |
| // |
| // (An hypothesis, formed without looking in the dyld sources: |
| // these special symbols have no size, so their address |
| // matches a real symbol. The dynamic linker assumes we |
| // want the normal symbol with the same address and finds |
| // it in the other module.) |
| // |
| // To work around this we lay out the symbls whose |
| // addresses are vital for multi-module programs to work |
| // as normal symbols, and give them a little size. |
| // |
| // On AIX, as all DATA sections are merged together, ld might not put |
| // these symbols at the beginning of their respective section if there |
| // aren't real symbols, their alignment might not match the |
| // first symbol alignment. Therefore, there are explicitly put at the |
| // beginning of their section with the same alignment. |
| bss := ctxt.Syms.Lookup("runtime.bss", 0) |
| bss.Size = 8 |
| bss.Attr.Set(sym.AttrSpecial, false) |
| |
| ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(sym.AttrSpecial, false) |
| |
| data := ctxt.Syms.Lookup("runtime.data", 0) |
| data.Size = 8 |
| data.Attr.Set(sym.AttrSpecial, false) |
| |
| edata := ctxt.Syms.Lookup("runtime.edata", 0) |
| edata.Attr.Set(sym.AttrSpecial, false) |
| if ctxt.HeadType == objabi.Haix { |
| // XCOFFTOC symbols are part of .data section. |
| edata.Type = sym.SXCOFFTOC |
| } |
| |
| types := ctxt.Syms.Lookup("runtime.types", 0) |
| types.Type = sym.STYPE |
| types.Size = 8 |
| types.Attr.Set(sym.AttrSpecial, false) |
| |
| etypes := ctxt.Syms.Lookup("runtime.etypes", 0) |
| etypes.Type = sym.SFUNCTAB |
| etypes.Attr.Set(sym.AttrSpecial, false) |
| |
| if ctxt.HeadType == objabi.Haix { |
| rodata := ctxt.Syms.Lookup("runtime.rodata", 0) |
| rodata.Type = sym.SSTRING |
| rodata.Size = 8 |
| rodata.Attr.Set(sym.AttrSpecial, false) |
| |
| ctxt.Syms.Lookup("runtime.erodata", 0).Attr.Set(sym.AttrSpecial, false) |
| |
| } |
| } |
| |
| // Collect data symbols by type into data. |
| var data [sym.SXREF][]*sym.Symbol |
| for _, s := range ctxt.Syms.Allsym { |
| if !s.Attr.Reachable() || s.Attr.Special() || s.Attr.SubSymbol() { |
| continue |
| } |
| if s.Type <= sym.STEXT || s.Type >= sym.SXREF { |
| continue |
| } |
| data[s.Type] = append(data[s.Type], s) |
| } |
| |
| // Now that we have the data symbols, but before we start |
| // to assign addresses, record all the necessary |
| // dynamic relocations. These will grow the relocation |
| // symbol, which is itself data. |
| // |
| // On darwin, we need the symbol table numbers for dynreloc. |
| if ctxt.HeadType == objabi.Hdarwin { |
| machosymorder(ctxt) |
| } |
| dynreloc(ctxt, &data) |
| |
| if ctxt.UseRelro() { |
| // "read only" data with relocations needs to go in its own section |
| // when building a shared library. We do this by boosting objects of |
| // type SXXX with relocations to type SXXXRELRO. |
| for _, symnro := range sym.ReadOnly { |
| symnrelro := sym.RelROMap[symnro] |
| |
| ro := []*sym.Symbol{} |
| relro := data[symnrelro] |
| |
| for _, s := range data[symnro] { |
| isRelro := len(s.R) > 0 |
| switch s.Type { |
| case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO: |
| // Symbols are not sorted yet, so it is possible |
| // that an Outer symbol has been changed to a |
| // relro Type before it reaches here. |
| isRelro = true |
| case sym.SFUNCTAB: |
| if ctxt.HeadType == objabi.Haix && s.Name == "runtime.etypes" { |
| // runtime.etypes must be at the end of |
| // the relro datas. |
| isRelro = true |
| } |
| } |
| if isRelro { |
| s.Type = symnrelro |
| if s.Outer != nil { |
| s.Outer.Type = s.Type |
| } |
| relro = append(relro, s) |
| } else { |
| ro = append(ro, s) |
| } |
| } |
| |
| // Check that we haven't made two symbols with the same .Outer into |
| // different types (because references two symbols with non-nil Outer |
| // become references to the outer symbol + offset it's vital that the |
| // symbol and the outer end up in the same section). |
| for _, s := range relro { |
| if s.Outer != nil && s.Outer.Type != s.Type { |
| Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", |
| s.Outer.Name, s.Type, s.Outer.Type) |
| } |
| } |
| |
| data[symnro] = ro |
| data[symnrelro] = relro |
| } |
| } |
| |
| // Sort symbols. |
| var dataMaxAlign [sym.SXREF]int32 |
| var wg sync.WaitGroup |
| for symn := range data { |
| symn := sym.SymKind(symn) |
| wg.Add(1) |
| go func() { |
| data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn]) |
| wg.Done() |
| }() |
| } |
| wg.Wait() |
| |
| if ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal { |
| // These symbols must have the same alignment as their section. |
| // Otherwize, ld might change the layout of Go sections. |
| ctxt.Syms.ROLookup("runtime.data", 0).Align = dataMaxAlign[sym.SDATA] |
| ctxt.Syms.ROLookup("runtime.bss", 0).Align = dataMaxAlign[sym.SBSS] |
| } |
| |
| // Allocate sections. |
| // Data is processed before segtext, because we need |
| // to see all symbols in the .data and .bss sections in order |
| // to generate garbage collection information. |
| datsize := int64(0) |
| |
| // Writable data sections that do not need any specialized handling. |
| writable := []sym.SymKind{ |
| sym.SBUILDINFO, |
