blob: d657ddc867bad00f44a00a3e9af54b7507b99683 [file] [log] [blame]
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package abi
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"sync"
)
//......................................................................
//
// Public/exported bits of the ABI utilities.
//
// ABIParamResultInfo stores the results of processing a given
// function type to compute stack layout and register assignments. For
// each input and output parameter we capture whether the param was
// register-assigned (and to which register(s)) or the stack offset
// for the param if is not going to be passed in registers according
// to the rules in the Go internal ABI specification (1.17).
type ABIParamResultInfo struct {
inparams []ABIParamAssignment // Includes receiver for method calls. Does NOT include hidden closure pointer.
outparams []ABIParamAssignment
offsetToSpillArea int64
spillAreaSize int64
inRegistersUsed int
outRegistersUsed int
config *ABIConfig // to enable String() method
}
func (a *ABIParamResultInfo) Config() *ABIConfig {
return a.config
}
func (a *ABIParamResultInfo) InParams() []ABIParamAssignment {
return a.inparams
}
func (a *ABIParamResultInfo) OutParams() []ABIParamAssignment {
return a.outparams
}
func (a *ABIParamResultInfo) InRegistersUsed() int {
return a.inRegistersUsed
}
func (a *ABIParamResultInfo) OutRegistersUsed() int {
return a.outRegistersUsed
}
func (a *ABIParamResultInfo) InParam(i int) *ABIParamAssignment {
return &a.inparams[i]
}
func (a *ABIParamResultInfo) OutParam(i int) *ABIParamAssignment {
return &a.outparams[i]
}
func (a *ABIParamResultInfo) SpillAreaOffset() int64 {
return a.offsetToSpillArea
}
func (a *ABIParamResultInfo) SpillAreaSize() int64 {
return a.spillAreaSize
}
// ArgWidth returns the amount of stack needed for all the inputs
// and outputs of a function or method, including ABI-defined parameter
// slots and ABI-defined spill slots for register-resident parameters.
// The name is inherited from (*Type).ArgWidth(), which it replaces.
func (a *ABIParamResultInfo) ArgWidth() int64 {
return a.spillAreaSize + a.offsetToSpillArea - a.config.LocalsOffset()
}
// RegIndex stores the index into the set of machine registers used by
// the ABI on a specific architecture for parameter passing. RegIndex
// values 0 through N-1 (where N is the number of integer registers
// used for param passing according to the ABI rules) describe integer
// registers; values N through M (where M is the number of floating
// point registers used). Thus if the ABI says there are 5 integer
// registers and 7 floating point registers, then RegIndex value of 4
// indicates the 5th integer register, and a RegIndex value of 11
// indicates the 7th floating point register.
type RegIndex uint8
// ABIParamAssignment holds information about how a specific param or
// result will be passed: in registers (in which case 'Registers' is
// populated) or on the stack (in which case 'Offset' is set to a
// non-negative stack offset. The values in 'Registers' are indices
// (as described above), not architected registers.
type ABIParamAssignment struct {
Type *types.Type
Name types.Object // should always be *ir.Name, used to match with a particular ssa.OpArg.
Registers []RegIndex
offset int32
}
// Offset returns the stack offset for addressing the parameter that "a" describes.
// This will panic if "a" describes a register-allocated parameter.
func (a *ABIParamAssignment) Offset() int32 {
if len(a.Registers) > 0 {
base.Fatalf("register allocated parameters have no offset")
}
return a.offset
}
// RegisterTypes returns a slice of the types of the registers
// corresponding to a slice of parameters. The returned slice
// has capacity for one more, likely a memory type.
func RegisterTypes(apa []ABIParamAssignment) []*types.Type {
rcount := 0
for _, pa := range apa {
rcount += len(pa.Registers)
}
if rcount == 0 {
// Note that this catches top-level struct{} and [0]Foo, which are stack allocated.
return make([]*types.Type, 0, 1)
}
rts := make([]*types.Type, 0, rcount+1)
for _, pa := range apa {
if len(pa.Registers) == 0 {
continue
}
rts = appendParamTypes(rts, pa.Type)
}
return rts
}
func (pa *ABIParamAssignment) RegisterTypesAndOffsets() ([]*types.Type, []int64) {
l := len(pa.Registers)
if l == 0 {
return nil, nil
}
typs := make([]*types.Type, 0, l)
offs := make([]int64, 0, l)
offs, _ = appendParamOffsets(offs, 0, pa.Type)
return appendParamTypes(typs, pa.Type), offs
}
func appendParamTypes(rts []*types.Type, t *types.Type) []*types.Type {
w := t.Width
if w == 0 {
return rts
}
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() {
c := types.FloatForComplex(t)
return append(rts, c, c)
} else {
if int(t.Size()) <= types.RegSize {
return append(rts, t)
}
// assume 64bit int on 32-bit machine
// TODO endianness? Should high-order (sign bits) word come first?
