| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| import ( |
| "internal/abi" |
| "internal/bytealg" |
| "internal/goarch" |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| // The code in this file implements stack trace walking for all architectures. |
| // The most important fact about a given architecture is whether it uses a link register. |
| // On systems with link registers, the prologue for a non-leaf function stores the |
| // incoming value of LR at the bottom of the newly allocated stack frame. |
| // On systems without link registers (x86), the architecture pushes a return PC during |
| // the call instruction, so the return PC ends up above the stack frame. |
| // In this file, the return PC is always called LR, no matter how it was found. |
| |
| const usesLR = sys.MinFrameSize > 0 |
| |
| const ( |
| // tracebackInnerFrames is the number of innermost frames to print in a |
| // stack trace. The total maximum frames is tracebackInnerFrames + |
| // tracebackOuterFrames. |
| tracebackInnerFrames = 50 |
| |
| // tracebackOuterFrames is the number of outermost frames to print in a |
| // stack trace. |
| tracebackOuterFrames = 50 |
| ) |
| |
| // unwindFlags control the behavior of various unwinders. |
| type unwindFlags uint8 |
| |
| const ( |
| // unwindPrintErrors indicates that if unwinding encounters an error, it |
| // should print a message and stop without throwing. This is used for things |
| // like stack printing, where it's better to get incomplete information than |
| // to crash. This is also used in situations where everything may not be |
| // stopped nicely and the stack walk may not be able to complete, such as |
| // during profiling signals or during a crash. |
| // |
| // If neither unwindPrintErrors or unwindSilentErrors are set, unwinding |
| // performs extra consistency checks and throws on any error. |
| // |
| // Note that there are a small number of fatal situations that will throw |
| // regardless of unwindPrintErrors or unwindSilentErrors. |
| unwindPrintErrors unwindFlags = 1 << iota |
| |
| // unwindSilentErrors silently ignores errors during unwinding. |
| unwindSilentErrors |
| |
| // unwindTrap indicates that the initial PC and SP are from a trap, not a |
| // return PC from a call. |
| // |
| // The unwindTrap flag is updated during unwinding. If set, frame.pc is the |
| // address of a faulting instruction instead of the return address of a |
| // call. It also means the liveness at pc may not be known. |
| // |
| // TODO: Distinguish frame.continpc, which is really the stack map PC, from |
| // the actual continuation PC, which is computed differently depending on |
| // this flag and a few other things. |
| unwindTrap |
| |
| // unwindJumpStack indicates that, if the traceback is on a system stack, it |
| // should resume tracing at the user stack when the system stack is |
| // exhausted. |
| unwindJumpStack |
| ) |
| |
| // An unwinder iterates the physical stack frames of a Go sack. |
| // |
| // Typical use of an unwinder looks like: |
| // |
| // var u unwinder |
| // for u.init(gp, 0); u.valid(); u.next() { |
| // // ... use frame info in u ... |
| // } |
| // |
| // Implementation note: This is carefully structured to be pointer-free because |
| // tracebacks happen in places that disallow write barriers (e.g., signals). |
| // Even if this is stack-allocated, its pointer-receiver methods don't know that |
| // their receiver is on the stack, so they still emit write barriers. Here we |
| // address that by carefully avoiding any pointers in this type. Another |
| // approach would be to split this into a mutable part that's passed by pointer |
| // but contains no pointers itself and an immutable part that's passed and |
| // returned by value and can contain pointers. We could potentially hide that |
| // we're doing that in trivial methods that are inlined into the caller that has |
| // the stack allocation, but that's fragile. |
| type unwinder struct { |
| // frame is the current physical stack frame, or all 0s if |
| // there is no frame. |
| frame stkframe |
| |
| // g is the G who's stack is being unwound. If the |
| // unwindJumpStack flag is set and the unwinder jumps stacks, |
| // this will be different from the initial G. |
| g guintptr |
| |
| // cgoCtxt is the index into g.cgoCtxt of the next frame on the cgo stack. |
| // The cgo stack is unwound in tandem with the Go stack as we find marker frames. |
| cgoCtxt int |
| |
| // calleeFuncID is the function ID of the caller of the current |
| // frame. |
| calleeFuncID abi.FuncID |
| |
| // flags are the flags to this unwind. Some of these are updated as we |
| // unwind (see the flags documentation). |
| flags unwindFlags |
| } |
| |
| // init initializes u to start unwinding gp's stack and positions the |
| // iterator on gp's innermost frame. gp must not be the current G. |
| // |
| // A single unwinder can be reused for multiple unwinds. |
