|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as | 
|  | // defined in FIPS 186-4 and SEC 1, Version 2.0. | 
|  | // | 
|  | // Signatures generated by this package are not deterministic, but entropy is | 
|  | // mixed with the private key and the message, achieving the same level of | 
|  | // security in case of randomness source failure. | 
|  | package ecdsa | 
|  |  | 
|  | // [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm. | 
|  | // That standard is not freely available, which is a problem in an open source | 
|  | // implementation, because not only the implementer, but also any maintainer, | 
|  | // contributor, reviewer, auditor, and learner needs access to it. Instead, this | 
|  | // package references and follows the equivalent [SEC 1, Version 2.0]. | 
|  | // | 
|  | // [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf | 
|  | // [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf | 
|  |  | 
|  | import ( | 
|  | "crypto" | 
|  | "crypto/aes" | 
|  | "crypto/cipher" | 
|  | "crypto/elliptic" | 
|  | "crypto/internal/boring" | 
|  | "crypto/internal/boring/bbig" | 
|  | "crypto/internal/randutil" | 
|  | "crypto/sha512" | 
|  | "errors" | 
|  | "io" | 
|  | "math/big" | 
|  |  | 
|  | "golang.org/x/crypto/cryptobyte" | 
|  | "golang.org/x/crypto/cryptobyte/asn1" | 
|  | ) | 
|  |  | 
|  | // A invertible implements fast inverse in GF(N). | 
|  | type invertible interface { | 
|  | // Inverse returns the inverse of k mod Params().N. | 
|  | Inverse(k *big.Int) *big.Int | 
|  | } | 
|  |  | 
|  | // A combinedMult implements fast combined multiplication for verification. | 
|  | type combinedMult interface { | 
|  | // CombinedMult returns [s1]G + [s2]P where G is the generator. | 
|  | CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int) | 
|  | } | 
|  |  | 
|  | const ( | 
|  | aesIV = "IV for ECDSA CTR" | 
|  | ) | 
|  |  | 
|  | // PublicKey represents an ECDSA public key. | 
|  | type PublicKey struct { | 
|  | elliptic.Curve | 
|  | X, Y *big.Int | 
|  | } | 
|  |  | 
|  | // Any methods implemented on PublicKey might need to also be implemented on | 
|  | // PrivateKey, as the latter embeds the former and will expose its methods. | 
|  |  | 
|  | // Equal reports whether pub and x have the same value. | 
|  | // | 
|  | // Two keys are only considered to have the same value if they have the same Curve value. | 
|  | // Note that for example elliptic.P256() and elliptic.P256().Params() are different | 
|  | // values, as the latter is a generic not constant time implementation. | 
|  | func (pub *PublicKey) Equal(x crypto.PublicKey) bool { | 
|  | xx, ok := x.(*PublicKey) | 
|  | if !ok { | 
|  | return false | 
|  | } | 
|  | return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 && | 
|  | // Standard library Curve implementations are singletons, so this check | 
|  | // will work for those. Other Curves might be equivalent even if not | 
|  | // singletons, but there is no definitive way to check for that, and | 
|  | // better to err on the side of safety. | 
|  | pub.Curve == xx.Curve | 
|  | } | 
|  |  | 
|  | // PrivateKey represents an ECDSA private key. | 
|  | type PrivateKey struct { | 
|  | PublicKey | 
|  | D *big.Int | 
|  | } | 
|  |  | 
|  | // Public returns the public key corresponding to priv. | 
|  | func (priv *PrivateKey) Public() crypto.PublicKey { | 
|  | return &priv.PublicKey | 
|  | } | 
|  |  | 
|  | // Equal reports whether priv and x have the same value. | 
|  | // | 
|  | // See PublicKey.Equal for details on how Curve is compared. | 
|  | func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { | 
|  | xx, ok := x.(*PrivateKey) | 
|  | if !ok { | 