if t.IsSigned() {
rts = append(rts, types.Types[types.TINT32])
} else {
rts = append(rts, types.Types[types.TUINT32])
}
return append(rts, types.Types[types.TUINT32])
}
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
for i := int64(0); i < t.NumElem(); i++ { // 0 gets no registers, plus future-proofing.
rts = appendParamTypes(rts, t.Elem())
}
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
if f.Type.Size() > 0 { // embedded zero-width types receive no registers
rts = appendParamTypes(rts, f.Type)
}
}
case types.TSLICE:
return appendParamTypes(rts, synthSlice)
case types.TSTRING:
return appendParamTypes(rts, synthString)
case types.TINTER:
return appendParamTypes(rts, synthIface)
}
}
return rts
}
// appendParamOffsets appends the offset(s) of type t, starting from "at",
// to input offsets, and returns the longer slice and the next unused offset.
func appendParamOffsets(offsets []int64, at int64, t *types.Type) ([]int64, int64) {
at = align(at, t)
w := t.Width
if w == 0 {
return offsets, at
}
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() || int(t.Width) > types.RegSize { // complex and *int64 on 32-bit
s := w / 2
return append(offsets, at, at+s), at + w
} else {
return append(offsets, at), at + w
}
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
for i := int64(0); i < t.NumElem(); i++ {
offsets, at = appendParamOffsets(offsets, at, t.Elem())
}
case types.TSTRUCT:
for i, f := range t.FieldSlice() {
offsets, at = appendParamOffsets(offsets, at, f.Type)
if f.Type.Width == 0 && i == t.NumFields()-1 {
at++ // last field has zero width
}
}
at = align(at, t) // type size is rounded up to its alignment
case types.TSLICE:
return appendParamOffsets(offsets, at, synthSlice)
case types.TSTRING:
return appendParamOffsets(offsets, at, synthString)
case types.TINTER:
return appendParamOffsets(offsets, at, synthIface)
}
}
return offsets, at
}
// FrameOffset returns the frame-pointer-relative location that a function
// would spill its input or output parameter to, if such a spill slot exists.
// If there is none defined (e.g., register-allocated outputs) it panics.
// For register-allocated inputs that is their spill offset reserved for morestack;
// for stack-allocated inputs and outputs, that is their location on the stack.
// (In a future version of the ABI, register-resident inputs may lose their defined
// spill area to help reduce stack sizes.)
func (a *ABIParamAssignment) FrameOffset(i *ABIParamResultInfo) int64 {
if a.offset == -1 {
base.Fatalf("function parameter has no ABI-defined frame-pointer offset")
}
if len(a.Registers) == 0 { // passed on stack
return int64(a.offset) - i.config.LocalsOffset()
}
// spill area for registers
return int64(a.offset) + i.SpillAreaOffset() - i.config.LocalsOffset()
}
// RegAmounts holds a specified number of integer/float registers.
type RegAmounts struct {
intRegs int
floatRegs int
}
// ABIConfig captures the number of registers made available
// by the ABI rules for parameter passing and result returning.
type ABIConfig struct {
// Do we need anything more than this?
offsetForLocals int64 // e.g., obj.(*Link).FixedFrameSize() -- extra linkage information on some architectures.
regAmounts RegAmounts
regsForTypeCache map[*types.Type]int
}
// NewABIConfig returns a new ABI configuration for an architecture with
// iRegsCount integer/pointer registers and fRegsCount floating point registers.
func NewABIConfig(iRegsCount, fRegsCount int, offsetForLocals int64) *ABIConfig {
return &ABIConfig{offsetForLocals: offsetForLocals, regAmounts: RegAmounts{iRegsCount, fRegsCount}, regsForTypeCache: make(map[*types.Type]int)}
}
// Copy returns a copy of an ABIConfig for use in a function's compilation so that access to the cache does not need to be protected with a mutex.
func (a *ABIConfig) Copy() *ABIConfig {
b := *a
b.regsForTypeCache = make(map[*types.Type]int)
return &b
}
// LocalsOffset returns the architecture-dependent offset from SP for args and results.