| sym.SELFSECT, |
| sym.SMACHO, |
| sym.SMACHOGOT, |
| sym.SWINDOWS, |
| } |
| for _, symn := range writable { |
| for _, s := range data[symn] { |
| sect := addsection(ctxt.Arch, &Segdata, s.Name, 06) |
| sect.Align = symalign(s) |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| s.Sect = sect |
| s.Type = sym.SDATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| sect.Length = uint64(datsize) - sect.Vaddr |
| } |
| checkdatsize(ctxt, datsize, symn) |
| } |
| |
| // .got (and .toc on ppc64) |
| if len(data[sym.SELFGOT]) > 0 { |
| sect := addsection(ctxt.Arch, &Segdata, ".got", 06) |
| sect.Align = dataMaxAlign[sym.SELFGOT] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| for _, s := range data[sym.SELFGOT] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Type = sym.SDATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| |
| // Resolve .TOC. symbol for this object file (ppc64) |
| toc := ctxt.Syms.ROLookup(".TOC.", int(s.Version)) |
| if toc != nil { |
| toc.Sect = sect |
| toc.Outer = s |
| toc.Sub = s.Sub |
| s.Sub = toc |
| |
| toc.Value = 0x8000 |
| } |
| |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, sym.SELFGOT) |
| sect.Length = uint64(datsize) - sect.Vaddr |
| } |
| |
| /* pointer-free data */ |
| sect := addsection(ctxt.Arch, &Segdata, ".noptrdata", 06) |
| sect.Align = dataMaxAlign[sym.SNOPTRDATA] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect |
| for _, s := range data[sym.SNOPTRDATA] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Type = sym.SDATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, sym.SNOPTRDATA) |
| sect.Length = uint64(datsize) - sect.Vaddr |
| |
| hasinitarr := ctxt.linkShared |
| |
| /* shared library initializer */ |
| switch ctxt.BuildMode { |
| case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin: |
| hasinitarr = true |
| } |
| |
| if ctxt.HeadType == objabi.Haix { |
| if len(data[sym.SINITARR]) > 0 { |
| Errorf(nil, "XCOFF format doesn't allow .init_array section") |
| } |
| } |
| |
| if hasinitarr && len(data[sym.SINITARR]) > 0 { |
| sect := addsection(ctxt.Arch, &Segdata, ".init_array", 06) |
| sect.Align = dataMaxAlign[sym.SINITARR] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| for _, s := range data[sym.SINITARR] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| sect.Length = uint64(datsize) - sect.Vaddr |
| checkdatsize(ctxt, datsize, sym.SINITARR) |
| } |
| |
| /* data */ |
| sect = addsection(ctxt.Arch, &Segdata, ".data", 06) |
| sect.Align = dataMaxAlign[sym.SDATA] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| ctxt.Syms.Lookup("runtime.data", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect |
| var gc GCProg |
| gc.Init(ctxt, "runtime.gcdata") |
| for _, s := range data[sym.SDATA] { |
| s.Sect = sect |
| s.Type = sym.SDATA |
| datsize = aligndatsize(datsize, s) |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| gc.AddSym(s) |
| datsize += s.Size |
| } |
| gc.End(datsize - int64(sect.Vaddr)) |
| // On AIX, TOC entries must be the last of .data |
| // These aren't part of gc as they won't change during the runtime. |
| for _, s := range data[sym.SXCOFFTOC] { |
| s.Sect = sect |
| s.Type = sym.SDATA |
| datsize = aligndatsize(datsize, s) |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, sym.SDATA) |
| sect.Length = uint64(datsize) - sect.Vaddr |
| |
| /* bss */ |
| sect = addsection(ctxt.Arch, &Segdata, ".bss", 06) |
| sect.Align = dataMaxAlign[sym.SBSS] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect |
| gc = GCProg{} |
| gc.Init(ctxt, "runtime.gcbss") |
| for _, s := range data[sym.SBSS] { |
| s.Sect = sect |
| datsize = aligndatsize(datsize, s) |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| gc.AddSym(s) |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, sym.SBSS) |
| sect.Length = uint64(datsize) - sect.Vaddr |
| gc.End(int64(sect.Length)) |
| |
| /* pointer-free bss */ |
| sect = addsection(ctxt.Arch, &Segdata, ".noptrbss", 06) |
| sect.Align = dataMaxAlign[sym.SNOPTRBSS] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect |
| for _, s := range data[sym.SNOPTRBSS] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| sect.Length = uint64(datsize) - sect.Vaddr |
| ctxt.Syms.Lookup("runtime.end", 0).Sect = sect |
| checkdatsize(ctxt, datsize, sym.SNOPTRBSS) |
| |
| // Coverage instrumentation counters for libfuzzer. |
| if len(data[sym.SLIBFUZZER_EXTRA_COUNTER]) > 0 { |
| sect := addsection(ctxt.Arch, &Segdata, "__libfuzzer_extra_counters", 06) |
| sect.Align = dataMaxAlign[sym.SLIBFUZZER_EXTRA_COUNTER] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| for _, s := range data[sym.SLIBFUZZER_EXTRA_COUNTER] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| sect.Length = uint64(datsize) - sect.Vaddr |
| checkdatsize(ctxt, datsize, sym.SLIBFUZZER_EXTRA_COUNTER) |
| } |
| |
| if len(data[sym.STLSBSS]) > 0 { |
| var sect *sym.Section |
| if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && (ctxt.LinkMode == LinkExternal || !*FlagD) { |
| sect = addsection(ctxt.Arch, &Segdata, ".tbss", 06) |
| sect.Align = int32(ctxt.Arch.PtrSize) |
| sect.Vaddr = 0 |
| } |
| datsize = 0 |
| |