| func (u *unwinder) init(gp *g, flags unwindFlags) { |
| // Implementation note: This starts the iterator on the first frame and we |
| // provide a "valid" method. Alternatively, this could start in a "before |
| // the first frame" state and "next" could return whether it was able to |
| // move to the next frame, but that's both more awkward to use in a "for" |
| // loop and is harder to implement because we have to do things differently |
| // for the first frame. |
| u.initAt(^uintptr(0), ^uintptr(0), ^uintptr(0), gp, flags) |
| } |
| |
| func (u *unwinder) initAt(pc0, sp0, lr0 uintptr, gp *g, flags unwindFlags) { |
| // Don't call this "g"; it's too easy get "g" and "gp" confused. |
| if ourg := getg(); ourg == gp && ourg == ourg.m.curg { |
| // The starting sp has been passed in as a uintptr, and the caller may |
| // have other uintptr-typed stack references as well. |
| // If during one of the calls that got us here or during one of the |
| // callbacks below the stack must be grown, all these uintptr references |
| // to the stack will not be updated, and traceback will continue |
| // to inspect the old stack memory, which may no longer be valid. |
| // Even if all the variables were updated correctly, it is not clear that |
| // we want to expose a traceback that begins on one stack and ends |
| // on another stack. That could confuse callers quite a bit. |
| // Instead, we require that initAt and any other function that |
| // accepts an sp for the current goroutine (typically obtained by |
| // calling getcallersp) must not run on that goroutine's stack but |
| // instead on the g0 stack. |
| throw("cannot trace user goroutine on its own stack") |
| } |
| |
| if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp. |
| if gp.syscallsp != 0 { |
| pc0 = gp.syscallpc |
| sp0 = gp.syscallsp |
| if usesLR { |
| lr0 = 0 |
| } |
| } else { |
| pc0 = gp.sched.pc |
| sp0 = gp.sched.sp |
| if usesLR { |
| lr0 = gp.sched.lr |
| } |
| } |
| } |
| |
| var frame stkframe |
| frame.pc = pc0 |
| frame.sp = sp0 |
| if usesLR { |
| frame.lr = lr0 |
| } |
| |
| // If the PC is zero, it's likely a nil function call. |
| // Start in the caller's frame. |
| if frame.pc == 0 { |
| if usesLR { |
| frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp)) |
| frame.lr = 0 |
| } else { |
| frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp)) |
| frame.sp += goarch.PtrSize |
| } |
| } |
| |
| // runtime/internal/atomic functions call into kernel helpers on |
| // arm < 7. See runtime/internal/atomic/sys_linux_arm.s. |
| // |
| // Start in the caller's frame. |
| if GOARCH == "arm" && goarm < 7 && GOOS == "linux" && frame.pc&0xffff0000 == 0xffff0000 { |
| // Note that the calls are simple BL without pushing the return |
| // address, so we use LR directly. |
| // |
| // The kernel helpers are frameless leaf functions, so SP and |
| // LR are not touched. |
| frame.pc = frame.lr |
| frame.lr = 0 |
| } |
| |
| f := findfunc(frame.pc) |
| if !f.valid() { |
| if flags&unwindSilentErrors == 0 { |
| print("runtime: g ", gp.goid, " gp=", gp, ": unknown pc ", hex(frame.pc), "\n") |
| tracebackHexdump(gp.stack, &frame, 0) |
| } |
| if flags&(unwindPrintErrors|unwindSilentErrors) == 0 { |
| throw("unknown pc") |
| } |
| *u = unwinder{} |
| return |
| } |
| frame.fn = f |
| |
| // Populate the unwinder. |
| *u = unwinder{ |
| frame: frame, |
| g: gp.guintptr(), |
| cgoCtxt: len(gp.cgoCtxt) - 1, |
| calleeFuncID: abi.FuncIDNormal, |
| flags: flags, |
| } |
| |
| isSyscall := frame.pc == pc0 && frame.sp == sp0 && pc0 == gp.syscallpc && sp0 == gp.syscallsp |
| u.resolveInternal(true, isSyscall) |
| } |
| |
| func (u *unwinder) valid() bool { |
| return u.frame.pc != 0 |
| } |
| |
| // resolveInternal fills in u.frame based on u.frame.fn, pc, and sp. |
| // |
| // innermost indicates that this is the first resolve on this stack. If |
| // innermost is set, isSyscall indicates that the PC/SP was retrieved from |
| // gp.syscall*; this is otherwise ignored. |
| // |
| // On entry, u.frame contains: |
| // - fn is the running function. |
| // - pc is the PC in the running function. |
| // - sp is the stack pointer at that program counter. |
| // - For the innermost frame on LR machines, lr is the program counter that called fn. |
| // |
| // On return, u.frame contains: |
| // - fp is the stack pointer of the caller. |
| // - lr is the program counter that called fn. |
| // - varp, argp, and continpc are populated for the current frame. |
| // |
| // If fn is a stack-jumping function, resolveInternal can change the entire |
| // frame state to follow that stack jump. |
| // |
| // This is internal to unwinder. |
| func (u *unwinder) resolveInternal(innermost, isSyscall bool) { |
| frame := &u.frame |
| gp := u.g.ptr() |
| |
| f := frame.fn |
| if f.pcsp == 0 { |
| // No frame information, must be external function, like race support. |
