|  | // run | 
|  |  | 
|  | // Copyright 2015 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // WARNING: GENERATED FILE - DO NOT MODIFY MANUALLY! | 
|  | // (To generate, in go/types directory: go test -run=Hilbert -H=2 -out="h2.src") | 
|  |  | 
|  | // This program tests arbitrary precision constant arithmetic | 
|  | // by generating the constant elements of a Hilbert matrix H, | 
|  | // its inverse I, and the product P = H*I. The product should | 
|  | // be the identity matrix. | 
|  | package main | 
|  |  | 
|  | func main() { | 
|  | if !ok { | 
|  | print() | 
|  | return | 
|  | } | 
|  | } | 
|  |  | 
|  | // Hilbert matrix, n = 2 | 
|  | const ( | 
|  | h0_0, h0_1 = 1.0 / (iota + 1), 1.0 / (iota + 2) | 
|  | h1_0, h1_1 | 
|  | ) | 
|  |  | 
|  | // Inverse Hilbert matrix | 
|  | const ( | 
|  | i0_0 = +1 * b2_1 * b2_1 * b0_0 * b0_0 | 
|  | i0_1 = -2 * b2_0 * b3_1 * b1_0 * b1_0 | 
|  |  | 
|  | i1_0 = -2 * b3_1 * b2_0 * b1_1 * b1_1 | 
|  | i1_1 = +3 * b3_0 * b3_0 * b2_1 * b2_1 | 
|  | ) | 
|  |  | 
|  | // Product matrix | 
|  | const ( | 
|  | p0_0 = h0_0*i0_0 + h0_1*i1_0 | 
|  | p0_1 = h0_0*i0_1 + h0_1*i1_1 | 
|  |  | 
|  | p1_0 = h1_0*i0_0 + h1_1*i1_0 | 
|  | p1_1 = h1_0*i0_1 + h1_1*i1_1 | 
|  | ) | 
|  |  | 
|  | // Verify that product is identity matrix | 
|  | const ok = p0_0 == 1 && p0_1 == 0 && | 
|  | p1_0 == 0 && p1_1 == 1 && | 
|  | true | 
|  |  | 
|  | func print() { | 
|  | println(p0_0, p0_1) | 
|  | println(p1_0, p1_1) | 
|  | } | 
|  |  | 
|  | // Binomials | 
|  | const ( | 
|  | b0_0 = f0 / (f0 * f0) | 
|  |  | 
|  | b1_0 = f1 / (f0 * f1) | 
|  | b1_1 = f1 / (f1 * f0) | 
|  |  | 
|  | b2_0 = f2 / (f0 * f2) | 
|  | b2_1 = f2 / (f1 * f1) | 
|  | b2_2 = f2 / (f2 * f0) | 
|  |  | 
|  | b3_0 = f3 / (f0 * f3) | 
|  | b3_1 = f3 / (f1 * f2) | 
|  | b3_2 = f3 / (f2 * f1) | 
|  | b3_3 = f3 / (f3 * f0) | 
|  | ) | 
|  |  | 
|  | // Factorials | 
|  | const ( | 
|  | f0 = 1 | 
|  | f1 = 1 | 
|  | f2 = f1 * 2 | 
|  | f3 = f2 * 3 | 
|  | ) |