| for _, s := range data[sym.STLSBSS] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Value = datsize |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, sym.STLSBSS) |
| |
| if sect != nil { |
| sect.Length = uint64(datsize) |
| } |
| } |
| |
| /* |
| * We finished data, begin read-only data. |
| * Not all systems support a separate read-only non-executable data section. |
| * ELF and Windows PE systems do. |
| * OS X and Plan 9 do not. |
| * And if we're using external linking mode, the point is moot, |
| * since it's not our decision; that code expects the sections in |
| * segtext. |
| */ |
| var segro *sym.Segment |
| if ctxt.IsELF && ctxt.LinkMode == LinkInternal { |
| segro = &Segrodata |
| } else if ctxt.HeadType == objabi.Hwindows { |
| segro = &Segrodata |
| } else { |
| segro = &Segtext |
| } |
| |
| datsize = 0 |
| |
| /* read-only executable ELF, Mach-O sections */ |
| if len(data[sym.STEXT]) != 0 { |
| Errorf(nil, "dodata found an sym.STEXT symbol: %s", data[sym.STEXT][0].Name) |
| } |
| for _, s := range data[sym.SELFRXSECT] { |
| sect := addsection(ctxt.Arch, &Segtext, s.Name, 04) |
| sect.Align = symalign(s) |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| sect.Length = uint64(datsize) - sect.Vaddr |
| checkdatsize(ctxt, datsize, sym.SELFRXSECT) |
| } |
| |
| /* read-only data */ |
| sect = addsection(ctxt.Arch, segro, ".rodata", 04) |
| |
| sect.Vaddr = 0 |
| ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect |
| if !ctxt.UseRelro() { |
| ctxt.Syms.Lookup("runtime.types", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect |
| } |
| for _, symn := range sym.ReadOnly { |
| align := dataMaxAlign[symn] |
| if sect.Align < align { |
| sect.Align = align |
| } |
| } |
| datsize = Rnd(datsize, int64(sect.Align)) |
| for _, symn := range sym.ReadOnly { |
| symnStartValue := datsize |
| for _, s := range data[symn] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, symn) |
| if ctxt.HeadType == objabi.Haix { |
| // Read-only symbols might be wrapped inside their outer |
| // symbol. |
| // XCOFF symbol table needs to know the size of |
| // these outer symbols. |
| xcoffUpdateOuterSize(ctxt, datsize-symnStartValue, symn) |
| } |
| } |
| sect.Length = uint64(datsize) - sect.Vaddr |
| |
| /* read-only ELF, Mach-O sections */ |
| for _, s := range data[sym.SELFROSECT] { |
| sect = addsection(ctxt.Arch, segro, s.Name, 04) |
| sect.Align = symalign(s) |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| sect.Length = uint64(datsize) - sect.Vaddr |
| } |
| checkdatsize(ctxt, datsize, sym.SELFROSECT) |
| |
| for _, s := range data[sym.SMACHOPLT] { |
| sect = addsection(ctxt.Arch, segro, s.Name, 04) |
| sect.Align = symalign(s) |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| sect.Length = uint64(datsize) - sect.Vaddr |
| } |
| checkdatsize(ctxt, datsize, sym.SMACHOPLT) |
| |
| // There is some data that are conceptually read-only but are written to by |
| // relocations. On GNU systems, we can arrange for the dynamic linker to |
| // mprotect sections after relocations are applied by giving them write |
| // permissions in the object file and calling them ".data.rel.ro.FOO". We |
| // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, |
| // but for the other sections that this applies to, we just write a read-only |
| // .FOO section or a read-write .data.rel.ro.FOO section depending on the |
| // situation. |
| // TODO(mwhudson): It would make sense to do this more widely, but it makes |
| // the system linker segfault on darwin. |
| addrelrosection := func(suffix string) *sym.Section { |
| return addsection(ctxt.Arch, segro, suffix, 04) |
| } |
| |
| if ctxt.UseRelro() { |
| segrelro := &Segrelrodata |
| if ctxt.LinkMode == LinkExternal && ctxt.HeadType != objabi.Haix { |
| // Using a separate segment with an external |
| // linker results in some programs moving |
| // their data sections unexpectedly, which |
| // corrupts the moduledata. So we use the |
| // rodata segment and let the external linker |
| // sort out a rel.ro segment. |
| segrelro = segro |
| } else { |
| // Reset datsize for new segment. |
| datsize = 0 |
| } |
| |
| addrelrosection = func(suffix string) *sym.Section { |
| return addsection(ctxt.Arch, segrelro, ".data.rel.ro"+suffix, 06) |
| } |
| |
| /* data only written by relocations */ |
| sect = addrelrosection("") |
| |
| ctxt.Syms.Lookup("runtime.types", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect |
| |
| for _, symnro := range sym.ReadOnly { |
| symn := sym.RelROMap[symnro] |
| align := dataMaxAlign[symn] |
| if sect.Align < align { |
| sect.Align = align |
| } |
| } |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| |
| for i, symnro := range sym.ReadOnly { |
| if i == 0 && symnro == sym.STYPE && ctxt.HeadType != objabi.Haix { |
| // Skip forward so that no type |
| // reference uses a zero offset. |
| // This is unlikely but possible in small |
| // programs with no other read-only data. |
| datsize++ |
| } |
| |
| symn := sym.RelROMap[symnro] |
| symnStartValue := datsize |
| for _, s := range data[symn] { |
| datsize = aligndatsize(datsize, s) |
| if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { |
| Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name) |