// In theory this is only used for debugging; it ought to already be incorporated into
// results from the ABI-related methods
func (a *ABIConfig) LocalsOffset() int64 {
return a.offsetForLocals
}
// FloatIndexFor translates r into an index in the floating point parameter
// registers. If the result is negative, the input index was actually for the
// integer parameter registers.
func (a *ABIConfig) FloatIndexFor(r RegIndex) int64 {
return int64(r) - int64(a.regAmounts.intRegs)
}
// NumParamRegs returns the number of parameter registers used for a given type,
// without regard for the number available.
func (a *ABIConfig) NumParamRegs(t *types.Type) int {
var n int
if n, ok := a.regsForTypeCache[t]; ok {
return n
}
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() {
n = 2
} else {
n = (int(t.Size()) + types.RegSize - 1) / types.RegSize
}
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
n = a.NumParamRegs(t.Elem()) * int(t.NumElem())
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
n += a.NumParamRegs(f.Type)
}
case types.TSLICE:
n = a.NumParamRegs(synthSlice)
case types.TSTRING:
n = a.NumParamRegs(synthString)
case types.TINTER:
n = a.NumParamRegs(synthIface)
}
}
a.regsForTypeCache[t] = n
return n
}
// preAllocateParams gets the slice sizes right for inputs and outputs.
func (a *ABIParamResultInfo) preAllocateParams(hasRcvr bool, nIns, nOuts int) {
if hasRcvr {
nIns++
}
a.inparams = make([]ABIParamAssignment, 0, nIns)
a.outparams = make([]ABIParamAssignment, 0, nOuts)
}
// ABIAnalyzeTypes takes an optional receiver type, arrays of ins and outs, and returns an ABIParamResultInfo,
// based on the given configuration. This is the same result computed by config.ABIAnalyze applied to the
// corresponding method/function type, except that all the embedded parameter names are nil.
// This is intended for use by ssagen/ssa.go:(*state).rtcall, for runtime functions that lack a parsed function type.
func (config *ABIConfig) ABIAnalyzeTypes(rcvr *types.Type, ins, outs []*types.Type) *ABIParamResultInfo {
setup()
s := assignState{
stackOffset: config.offsetForLocals,
rTotal: config.regAmounts,
}
result := &ABIParamResultInfo{config: config}
result.preAllocateParams(rcvr != nil, len(ins), len(outs))
// Receiver
if rcvr != nil {
result.inparams = append(result.inparams,
s.assignParamOrReturn(rcvr, nil, false))
}
// Inputs
for _, t := range ins {
result.inparams = append(result.inparams,
s.assignParamOrReturn(t, nil, false))
}
s.stackOffset = types.Rnd(s.stackOffset, int64(types.RegSize))
result.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
// Outputs
s.rUsed = RegAmounts{}
for _, t := range outs {
result.outparams = append(result.outparams, s.assignParamOrReturn(t, nil, true))
}
// The spill area is at a register-aligned offset and its size is rounded up to a register alignment.
// TODO in theory could align offset only to minimum required by spilled data types.
result.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize)
result.spillAreaSize = alignTo(s.spillOffset, types.RegSize)
result.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
return result
}
// ABIAnalyzeFuncType takes a function type 'ft' and an ABI rules description
// 'config' and analyzes the function to determine how its parameters
// and results will be passed (in registers or on the stack), returning
// an ABIParamResultInfo object that holds the results of the analysis.
func (config *ABIConfig) ABIAnalyzeFuncType(ft *types.Func) *ABIParamResultInfo {
setup()
s := assignState{
stackOffset: config.offsetForLocals,
rTotal: config.regAmounts,
}
result := &ABIParamResultInfo{config: config}
result.preAllocateParams(ft.Receiver != nil, ft.Params.NumFields(), ft.Results.NumFields())
// Receiver
// TODO(register args) ? seems like "struct" and "fields" is not right anymore for describing function parameters
if ft.Receiver != nil && ft.Receiver.NumFields() != 0 {
r := ft.Receiver.FieldSlice()[0]
result.inparams = append(result.inparams,
s.assignParamOrReturn(r.Type, r.Nname, false))
}
// Inputs
ifsl := ft.Params.FieldSlice()
for _, f := range ifsl {
result.inparams = append(result.inparams,
s.assignParamOrReturn(f.Type, f.Nname, false))
}
s.stackOffset = types.Rnd(s.stackOffset, int64(types.RegSize))
result.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
// Outputs
s.rUsed = RegAmounts{}
ofsl := ft.Results.FieldSlice()
for _, f := range ofsl {
result.outparams = append(result.outparams, s.assignParamOrReturn(f.Type, f.Nname, true))
}
// The spill area is at a register-aligned offset and its size is rounded up to a register alignment.