|  | return false | 
|  | } | 
|  | return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0 | 
|  | } | 
|  |  | 
|  | // Sign signs digest with priv, reading randomness from rand. The opts argument | 
|  | // is not currently used but, in keeping with the crypto.Signer interface, | 
|  | // should be the hash function used to digest the message. | 
|  | // | 
|  | // This method implements crypto.Signer, which is an interface to support keys | 
|  | // where the private part is kept in, for example, a hardware module. Common | 
|  | // uses can use the SignASN1 function in this package directly. | 
|  | func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { | 
|  | if boring.Enabled && rand == boring.RandReader { | 
|  | b, err := boringPrivateKey(priv) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | return boring.SignMarshalECDSA(b, digest) | 
|  | } | 
|  | boring.UnreachableExceptTests() | 
|  |  | 
|  | r, s, err := Sign(rand, priv, digest) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  |  | 
|  | var b cryptobyte.Builder | 
|  | b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { | 
|  | b.AddASN1BigInt(r) | 
|  | b.AddASN1BigInt(s) | 
|  | }) | 
|  | return b.Bytes() | 
|  | } | 
|  |  | 
|  | var one = new(big.Int).SetInt64(1) | 
|  |  | 
|  | // randFieldElement returns a random element of the order of the given | 
|  | // curve using the procedure given in FIPS 186-4, Appendix B.5.1. | 
|  | func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { | 
|  | params := c.Params() | 
|  | // Note that for P-521 this will actually be 63 bits more than the order, as | 
|  | // division rounds down, but the extra bit is inconsequential. | 
|  | b := make([]byte, params.N.BitLen()/8+8) | 
|  | _, err = io.ReadFull(rand, b) | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  |  | 
|  | k = new(big.Int).SetBytes(b) | 
|  | n := new(big.Int).Sub(params.N, one) | 
|  | k.Mod(k, n) | 
|  | k.Add(k, one) | 
|  | return | 
|  | } | 
|  |  | 
|  | // GenerateKey generates a public and private key pair. | 
|  | func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { | 
|  | if boring.Enabled && rand == boring.RandReader { | 
|  | x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil | 
|  | } | 
|  | boring.UnreachableExceptTests() | 
|  |  | 
|  | k, err := randFieldElement(c, rand) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  |  | 
|  | priv := new(PrivateKey) | 
|  | priv.PublicKey.Curve = c | 
|  | priv.D = k | 
|  | priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) | 
|  | return priv, nil | 
|  | } | 
|  |  | 
|  | // hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4, | 
|  | // we use the left-most bits of the hash to match the bit-length of the order of | 
|  | // the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3. | 
|  | func hashToInt(hash []byte, c elliptic.Curve) *big.Int { | 
|  | orderBits := c.Params().N.BitLen() | 
|  | orderBytes := (orderBits + 7) / 8 | 
|  | if len(hash) > orderBytes { | 
|  | hash = hash[:orderBytes] | 
|  | } | 
|  |  | 
|  | ret := new(big.Int).SetBytes(hash) | 
|  | excess := len(hash)*8 - orderBits | 
|  | if excess > 0 { | 
|  | ret.Rsh(ret, uint(excess)) | 
|  | } | 
|  | return ret | 
|  | } | 
|  |  | 
|  | // fermatInverse calculates the inverse of k in GF(P) using Fermat's method | 
|  | // (exponentiation modulo P - 2, per Euler's theorem). This has better | 
|  | // constant-time properties than Euclid's method (implemented in | 
|  | // math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big | 
|  | // itself isn't strictly constant-time so it's not perfect. | 
|  | func fermatInverse(k, N *big.Int) *big.Int { | 