| } |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, symn) |
| if ctxt.HeadType == objabi.Haix { |
| // Read-only symbols might be wrapped inside their outer |
| // symbol. |
| // XCOFF symbol table needs to know the size of |
| // these outer symbols. |
| xcoffUpdateOuterSize(ctxt, datsize-symnStartValue, symn) |
| } |
| } |
| |
| sect.Length = uint64(datsize) - sect.Vaddr |
| } |
| |
| /* typelink */ |
| sect = addrelrosection(".typelink") |
| sect.Align = dataMaxAlign[sym.STYPELINK] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| typelink := ctxt.Syms.Lookup("runtime.typelink", 0) |
| typelink.Sect = sect |
| typelink.Type = sym.SRODATA |
| datsize += typelink.Size |
| checkdatsize(ctxt, datsize, sym.STYPELINK) |
| sect.Length = uint64(datsize) - sect.Vaddr |
| |
| /* itablink */ |
| sect = addrelrosection(".itablink") |
| sect.Align = dataMaxAlign[sym.SITABLINK] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect |
| for _, s := range data[sym.SITABLINK] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, sym.SITABLINK) |
| sect.Length = uint64(datsize) - sect.Vaddr |
| if ctxt.HeadType == objabi.Haix { |
| // Store .itablink size because its symbols are wrapped |
| // under an outer symbol: runtime.itablink. |
| xcoffUpdateOuterSize(ctxt, int64(sect.Length), sym.SITABLINK) |
| } |
| |
| /* gosymtab */ |
| sect = addrelrosection(".gosymtab") |
| sect.Align = dataMaxAlign[sym.SSYMTAB] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect |
| for _, s := range data[sym.SSYMTAB] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, sym.SSYMTAB) |
| sect.Length = uint64(datsize) - sect.Vaddr |
| |
| /* gopclntab */ |
| sect = addrelrosection(".gopclntab") |
| sect.Align = dataMaxAlign[sym.SPCLNTAB] |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect |
| ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect |
| for _, s := range data[sym.SPCLNTAB] { |
| datsize = aligndatsize(datsize, s) |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| } |
| checkdatsize(ctxt, datsize, sym.SRODATA) |
| sect.Length = uint64(datsize) - sect.Vaddr |
| |
| // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. |
| if datsize != int64(uint32(datsize)) { |
| Errorf(nil, "read-only data segment too large: %d", datsize) |
| } |
| |
| for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ { |
| datap = append(datap, data[symn]...) |
| } |
| |
| dwarfGenerateDebugSyms(ctxt) |
| |
| var i int |
| for ; i < len(dwarfp); i++ { |
| s := dwarfp[i] |
| if s.Type != sym.SDWARFSECT { |
| break |
| } |
| |
| sect = addsection(ctxt.Arch, &Segdwarf, s.Name, 04) |
| sect.Align = 1 |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| datsize += s.Size |
| sect.Length = uint64(datsize) - sect.Vaddr |
| } |
| checkdatsize(ctxt, datsize, sym.SDWARFSECT) |
| |
| for i < len(dwarfp) { |
| curType := dwarfp[i].Type |
| var sect *sym.Section |
| switch curType { |
| case sym.SDWARFINFO: |
| sect = addsection(ctxt.Arch, &Segdwarf, ".debug_info", 04) |
| case sym.SDWARFRANGE: |
| sect = addsection(ctxt.Arch, &Segdwarf, ".debug_ranges", 04) |
| case sym.SDWARFLOC: |
| sect = addsection(ctxt.Arch, &Segdwarf, ".debug_loc", 04) |
| default: |
| // Error is unrecoverable, so panic. |
| panic(fmt.Sprintf("unknown DWARF section %v", curType)) |
| } |
| |
| sect.Align = 1 |
| datsize = Rnd(datsize, int64(sect.Align)) |
| sect.Vaddr = uint64(datsize) |
| for ; i < len(dwarfp); i++ { |
| s := dwarfp[i] |
| if s.Type != curType { |
| break |
| } |
| s.Sect = sect |
| s.Type = sym.SRODATA |
| s.Value = int64(uint64(datsize) - sect.Vaddr) |
| s.Attr |= sym.AttrLocal |
| datsize += s.Size |
| |
| if ctxt.HeadType == objabi.Haix && curType == sym.SDWARFLOC { |
| // Update the size of .debug_loc for this symbol's |
| // package. |
| addDwsectCUSize(".debug_loc", s.File, uint64(s.Size)) |
| } |
| } |
| sect.Length = uint64(datsize) - sect.Vaddr |
| checkdatsize(ctxt, datsize, curType) |
| } |
| |
| /* number the sections */ |
| n := int32(1) |
| |
| for _, sect := range Segtext.Sections { |
| sect.Extnum = int16(n) |
| n++ |
| } |
| for _, sect := range Segrodata.Sections { |
| sect.Extnum = int16(n) |
| n++ |
| } |
| for _, sect := range Segrelrodata.Sections { |
| sect.Extnum = int16(n) |
| n++ |
| } |
| for _, sect := range Segdata.Sections { |
| sect.Extnum = int16(n) |
| n++ |
| } |
| for _, sect := range Segdwarf.Sections { |
| sect.Extnum = int16(n) |
| n++ |
| } |
| } |
| |
| func dodataSect(ctxt *Link, symn sym.SymKind, syms []*sym.Symbol) (result []*sym.Symbol, maxAlign int32) { |
| if ctxt.HeadType == objabi.Hdarwin { |
| // Some symbols may no longer belong in syms |
| // due to movement in machosymorder. |
| newSyms := make([]*sym.Symbol, 0, len(syms)) |
| for _, s := range syms { |
| if s.Type == symn { |
| newSyms = append(newSyms, s) |
| } |
| } |
| syms = newSyms |
| } |
| |
| var head, tail *sym.Symbol |
| symsSort := make([]dataSortKey, 0, len(syms)) |
| for _, s := range syms { |
| if s.Attr.OnList() { |
| log.Fatalf("symbol %s listed multiple times", s.Name) |
| } |
| s.Attr |= sym.AttrOnList |
| switch { |
| case s.Size < int64(len(s.P)): |
| Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P)) |
