blob: cecf349a9ad7da758487ef03eccfc28f22d9751d [file] [log] [blame]
// run -gcflags=-G=3
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"errors"
"fmt"
)
// _Equal reports whether two slices are equal: the same length and all
// elements equal. All floating point NaNs are considered equal.
func _SliceEqual[Elem comparable](s1, s2 []Elem) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if v1 != v2 {
isNaN := func(f Elem) bool { return f != f }
if !isNaN(v1) || !isNaN(v2) {
return false
}
}
}
return true
}
// A Graph is a collection of nodes. A node may have an arbitrary number
// of edges. An edge connects two nodes. Both nodes and edges must be
// comparable. This is an undirected simple graph.
type _Graph[_Node _NodeC[_Edge], _Edge _EdgeC[_Node]] struct {
nodes []_Node
}
// _NodeC is the contraints on a node in a graph, given the _Edge type.
type _NodeC[_Edge any] interface {
comparable
Edges() []_Edge
}
// Edgec is the constraints on an edge in a graph, given the _Node type.
type _EdgeC[_Node any] interface {
comparable
Nodes() (a, b _Node)
}
// _New creates a new _Graph from a collection of Nodes.
func _New[_Node _NodeC[_Edge], _Edge _EdgeC[_Node]](nodes []_Node) *_Graph[_Node, _Edge] {
return &_Graph[_Node, _Edge]{nodes: nodes}
}
// nodePath holds the path to a node during ShortestPath.
// This should ideally be a type defined inside ShortestPath,
// but the translator tool doesn't support that.
type nodePath[_Node _NodeC[_Edge], _Edge _EdgeC[_Node]] struct {
node _Node
path []_Edge
}
// ShortestPath returns the shortest path between two nodes,
// as an ordered list of edges. If there are multiple shortest paths,
// which one is returned is unpredictable.
func (g *_Graph[_Node, _Edge]) ShortestPath(from, to _Node) ([]_Edge, error) {
visited := make(map[_Node]bool)
visited[from] = true
workqueue := []nodePath[_Node, _Edge]{nodePath[_Node, _Edge]{from, nil}}
for len(workqueue) > 0 {
current := workqueue
workqueue = nil
for _, np := range current {
edges := np.node.Edges()
for _, edge := range edges {
a, b := edge.Nodes()
if a == np.node {
a = b
}
if !visited[a] {
ve := append([]_Edge(nil), np.path...)
ve = append(ve, edge)
if a == to {
return ve, nil
}
workqueue = append(workqueue, nodePath[_Node, _Edge]{a, ve})
visited[a] = true
}
}
}
}
return nil, errors.New("no path")
}
type direction int
const (
north direction = iota
ne
east
se
south
sw
west
nw
up
down
)
func (dir direction) String() string {
strs := map[direction]string{
north: "north",
ne: "ne",
east: "east",
se: "se",
south: "south",
sw: "sw",
west: "west",
nw: "nw",
up: "up",
down: "down",
}
if str, ok := strs[dir]; ok {
return str
}
return fmt.Sprintf("direction %d", dir)
}
type mazeRoom struct {
index int
exits [10]int
}
type mazeEdge struct {
from, to int
dir direction
}
// Edges returns the exits from the room.
func (m mazeRoom) Edges() []mazeEdge {
var r []mazeEdge
for i, exit := range m.exits {
if exit != 0 {
r = append(r, mazeEdge{
from: m.index,
to: exit,
dir: direction(i),
})
}
}
return r
}
// Nodes returns the rooms connected by an edge.
//go:noinline
func (e mazeEdge) Nodes() (mazeRoom, mazeRoom) {
m1, ok := zork[e.from]
if !ok {
panic("bad edge")
}
m2, ok := zork[e.to]
if !ok {
panic("bad edge")
}
return m1, m2
}
// The first maze in Zork. Room indexes based on original Fortran data file.
// You are in a maze of twisty little passages, all alike.
var zork = map[int]mazeRoom{
11: {exits: [10]int{north: 11, south: 12, east: 14}}, // west to Troll Room
12: {exits: [10]int{south: 11, north: 14, east: 13}},
13: {exits: [10]int{west: 12, north: 14, up: 16}},
14: {exits: [10]int{west: 13, north: 11, east: 15}},
15: {exits: [10]int{south: 14}}, // Dead End
16: {exits: [10]int{east: 17, north: 13, sw: 18}}, // skeleton, etc.
17: {exits: [10]int{west: 16}}, // Dead End
18: {exits: [10]int{down: 16, east: 19, west: 18, up: 22}},
19: {exits: [10]int{up: 29, west: 18, ne: 15, east: 20, south: 30}},
20: {exits: [10]int{ne: 19, west: 20, se: 21}},
21: {exits: [10]int{north: 20}}, // Dead End
22: {exits: [10]int{north: 18, east: 24, down: 23, south: 28, west: 26, nw: 22}},
23: {exits: [10]int{east: 22, west: 28, up: 24}},
24: {exits: [10]int{ne: 25, down: 23, nw: 28, sw: 26}},
25: {exits: [10]int{sw: 24}}, // Grating room (up to Clearing)
26: {exits: [10]int{west: 16, sw: 24, east: 28, up: 22, north: 27}},
27: {exits: [10]int{south: 26}}, // Dead End
28: {exits: [10]int{east: 22, down: 26, south: 23, west: 24}},
29: {exits: [10]int{west: 30, nw: 29, ne: 19, south: 19}},
30: {exits: [10]int{west: 29, south: 19}}, // ne to Cyclops Room
}
func TestShortestPath() {
// The Zork maze is not a proper undirected simple graph,
// as there are some one way paths (e.g., 19 -> 15),
// but for this test that doesn't matter.
// Set the index field in the map. Simpler than doing it in the
// composite literal.
for k := range zork {
r := zork[k]
r.index = k
zork[k] = r
}
var nodes []mazeRoom
for idx, room := range zork {
mridx := room
mridx.index = idx
nodes = append(nodes, mridx)
}
g := _New[mazeRoom, mazeEdge](nodes)
path, err := g.ShortestPath(zork[11], zork[30])
if err != nil {
panic(fmt.Sprintf("%v", err))
}
var steps []direction
for _, edge := range path {
steps = append(steps, edge.dir)
}
want := []direction{east, west, up, sw, east, south}
if !_SliceEqual(steps, want) {
panic(fmt.Sprintf("ShortestPath returned %v, want %v", steps, want))
}
}
func main() {
TestShortestPath()
}