|  | two := big.NewInt(2) | 
|  | nMinus2 := new(big.Int).Sub(N, two) | 
|  | return new(big.Int).Exp(k, nMinus2, N) | 
|  | } | 
|  |  | 
|  | var errZeroParam = errors.New("zero parameter") | 
|  |  | 
|  | // Sign signs a hash (which should be the result of hashing a larger message) | 
|  | // using the private key, priv. If the hash is longer than the bit-length of the | 
|  | // private key's curve order, the hash will be truncated to that length. It | 
|  | // returns the signature as a pair of integers. Most applications should use | 
|  | // SignASN1 instead of dealing directly with r, s. | 
|  | func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { | 
|  | randutil.MaybeReadByte(rand) | 
|  |  | 
|  | if boring.Enabled && rand == boring.RandReader { | 
|  | b, err := boringPrivateKey(priv) | 
|  | if err != nil { | 
|  | return nil, nil, err | 
|  | } | 
|  | sig, err := boring.SignMarshalECDSA(b, hash) | 
|  | if err != nil { | 
|  | return nil, nil, err | 
|  | } | 
|  | var r, s big.Int | 
|  | var inner cryptobyte.String | 
|  | input := cryptobyte.String(sig) | 
|  | if !input.ReadASN1(&inner, asn1.SEQUENCE) || | 
|  | !input.Empty() || | 
|  | !inner.ReadASN1Integer(&r) || | 
|  | !inner.ReadASN1Integer(&s) || | 
|  | !inner.Empty() { | 
|  | return nil, nil, errors.New("invalid ASN.1 from boringcrypto") | 
|  | } | 
|  | return &r, &s, nil | 
|  | } | 
|  | boring.UnreachableExceptTests() | 
|  |  | 
|  | // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: | 
|  | // | 
|  | //    SHA2-512(priv.D || entropy || hash)[:32] | 
|  | // | 
|  | // The CSPRNG key is indifferentiable from a random oracle as shown in | 
|  | // [Coron], the AES-CTR stream is indifferentiable from a random oracle | 
|  | // under standard cryptographic assumptions (see [Larsson] for examples). | 
|  | // | 
|  | // [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf | 
|  | // [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf | 
|  |  | 
|  | // Get 256 bits of entropy from rand. | 
|  | entropy := make([]byte, 32) | 
|  | _, err = io.ReadFull(rand, entropy) | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  |  | 
|  | // Initialize an SHA-512 hash context; digest... | 
|  | md := sha512.New() | 
|  | md.Write(priv.D.Bytes()) // the private key, | 
|  | md.Write(entropy)        // the entropy, | 
|  | md.Write(hash)           // and the input hash; | 
|  | key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512), | 
|  | // which is an indifferentiable MAC. | 
|  |  | 
|  | // Create an AES-CTR instance to use as a CSPRNG. | 
|  | block, err := aes.NewCipher(key) | 
|  | if err != nil { | 
|  | return nil, nil, err | 
|  | } | 
|  |  | 
|  | // Create a CSPRNG that xors a stream of zeros with | 
|  | // the output of the AES-CTR instance. | 
|  | csprng := &cipher.StreamReader{ | 
|  | R: zeroReader, | 
|  | S: cipher.NewCTR(block, []byte(aesIV)), | 
|  | } | 
|  |  | 
|  | c := priv.PublicKey.Curve | 
|  | return sign(priv, csprng, c, hash) | 
|  | } | 
|  |  | 
|  | func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) { | 
|  | // SEC 1, Version 2.0, Section 4.1.3 | 
|  | N := c.Params().N | 
|  | if N.Sign() == 0 { | 
|  | return nil, nil, errZeroParam | 
|  | } | 
|  | var k, kInv *big.Int | 
|  | for { | 
|  | for { | 
|  | k, err = randFieldElement(c, *csprng) | 
|  | if err != nil { | 
|  | r = nil | 
|  | return | 
|  | } | 
|  |  | 
|  | if in, ok := priv.Curve.(invertible); ok { | 
|  | kInv = in.Inverse(k) | 
|  | } else { | 
|  | kInv = fermatInverse(k, N) // N != 0 | 
|  | } | 
|  |  | 
|  | r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) | 
|  | r.Mod(r, N) | 