| case s.Size < 0: |
| Errorf(s, "negative size (%d bytes)", s.Size) |
| case s.Size > cutoff: |
| Errorf(s, "symbol too large (%d bytes)", s.Size) |
| } |
| |
| // If the usually-special section-marker symbols are being laid |
| // out as regular symbols, put them either at the beginning or |
| // end of their section. |
| if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) { |
| switch s.Name { |
| case "runtime.text", "runtime.bss", "runtime.data", "runtime.types", "runtime.rodata": |
| head = s |
| continue |
| case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes", "runtime.erodata": |
| tail = s |
| continue |
| } |
| } |
| |
| key := dataSortKey{ |
| size: s.Size, |
| name: s.Name, |
| sym: s, |
| } |
| |
| switch s.Type { |
| case sym.SELFGOT: |
| // For ppc64, we want to interleave the .got and .toc sections |
| // from input files. Both are type sym.SELFGOT, so in that case |
| // we skip size comparison and fall through to the name |
| // comparison (conveniently, .got sorts before .toc). |
| key.size = 0 |
| } |
| |
| symsSort = append(symsSort, key) |
| } |
| |
| sort.Sort(bySizeAndName(symsSort)) |
| |
| off := 0 |
| if head != nil { |
| syms[0] = head |
| off++ |
| } |
| for i, symSort := range symsSort { |
| syms[i+off] = symSort.sym |
| align := symalign(symSort.sym) |
| if maxAlign < align { |
| maxAlign = align |
| } |
| } |
| if tail != nil { |
| syms[len(syms)-1] = tail |
| } |
| |
| if ctxt.IsELF && symn == sym.SELFROSECT { |
| // Make .rela and .rela.plt contiguous, the ELF ABI requires this |
| // and Solaris actually cares. |
| reli, plti := -1, -1 |
| for i, s := range syms { |
| switch s.Name { |
| case ".rel.plt", ".rela.plt": |
| plti = i |
| case ".rel", ".rela": |
| reli = i |
| } |
| } |
| if reli >= 0 && plti >= 0 && plti != reli+1 { |
| var first, second int |
| if plti > reli { |
| first, second = reli, plti |
| } else { |
| first, second = plti, reli |
| } |
| rel, plt := syms[reli], syms[plti] |
| copy(syms[first+2:], syms[first+1:second]) |
| syms[first+0] = rel |
| syms[first+1] = plt |
| |
| // Make sure alignment doesn't introduce a gap. |
| // Setting the alignment explicitly prevents |
| // symalign from basing it on the size and |
| // getting it wrong. |
| rel.Align = int32(ctxt.Arch.RegSize) |
| plt.Align = int32(ctxt.Arch.RegSize) |
| } |
| } |
| |
| return syms, maxAlign |
| } |
| |
| // Add buildid to beginning of text segment, on non-ELF systems. |
| // Non-ELF binary formats are not always flexible enough to |
| // give us a place to put the Go build ID. On those systems, we put it |
| // at the very beginning of the text segment. |
| // This ``header'' is read by cmd/go. |
| func (ctxt *Link) textbuildid() { |
| if ctxt.IsELF || ctxt.BuildMode == BuildModePlugin || *flagBuildid == "" { |
| return |
| } |
| |
| s := ctxt.Syms.Lookup("go.buildid", 0) |
| s.Attr |= sym.AttrReachable |
| // The \xff is invalid UTF-8, meant to make it less likely |
| // to find one of these accidentally. |
| data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" |
| s.Type = sym.STEXT |
| s.P = []byte(data) |
| s.Size = int64(len(s.P)) |
| |
| ctxt.Textp = append(ctxt.Textp, nil) |
| copy(ctxt.Textp[1:], ctxt.Textp) |
| ctxt.Textp[0] = s |
| } |
| |
| func (ctxt *Link) buildinfo() { |
| if ctxt.linkShared || ctxt.BuildMode == BuildModePlugin { |
| // -linkshared and -buildmode=plugin get confused |
| // about the relocations in go.buildinfo |
| // pointing at the other data sections. |
| // The version information is only available in executables. |
| return |
| } |
| |
| s := ctxt.Syms.Lookup(".go.buildinfo", 0) |
| s.Attr |= sym.AttrReachable |
| s.Type = sym.SBUILDINFO |
| s.Align = 16 |
| // The \xff is invalid UTF-8, meant to make it less likely |
| // to find one of these accidentally. |
| const prefix = "\xff Go buildinf:" // 14 bytes, plus 2 data bytes filled in below |
| data := make([]byte, 32) |
| copy(data, prefix) |
| data[len(prefix)] = byte(ctxt.Arch.PtrSize) |
| data[len(prefix)+1] = 0 |
| if ctxt.Arch.ByteOrder == binary.BigEndian { |
| data[len(prefix)+1] = 1 |
| } |
| s.P = data |
| s.Size = int64(len(s.P)) |
| s1 := ctxt.Syms.Lookup("runtime.buildVersion", 0) |
| s2 := ctxt.Syms.Lookup("runtime.modinfo", 0) |
| s.R = []sym.Reloc{ |
| {Off: 16, Siz: uint8(ctxt.Arch.PtrSize), Type: objabi.R_ADDR, Sym: s1}, |
| {Off: 16 + int32(ctxt.Arch.PtrSize), Siz: uint8(ctxt.Arch.PtrSize), Type: objabi.R_ADDR, Sym: s2}, |
| } |
| } |
| |
| // assign addresses to text |
| func (ctxt *Link) textaddress() { |
| addsection(ctxt.Arch, &Segtext, ".text", 05) |
| |
| // Assign PCs in text segment. |
| // Could parallelize, by assigning to text |
| // and then letting threads copy down, but probably not worth it. |
| sect := Segtext.Sections[0] |
| |
| sect.Align = int32(Funcalign) |
| |
| text := ctxt.Syms.Lookup("runtime.text", 0) |
| text.Sect = sect |
| if ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal { |
| // Setting runtime.text has a real symbol prevents ld to |
| // change its base address resulting in wrong offsets for |
| // reflect methods. |
| text.Align = sect.Align |
| text.Size = 0x8 |
| } |
| |