// TODO in theory could align offset only to minimum required by spilled data types.
result.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize)
result.spillAreaSize = alignTo(s.spillOffset, types.RegSize)
result.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
return result
}
// ABIAnalyze returns the same result as ABIAnalyzeFuncType, but also
// updates the offsets of all the receiver, input, and output fields.
// If setNname is true, it also sets the FrameOffset of the Nname for
// the field(s); this is for use when compiling a function and figuring out
// spill locations. Doing this for callers can cause races for register
// outputs because their frame location transitions from BOGUS_FUNARG_OFFSET
// to zero to an as-if-AUTO offset that has no use for callers.
func (config *ABIConfig) ABIAnalyze(t *types.Type, setNname bool) *ABIParamResultInfo {
ft := t.FuncType()
result := config.ABIAnalyzeFuncType(ft)
// Fill in the frame offsets for receiver, inputs, results
k := 0
if t.NumRecvs() != 0 {
config.updateOffset(result, ft.Receiver.FieldSlice()[0], result.inparams[0], false, setNname)
k++
}
for i, f := range ft.Params.FieldSlice() {
config.updateOffset(result, f, result.inparams[k+i], false, setNname)
}
for i, f := range ft.Results.FieldSlice() {
config.updateOffset(result, f, result.outparams[i], true, setNname)
}
return result
}
func (config *ABIConfig) updateOffset(result *ABIParamResultInfo, f *types.Field, a ABIParamAssignment, isReturn, setNname bool) {
// Everything except return values in registers has either a frame home (if not in a register) or a frame spill location.
if !isReturn || len(a.Registers) == 0 {
// The type frame offset DOES NOT show effects of minimum frame size.
// Getting this wrong breaks stackmaps, see liveness/plive.go:WriteFuncMap and typebits/typebits.go:Set
off := a.FrameOffset(result)
fOffset := f.Offset
if fOffset == types.BOGUS_FUNARG_OFFSET {
if setNname && f.Nname != nil {
f.Nname.(*ir.Name).SetFrameOffset(off)
f.Nname.(*ir.Name).SetIsOutputParamInRegisters(false)
}
} else {
base.Fatalf("field offset for %s at %s has been set to %d", f.Sym.Name, base.FmtPos(f.Pos), fOffset)
}
} else {
if setNname && f.Nname != nil {
fname := f.Nname.(*ir.Name)
fname.SetIsOutputParamInRegisters(true)
fname.SetFrameOffset(0)
}
}
}
//......................................................................
//
// Non-public portions.
// regString produces a human-readable version of a RegIndex.
func (c *RegAmounts) regString(r RegIndex) string {
if int(r) < c.intRegs {
return fmt.Sprintf("I%d", int(r))
} else if int(r) < c.intRegs+c.floatRegs {
return fmt.Sprintf("F%d", int(r)-c.intRegs)
}
return fmt.Sprintf("<?>%d", r)
}
// ToString method renders an ABIParamAssignment in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamAssignment) ToString(config *ABIConfig, extra bool) string {
regs := "R{"
offname := "spilloffset" // offset is for spill for register(s)
if len(ri.Registers) == 0 {
offname = "offset" // offset is for memory arg
}
for _, r := range ri.Registers {
regs += " " + config.regAmounts.regString(r)
if extra {
regs += fmt.Sprintf("(%d)", r)
}
}
if extra {
regs += fmt.Sprintf(" | #I=%d, #F=%d", config.regAmounts.intRegs, config.regAmounts.floatRegs)
}
return fmt.Sprintf("%s } %s: %d typ: %v", regs, offname, ri.offset, ri.Type)
}
// String method renders an ABIParamResultInfo in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamResultInfo) String() string {
res := ""
for k, p := range ri.inparams {
res += fmt.Sprintf("IN %d: %s\n", k, p.ToString(ri.config, false))
}
for k, r := range ri.outparams {
res += fmt.Sprintf("OUT %d: %s\n", k, r.ToString(ri.config, false))
}
res += fmt.Sprintf("offsetToSpillArea: %d spillAreaSize: %d",
ri.offsetToSpillArea, ri.spillAreaSize)
return res
}
// assignState holds intermediate state during the register assigning process
// for a given function signature.