|  | if r.Sign() != 0 { | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | e := hashToInt(hash, c) | 
|  | s = new(big.Int).Mul(priv.D, r) | 
|  | s.Add(s, e) | 
|  | s.Mul(s, kInv) | 
|  | s.Mod(s, N) // N != 0 | 
|  | if s.Sign() != 0 { | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | return | 
|  | } | 
|  |  | 
|  | // SignASN1 signs a hash (which should be the result of hashing a larger message) | 
|  | // using the private key, priv. If the hash is longer than the bit-length of the | 
|  | // private key's curve order, the hash will be truncated to that length. It | 
|  | // returns the ASN.1 encoded signature. | 
|  | func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) { | 
|  | return priv.Sign(rand, hash, nil) | 
|  | } | 
|  |  | 
|  | // Verify verifies the signature in r, s of hash using the public key, pub. Its | 
|  | // return value records whether the signature is valid. Most applications should | 
|  | // use VerifyASN1 instead of dealing directly with r, s. | 
|  | func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { | 
|  | if boring.Enabled { | 
|  | key, err := boringPublicKey(pub) | 
|  | if err != nil { | 
|  | return false | 
|  | } | 
|  | var b cryptobyte.Builder | 
|  | b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { | 
|  | b.AddASN1BigInt(r) | 
|  | b.AddASN1BigInt(s) | 
|  | }) | 
|  | sig, err := b.Bytes() | 
|  | if err != nil { | 
|  | return false | 
|  | } | 
|  | return boring.VerifyECDSA(key, hash, sig) | 
|  | } | 
|  | boring.UnreachableExceptTests() | 
|  |  | 
|  | c := pub.Curve | 
|  | N := c.Params().N | 
|  |  | 
|  | if r.Sign() <= 0 || s.Sign() <= 0 { | 
|  | return false | 
|  | } | 
|  | if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { | 
|  | return false | 
|  | } | 
|  | return verify(pub, c, hash, r, s) | 
|  | } | 
|  |  | 
|  | func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool { | 
|  | // SEC 1, Version 2.0, Section 4.1.4 | 
|  | e := hashToInt(hash, c) | 
|  | var w *big.Int | 
|  | N := c.Params().N | 
|  | if in, ok := c.(invertible); ok { | 
|  | w = in.Inverse(s) | 
|  | } else { | 
|  | w = new(big.Int).ModInverse(s, N) | 
|  | } | 
|  |  | 
|  | u1 := e.Mul(e, w) | 
|  | u1.Mod(u1, N) | 
|  | u2 := w.Mul(r, w) | 
|  | u2.Mod(u2, N) | 
|  |  | 
|  | // Check if implements S1*g + S2*p | 
|  | var x, y *big.Int | 
|  | if opt, ok := c.(combinedMult); ok { | 
|  | x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) | 
|  | } else { | 
|  | x1, y1 := c.ScalarBaseMult(u1.Bytes()) | 
|  | x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) | 
|  | x, y = c.Add(x1, y1, x2, y2) | 
|  | } | 
|  |  | 
|  | if x.Sign() == 0 && y.Sign() == 0 { | 
|  | return false | 
|  | } | 
|  | x.Mod(x, N) | 
|  | return x.Cmp(r) == 0 | 
|  | } | 
|  |  | 
|  | // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the | 
|  | // public key, pub. Its return value records whether the signature is valid. | 
|  | func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { | 
|  | var ( | 
|  | r, s  = &big.Int{}, &big.Int{} | 
|  | inner cryptobyte.String | 
|  | ) | 
|  | input := cryptobyte.String(sig) | 
|  | if !input.ReadASN1(&inner, asn1.SEQUENCE) || | 
|  | !input.Empty() || | 
|  | !inner.ReadASN1Integer(r) || | 
|  | !inner.ReadASN1Integer(s) || | 
|  | !inner.Empty() { | 
|  | return false | 
|  | } | 
|  | return Verify(pub, hash, r, s) | 
|  | } | 
|  |  | 
|  | type zr struct{} | 
|  |  | 
|  | // Read replaces the contents of dst with zeros. It is safe for concurrent use. | 
|  | func (zr) Read(dst []byte) (n int, err error) { | 
|  | for i := range dst { | 
|  | dst[i] = 0 | 
|  | } | 
|  | return len(dst), nil | 
|  | } | 
|  |  | 
|  | var zeroReader = zr{} |