| if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) { |
| etext := ctxt.Syms.Lookup("runtime.etext", 0) |
| etext.Sect = sect |
| |
| ctxt.Textp = append(ctxt.Textp, etext, nil) |
| copy(ctxt.Textp[1:], ctxt.Textp) |
| ctxt.Textp[0] = text |
| } |
| |
| va := uint64(*FlagTextAddr) |
| n := 1 |
| sect.Vaddr = va |
| ntramps := 0 |
| for _, s := range ctxt.Textp { |
| sect, n, va = assignAddress(ctxt, sect, n, s, va, false) |
| |
| trampoline(ctxt, s) // resolve jumps, may add trampolines if jump too far |
| |
| // lay down trampolines after each function |
| for ; ntramps < len(ctxt.tramps); ntramps++ { |
| tramp := ctxt.tramps[ntramps] |
| if ctxt.HeadType == objabi.Haix && strings.HasPrefix(tramp.Name, "runtime.text.") { |
| // Already set in assignAddress |
| continue |
| } |
| sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true) |
| } |
| } |
| |
| sect.Length = va - sect.Vaddr |
| ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect |
| |
| // merge tramps into Textp, keeping Textp in address order |
| if ntramps != 0 { |
| newtextp := make([]*sym.Symbol, 0, len(ctxt.Textp)+ntramps) |
| i := 0 |
| for _, s := range ctxt.Textp { |
| for ; i < ntramps && ctxt.tramps[i].Value < s.Value; i++ { |
| newtextp = append(newtextp, ctxt.tramps[i]) |
| } |
| newtextp = append(newtextp, s) |
| } |
| newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) |
| |
| ctxt.Textp = newtextp |
| } |
| } |
| |
| // assigns address for a text symbol, returns (possibly new) section, its number, and the address |
| // Note: once we have trampoline insertion support for external linking, this function |
| // will not need to create new text sections, and so no need to return sect and n. |
| func assignAddress(ctxt *Link, sect *sym.Section, n int, s *sym.Symbol, va uint64, isTramp bool) (*sym.Section, int, uint64) { |
| if thearch.AssignAddress != nil { |
| return thearch.AssignAddress(ctxt, sect, n, s, va, isTramp) |
| } |
| |
| s.Sect = sect |
| if s.Attr.SubSymbol() { |
| return sect, n, va |
| } |
| if s.Align != 0 { |
| va = uint64(Rnd(int64(va), int64(s.Align))) |
| } else { |
| va = uint64(Rnd(int64(va), int64(Funcalign))) |
| } |
| |
| funcsize := uint64(MINFUNC) // spacing required for findfunctab |
| if s.Size > MINFUNC { |
| funcsize = uint64(s.Size) |
| } |
| |
| if sect.Align < s.Align { |
| sect.Align = s.Align |
| } |
| |
| // On ppc64x a text section should not be larger than 2^26 bytes due to the size of |
| // call target offset field in the bl instruction. Splitting into smaller text |
| // sections smaller than this limit allows the GNU linker to modify the long calls |
| // appropriately. The limit allows for the space needed for tables inserted by the linker. |
| |
| // If this function doesn't fit in the current text section, then create a new one. |
| |
| // Only break at outermost syms. |
| |
| if ctxt.Arch.InFamily(sys.PPC64) && s.Outer == nil && ctxt.LinkMode == LinkExternal && va-sect.Vaddr+funcsize+maxSizeTrampolinesPPC64(s, isTramp) > 0x1c00000 { |
| // Set the length for the previous text section |
| sect.Length = va - sect.Vaddr |
| |
| // Create new section, set the starting Vaddr |
| sect = addsection(ctxt.Arch, &Segtext, ".text", 05) |
| sect.Vaddr = va |
| s.Sect = sect |
| |
| // Create a symbol for the start of the secondary text sections |
| ntext := ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0) |
| ntext.Sect = sect |
| if ctxt.HeadType == objabi.Haix { |
| // runtime.text.X must be a real symbol on AIX. |
| // Assign its address directly in order to be the |
| // first symbol of this new section. |
| ntext.Type = sym.STEXT |
| ntext.Size = int64(MINFUNC) |
| ntext.Attr |= sym.AttrReachable |
| ntext.Attr |= sym.AttrOnList |
| ctxt.tramps = append(ctxt.tramps, ntext) |
| |
| ntext.Value = int64(va) |
| va += uint64(ntext.Size) |
| |
| if s.Align != 0 { |
| va = uint64(Rnd(int64(va), int64(s.Align))) |
| } else { |
| va = uint64(Rnd(int64(va), int64(Funcalign))) |
| } |
| } |
| n++ |
| } |
| |
| s.Value = 0 |
| for sub := s; sub != nil; sub = sub.Sub { |
| sub.Value += int64(va) |
| } |
| |
| va += funcsize |
| |
| return sect, n, va |
| } |
| |
| // address assigns virtual addresses to all segments and sections and |
| // returns all segments in file order. |
| func (ctxt *Link) address() []*sym.Segment { |
| var order []*sym.Segment // Layout order |
| |
| va := uint64(*FlagTextAddr) |
| order = append(order, &Segtext) |
| Segtext.Rwx = 05 |
| Segtext.Vaddr = va |
| for _, s := range Segtext.Sections { |
| va = uint64(Rnd(int64(va), int64(s.Align))) |
| s.Vaddr = va |
| va += s.Length |
| } |
| |
| Segtext.Length = va - uint64(*FlagTextAddr) |
| |
| if len(Segrodata.Sections) > 0 { |
| // align to page boundary so as not to mix |
| // rodata and executable text. |
| // |
| // Note: gold or GNU ld will reduce the size of the executable |
| // file by arranging for the relro segment to end at a page |
| // boundary, and overlap the end of the text segment with the |
| // start of the relro segment in the file. The PT_LOAD segments |
| // will be such that the last page of the text segment will be |
| // mapped twice, once r-x and once starting out rw- and, after |