type assignState struct {
rTotal RegAmounts // total reg amounts from ABI rules
rUsed RegAmounts // regs used by params completely assigned so far
pUsed RegAmounts // regs used by the current param (or pieces therein)
stackOffset int64 // current stack offset
spillOffset int64 // current spill offset
}
// align returns a rounded up to t's alignment
func align(a int64, t *types.Type) int64 {
return alignTo(a, int(t.Align))
}
// alignTo returns a rounded up to t, where t must be 0 or a power of 2.
func alignTo(a int64, t int) int64 {
if t == 0 {
return a
}
return types.Rnd(a, int64(t))
}
// stackSlot returns a stack offset for a param or result of the
// specified type.
func (state *assignState) stackSlot(t *types.Type) int64 {
rv := align(state.stackOffset, t)
state.stackOffset = rv + t.Width
return rv
}
// allocateRegs returns an ordered list of register indices for a parameter or result
// that we've just determined to be register-assignable. The number of registers
// needed is assumed to be stored in state.pUsed.
func (state *assignState) allocateRegs(regs []RegIndex, t *types.Type) []RegIndex {
if t.Width == 0 {
return regs
}
ri := state.rUsed.intRegs
rf := state.rUsed.floatRegs
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() {
regs = append(regs, RegIndex(rf+state.rTotal.intRegs), RegIndex(rf+1+state.rTotal.intRegs))
rf += 2
} else if t.IsFloat() {
regs = append(regs, RegIndex(rf+state.rTotal.intRegs))
rf += 1
} else {
n := (int(t.Size()) + types.RegSize - 1) / types.RegSize
for i := 0; i < n; i++ { // looking ahead to really big integers
regs = append(regs, RegIndex(ri))
ri += 1
}
}
state.rUsed.intRegs = ri
state.rUsed.floatRegs = rf
return regs
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
for i := int64(0); i < t.NumElem(); i++ {
regs = state.allocateRegs(regs, t.Elem())
}
return regs
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
regs = state.allocateRegs(regs, f.Type)
}
return regs
case types.TSLICE:
return state.allocateRegs(regs, synthSlice)
case types.TSTRING:
return state.allocateRegs(regs, synthString)
case types.TINTER:
return state.allocateRegs(regs, synthIface)
}
}
base.Fatalf("was not expecting type %s", t)
panic("unreachable")
}
// regAllocate creates a register ABIParamAssignment object for a param
// or result with the specified type, as a final step (this assumes
// that all of the safety/suitability analysis is complete).
func (state *assignState) regAllocate(t *types.Type, name types.Object, isReturn bool) ABIParamAssignment {
spillLoc := int64(-1)
if !isReturn {
// Spill for register-resident t must be aligned for storage of a t.
spillLoc = align(state.spillOffset, t)
state.spillOffset = spillLoc + t.Size()
}
return ABIParamAssignment{
Type: t,
Name: name,
Registers: state.allocateRegs([]RegIndex{}, t),
offset: int32(spillLoc),
}
}
// stackAllocate creates a stack memory ABIParamAssignment object for
// a param or result with the specified type, as a final step (this
// assumes that all of the safety/suitability analysis is complete).
func (state *assignState) stackAllocate(t *types.Type, name types.Object) ABIParamAssignment {
return ABIParamAssignment{
Type: t,
Name: name,
offset: int32(state.stackSlot(t)),
}
}
// intUsed returns the number of integer registers consumed
// at a given point within an assignment stage.
func (state *assignState) intUsed() int {
return state.rUsed.intRegs + state.pUsed.intRegs
}
// floatUsed returns the number of floating point registers consumed at
// a given point within an assignment stage.
func (state *assignState) floatUsed() int {
return state.rUsed.floatRegs + state.pUsed.floatRegs
}
// regassignIntegral examines a param/result of integral type 't' to
// determines whether it can be register-assigned. Returns TRUE if we
// can register allocate, FALSE otherwise (and updates state
// accordingly).
func (state *assignState) regassignIntegral(t *types.Type) bool {
regsNeeded := int(types.Rnd(t.Width, int64(types.PtrSize)) / int64(types.PtrSize))
if t.IsComplex() {
regsNeeded = 2
}
// Floating point and complex.
if t.IsFloat() || t.IsComplex() {
if regsNeeded+state.floatUsed() > state.rTotal.floatRegs {
// not enough regs
return false
}
state.pUsed.floatRegs += regsNeeded
return true
}
// Non-floating point
if regsNeeded+state.intUsed() > state.rTotal.intRegs {
// not enough regs
return false
}
state.pUsed.intRegs += regsNeeded
return true
}
// regassignArray processes an array type (or array component within some
// other enclosing type) to determine if it can be register assigned.
// Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignArray(t *types.Type) bool {
nel := t.NumElem()
if nel == 0 {
return true
}
if nel > 1 {
// Not an array of length 1: stack assign
return false
}
// Visit element
return state.regassign(t.Elem())
}
// regassignStruct processes a struct type (or struct component within
// some other enclosing type) to determine if it can be register
// assigned. Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignStruct(t *types.Type) bool {
for _, field := range t.FieldSlice() {
if !state.regassign(field.Type) {
return false
}
}
return true
}
// synthOnce ensures that we only create the synth* fake types once.
var synthOnce sync.Once
// synthSlice, synthString, and syncIface are synthesized struct types
// meant to capture the underlying implementations of string/slice/interface.
var synthSlice *types.Type
var synthString *types.Type
var synthIface *types.Type
// setup performs setup for the register assignment utilities, manufacturing
// a small set of synthesized types that we'll need along the way.
func setup() {
synthOnce.Do(func() {
fname := types.BuiltinPkg.Lookup
nxp := src.NoXPos
unsp := types.Types[types.TUNSAFEPTR]
ui := types.Types[types.TUINTPTR]
synthSlice = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("ptr"), unsp),
types.NewField(nxp, fname("len"), ui),
types.NewField(nxp, fname("cap"), ui),
})
synthString = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("data"), unsp),
types.NewField(nxp, fname("len"), ui),
})
synthIface = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("f1"), unsp),
types.NewField(nxp, fname("f2"), unsp),
})
})
}
// regassign examines a given param type (or component within some
// composite) to determine if it can be register assigned. Returns
// TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassign(pt *types.Type) bool {
typ := pt.Kind()
if pt.IsScalar() || pt.IsPtrShaped() {
return state.regassignIntegral(pt)
}
switch typ {
case types.TARRAY:
return state.regassignArray(pt)
case types.TSTRUCT:
return state.regassignStruct(pt)
case types.TSLICE:
return state.regassignStruct(synthSlice)
case types.TSTRING:
return state.regassignStruct(synthString)
case types.TINTER:
return state.regassignStruct(synthIface)
default:
base.Fatalf("not expected")
panic("unreachable")
}
}
// assignParamOrReturn processes a given receiver, param, or result
// of field f to determine whether it can be register assigned.
// The result of the analysis is recorded in the result
// ABIParamResultInfo held in 'state'.
func (state *assignState) assignParamOrReturn(pt *types.Type, n types.Object, isReturn bool) ABIParamAssignment {
state.pUsed = RegAmounts{}
if pt.Width == types.BADWIDTH {
base.Fatalf("should never happen")
panic("unreachable")
} else if pt.Width == 0 {
return state.stackAllocate(pt, n)
} else if state.regassign(pt) {
return state.regAllocate(pt, n, isReturn)
} else {
return state.stackAllocate(pt, n)
}
}
// ComputePadding returns a list of "post element" padding values in
// the case where we have a structure being passed in registers. Give
// a param assignment corresponding to a struct, it returns a list of
// contaning padding values for each field, e.g. the Kth element in
// the list is the amount of padding between field K and the following
// field. For things that are not struct (or structs without padding)
// it returns a list of zeros. Example:
//
// type small struct {
// x uint16
// y uint8
// z int32
// w int32
// }
//
// For this struct we would return a list [0, 1, 0, 0], meaning that
// we have one byte of padding after the second field, and no bytes of
// padding after any of the other fields. Input parameter "storage"
// is with enough capacity to accommodate padding elements for
// the architected register set in question.
func (pa *ABIParamAssignment) ComputePadding(storage []uint64) []uint64 {
nr := len(pa.Registers)
padding := storage[:nr]
for i := 0; i < nr; i++ {
padding[i] = 0
}
if pa.Type.Kind() != types.TSTRUCT || nr == 0 {
return padding
}
types := make([]*types.Type, 0, nr)
types = appendParamTypes(types, pa.Type)
if len(types) != nr {
panic("internal error")
}
off := int64(0)
for idx, t := range types {
ts := t.Size()
off += int64(ts)
if idx < len(types)-1 {
noff := align(off, types[idx+1])
if noff != off {
padding[idx] = uint64(noff - off)
}
}
}
return padding
}