| // relocation processing, changed to r--. |
| // |
| // Ideally the last page of the text segment would not be |
| // writable even for this short period. |
| va = uint64(Rnd(int64(va), int64(*FlagRound))) |
| |
| order = append(order, &Segrodata) |
| Segrodata.Rwx = 04 |
| Segrodata.Vaddr = va |
| for _, s := range Segrodata.Sections { |
| va = uint64(Rnd(int64(va), int64(s.Align))) |
| s.Vaddr = va |
| va += s.Length |
| } |
| |
| Segrodata.Length = va - Segrodata.Vaddr |
| } |
| if len(Segrelrodata.Sections) > 0 { |
| // align to page boundary so as not to mix |
| // rodata, rel-ro data, and executable text. |
| va = uint64(Rnd(int64(va), int64(*FlagRound))) |
| if ctxt.HeadType == objabi.Haix { |
| // Relro data are inside data segment on AIX. |
| va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE) |
| } |
| |
| order = append(order, &Segrelrodata) |
| Segrelrodata.Rwx = 06 |
| Segrelrodata.Vaddr = va |
| for _, s := range Segrelrodata.Sections { |
| va = uint64(Rnd(int64(va), int64(s.Align))) |
| s.Vaddr = va |
| va += s.Length |
| } |
| |
| Segrelrodata.Length = va - Segrelrodata.Vaddr |
| } |
| |
| va = uint64(Rnd(int64(va), int64(*FlagRound))) |
| if ctxt.HeadType == objabi.Haix && len(Segrelrodata.Sections) == 0 { |
| // Data sections are moved to an unreachable segment |
| // to ensure that they are position-independent. |
| // Already done if relro sections exist. |
| va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE) |
| } |
| order = append(order, &Segdata) |
| Segdata.Rwx = 06 |
| Segdata.Vaddr = va |
| var data *sym.Section |
| var noptr *sym.Section |
| var bss *sym.Section |
| var noptrbss *sym.Section |
| for i, s := range Segdata.Sections { |
| if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && s.Name == ".tbss" { |
| continue |
| } |
| vlen := int64(s.Length) |
| if i+1 < len(Segdata.Sections) && !((ctxt.IsELF || ctxt.HeadType == objabi.Haix) && Segdata.Sections[i+1].Name == ".tbss") { |
| vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr) |
| } |
| s.Vaddr = va |
| va += uint64(vlen) |
| Segdata.Length = va - Segdata.Vaddr |
| if s.Name == ".data" { |
| data = s |
| } |
| if s.Name == ".noptrdata" { |
| noptr = s |
| } |
| if s.Name == ".bss" { |
| bss = s |
| } |
| if s.Name == ".noptrbss" { |
| noptrbss = s |
| } |
| } |
| |
| // Assign Segdata's Filelen omitting the BSS. We do this here |
| // simply because right now we know where the BSS starts. |
| Segdata.Filelen = bss.Vaddr - Segdata.Vaddr |
| |
| va = uint64(Rnd(int64(va), int64(*FlagRound))) |
| order = append(order, &Segdwarf) |
| Segdwarf.Rwx = 06 |
| Segdwarf.Vaddr = va |
| for i, s := range Segdwarf.Sections { |
| vlen := int64(s.Length) |
| if i+1 < len(Segdwarf.Sections) { |
| vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr) |
| } |
| s.Vaddr = va |
| va += uint64(vlen) |
| if ctxt.HeadType == objabi.Hwindows { |
| va = uint64(Rnd(int64(va), PEFILEALIGN)) |
| } |
| Segdwarf.Length = va - Segdwarf.Vaddr |
| } |
| |
| var ( |
| text = Segtext.Sections[0] |
| rodata = ctxt.Syms.Lookup("runtime.rodata", 0).Sect |
| itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect |
| symtab = ctxt.Syms.Lookup("runtime.symtab", 0).Sect |
| pclntab = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect |
| types = ctxt.Syms.Lookup("runtime.types", 0).Sect |
| ) |
| lasttext := text |
| // Could be multiple .text sections |
| for _, sect := range Segtext.Sections { |
| if sect.Name == ".text" { |
| lasttext = sect |
| } |
| } |
| |
| for _, s := range datap { |
| if s.Sect != nil { |
| s.Value += int64(s.Sect.Vaddr) |
| } |
| for sub := s.Sub; sub != nil; sub = sub.Sub { |
| sub.Value += s.Value |
| } |
| } |
| |
| for _, s := range dwarfp { |
| if s.Sect != nil { |
| s.Value += int64(s.Sect.Vaddr) |
| } |
| for sub := s.Sub; sub != nil; sub = sub.Sub { |
| sub.Value += s.Value |
| } |
| } |
| |
| if ctxt.BuildMode == BuildModeShared { |
| s := ctxt.Syms.Lookup("go.link.abihashbytes", 0) |
| sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0) |
| s.Sect = sectSym.Sect |
| s.Value = int64(sectSym.Sect.Vaddr + 16) |
| } |
| |
| ctxt.xdefine("runtime.text", sym.STEXT, int64(text.Vaddr)) |
| ctxt.xdefine("runtime.etext", sym.STEXT, int64(lasttext.Vaddr+lasttext.Length)) |
| |
| // If there are multiple text sections, create runtime.text.n for |
| // their section Vaddr, using n for index |
| n := 1 |
| for _, sect := range Segtext.Sections[1:] { |
| if sect.Name != ".text" { |
| break |
| } |
| symname := fmt.Sprintf("runtime.text.%d", n) |
| if ctxt.HeadType != objabi.Haix || ctxt.LinkMode != LinkExternal { |
| // Addresses are already set on AIX with external linker |
| // because these symbols are part of their sections. |
| ctxt.xdefine(symname, sym.STEXT, int64(sect.Vaddr)) |
| } |
| n++ |
| } |
| |
| ctxt.xdefine("runtime.rodata", sym.SRODATA, int64(rodata.Vaddr)) |
| ctxt.xdefine("runtime.erodata", sym.SRODATA, int64(rodata.Vaddr+rodata.Length)) |
| ctxt.xdefine("runtime.types", sym.SRODATA, int64(types.Vaddr)) |
| ctxt.xdefine("runtime.etypes", sym.SRODATA, int64(types.Vaddr+types.Length)) |
| ctxt.xdefine("runtime.itablink", sym.SRODATA, int64(itablink.Vaddr)) |
| ctxt.xdefine("runtime.eitablink", sym.SRODATA, int64(itablink.Vaddr+itablink.Length)) |
| |
| s := ctxt.Syms.Lookup("runtime.gcdata", 0) |
| s.Attr |= sym.AttrLocal |
| ctxt.xdefine("runtime.egcdata", sym.SRODATA, Symaddr(s)+s.Size) |
| ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = s.Sect |
| |
| s = ctxt.Syms.Lookup("runtime.gcbss", 0) |
| s.Attr |= sym.AttrLocal |
| ctxt.xdefine("runtime.egcbss", sym.SRODATA, Symaddr(s)+s.Size) |
| ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = s.Sect |
| |
| ctxt.xdefine("runtime.symtab", sym.SRODATA, int64(symtab.Vaddr)) |
| ctxt.xdefine("runtime.esymtab", sym.SRODATA, int64(symtab.Vaddr+symtab.Length)) |
| ctxt.xdefine("runtime.pclntab", sym.SRODATA, int64(pclntab.Vaddr)) |
| ctxt.xdefine("runtime.epclntab", sym.SRODATA, int64(pclntab.Vaddr+pclntab.Length)) |
| ctxt.xdefine("runtime.noptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr)) |
| ctxt.xdefine("runtime.enoptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) |
| ctxt.xdefine("runtime.bss", sym.SBSS, int64(bss.Vaddr)) |
| ctxt.xdefine("runtime.ebss", sym.SBSS, int64(bss.Vaddr+bss.Length)) |
| ctxt.xdefine("runtime.data", sym.SDATA, int64(data.Vaddr)) |
| ctxt.xdefine("runtime.edata", sym.SDATA, int64(data.Vaddr+data.Length)) |
| ctxt.xdefine("runtime.noptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr)) |
| ctxt.xdefine("runtime.enoptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) |
| ctxt.xdefine("runtime.end", sym.SBSS, int64(Segdata.Vaddr+Segdata.Length)) |
| |
| return order |
| } |
| |
| // layout assigns file offsets and lengths to the segments in order. |
| // Returns the file size containing all the segments. |
| func (ctxt *Link) layout(order []*sym.Segment) uint64 { |
| var prev *sym.Segment |
| for _, seg := range order { |
| if prev == nil { |
| seg.Fileoff = uint64(HEADR) |
| } else { |
| switch ctxt.HeadType { |
| default: |
| // Assuming the previous segment was |
| // aligned, the following rounding |
| // should ensure that this segment's |
| // VA ≡ Fileoff mod FlagRound. |
| seg.Fileoff = uint64(Rnd(int64(prev.Fileoff+prev.Filelen), int64(*FlagRound))) |
| if seg.Vaddr%uint64(*FlagRound) != seg.Fileoff%uint64(*FlagRound) { |
| Exitf("bad segment rounding (Vaddr=%#x Fileoff=%#x FlagRound=%#x)", seg.Vaddr, seg.Fileoff, *FlagRound) |
| } |
| case objabi.Hwindows: |
| seg.Fileoff = prev.Fileoff + uint64(Rnd(int64(prev.Filelen), PEFILEALIGN)) |
| case objabi.Hplan9: |
| seg.Fileoff = prev.Fileoff + prev.Filelen |
| } |
| } |
| if seg != &Segdata { |
| // Link.address already set Segdata.Filelen to |
| // account for BSS. |
| seg.Filelen = seg.Length |
| } |
| prev = seg |
| } |
| return prev.Fileoff + prev.Filelen |
| } |
| |
| // add a trampoline with symbol s (to be laid down after the current function) |
| func (ctxt *Link) AddTramp(s *sym.Symbol) { |
| s.Type = sym.STEXT |
| s.Attr |= sym.AttrReachable |
| s.Attr |= sym.AttrOnList |
| ctxt.tramps = append(ctxt.tramps, s) |
| if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { |
| ctxt.Logf("trampoline %s inserted\n", s) |
| } |
| } |
| |
| // compressSyms compresses syms and returns the contents of the |
| // compressed section. If the section would get larger, it returns nil. |
| func compressSyms(ctxt *Link, syms []*sym.Symbol) []byte { |
| var total int64 |
| for _, sym := range syms { |
| total += sym.Size |
| } |
| |
| var buf bytes.Buffer |
| buf.Write([]byte("ZLIB")) |
| var sizeBytes [8]byte |
| binary.BigEndian.PutUint64(sizeBytes[:], uint64(total)) |
| buf.Write(sizeBytes[:]) |
| |
| // Using zlib.BestSpeed achieves very nearly the same |
| // compression levels of zlib.DefaultCompression, but takes |
| // substantially less time. This is important because DWARF |
| // compression can be a significant fraction of link time. |
| z, err := zlib.NewWriterLevel(&buf, zlib.BestSpeed) |
| if err != nil { |
| log.Fatalf("NewWriterLevel failed: %s", err) |
| } |
| for _, s := range syms { |
| // s.P may be read-only. Apply relocations in a |
| // temporary buffer, and immediately write it out. |
| oldP := s.P |
| wasReadOnly := s.Attr.ReadOnly() |
| if len(s.R) != 0 && wasReadOnly { |
| ctxt.relocbuf = append(ctxt.relocbuf[:0], s.P...) |
| s.P = ctxt.relocbuf |
| s.Attr.Set(sym.AttrReadOnly, false) |
| } |
| relocsym(ctxt, s) |
| if _, err := z.Write(s.P); err != nil { |
| log.Fatalf("compression failed: %s", err) |
| } |
| for i := s.Size - int64(len(s.P)); i > 0; { |
| b := zeros[:] |
| if i < int64(len(b)) { |
| b = b[:i] |
| } |
| n, err := z.Write(b) |
| if err != nil { |
| log.Fatalf("compression failed: %s", err) |
| } |
| i -= int64(n) |
| } |
| // Restore s.P if a temporary buffer was used. If compression |
| // is not beneficial, we'll go back to use the uncompressed |
| // contents, in which case we still need s.P. |
| if len(s.R) != 0 && wasReadOnly { |
| s.P = oldP |
| s.Attr.Set(sym.AttrReadOnly, wasReadOnly) |
| for i := range s.R { |
| s.R[i].Done = false |
| } |
| } |
| } |
| if err := z.Close(); err != nil { |
| log.Fatalf("compression failed: %s", err) |
| } |
| if int64(buf.Len()) >= total { |
| // Compression didn't save any space. |
| return nil |
| } |
| return buf.Bytes() |
| } |