| // See golang.org/issue/13568. |
| u.finishInternal() |
| return |
| } |
| |
| // Compute function info flags. |
| flag := f.flag |
| if f.funcID == abi.FuncID_cgocallback { |
| // cgocallback does write SP to switch from the g0 to the curg stack, |
| // but it carefully arranges that during the transition BOTH stacks |
| // have cgocallback frame valid for unwinding through. |
| // So we don't need to exclude it with the other SP-writing functions. |
| flag &^= abi.FuncFlagSPWrite |
| } |
| if isSyscall { |
| // Some Syscall functions write to SP, but they do so only after |
| // saving the entry PC/SP using entersyscall. |
| // Since we are using the entry PC/SP, the later SP write doesn't matter. |
| flag &^= abi.FuncFlagSPWrite |
| } |
| |
| // Found an actual function. |
| // Derive frame pointer. |
| if frame.fp == 0 { |
| // Jump over system stack transitions. If we're on g0 and there's a user |
| // goroutine, try to jump. Otherwise this is a regular call. |
| // We also defensively check that this won't switch M's on us, |
| // which could happen at critical points in the scheduler. |
| // This ensures gp.m doesn't change from a stack jump. |
| if u.flags&unwindJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil && gp.m.curg.m == gp.m { |
| switch f.funcID { |
| case abi.FuncID_morestack: |
| // morestack does not return normally -- newstack() |
| // gogo's to curg.sched. Match that. |
| // This keeps morestack() from showing up in the backtrace, |
| // but that makes some sense since it'll never be returned |
| // to. |
| gp = gp.m.curg |
| u.g.set(gp) |
| frame.pc = gp.sched.pc |
| frame.fn = findfunc(frame.pc) |
| f = frame.fn |
| flag = f.flag |
| frame.lr = gp.sched.lr |
| frame.sp = gp.sched.sp |
| u.cgoCtxt = len(gp.cgoCtxt) - 1 |
| case abi.FuncID_systemstack: |
| // systemstack returns normally, so just follow the |
| // stack transition. |
| if usesLR && funcspdelta(f, frame.pc) == 0 { |
| // We're at the function prologue and the stack |
| // switch hasn't happened, or epilogue where we're |
| // about to return. Just unwind normally. |
| // Do this only on LR machines because on x86 |
| // systemstack doesn't have an SP delta (the CALL |
| // instruction opens the frame), therefore no way |
| // to check. |
| flag &^= abi.FuncFlagSPWrite |
| break |
| } |
| gp = gp.m.curg |
| u.g.set(gp) |
| frame.sp = gp.sched.sp |
| u.cgoCtxt = len(gp.cgoCtxt) - 1 |
| flag &^= abi.FuncFlagSPWrite |
| } |
| } |
| frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc)) |
| if !usesLR { |
| // On x86, call instruction pushes return PC before entering new function. |
| frame.fp += goarch.PtrSize |
| } |
| } |
| |
| // Derive link register. |
| if flag&abi.FuncFlagTopFrame != 0 { |
| // This function marks the top of the stack. Stop the traceback. |
| frame.lr = 0 |
| } else if flag&abi.FuncFlagSPWrite != 0 && (!innermost || u.flags&(unwindPrintErrors|unwindSilentErrors) != 0) { |
| // The function we are in does a write to SP that we don't know |
| // how to encode in the spdelta table. Examples include context |
| // switch routines like runtime.gogo but also any code that switches |
| // to the g0 stack to run host C code. |
| // We can't reliably unwind the SP (we might not even be on |
| // the stack we think we are), so stop the traceback here. |
| // |
| // The one exception (encoded in the complex condition above) is that |
| // we assume if we're doing a precise traceback, and this is the |
| // innermost frame, that the SPWRITE function voluntarily preempted itself on entry |
| // during the stack growth check. In that case, the function has |
| // not yet had a chance to do any writes to SP and is safe to unwind. |
| // isAsyncSafePoint does not allow assembly functions to be async preempted, |
| // and preemptPark double-checks that SPWRITE functions are not async preempted. |
| // So for GC stack traversal, we can safely ignore SPWRITE for the innermost frame, |
| // but farther up the stack we'd better not find any. |
| // This is somewhat imprecise because we're just guessing that we're in the stack |
| // growth check. It would be better if SPWRITE were encoded in the spdelta |
| // table so we would know for sure that we were still in safe code. |
| // |
| // uSE uPE inn | action |
| // T _ _ | frame.lr = 0 |
| // F T _ | frame.lr = 0 |
| // F F F | print; panic |
| // F F T | ignore SPWrite |
| if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && !innermost { |
| println("traceback: unexpected SPWRITE function", funcname(f)) |
| throw("traceback") |
| } |
| frame.lr = 0 |
| } else { |
| var lrPtr uintptr |
| if usesLR { |
| if innermost && frame.sp < frame.fp || frame.lr == 0 { |
| lrPtr = frame.sp |
| frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr)) |
| } |
| } else { |
| if frame.lr == 0 { |
| lrPtr = frame.fp - goarch.PtrSize |
| frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr)) |
| } |
| } |
| } |
| |
| frame.varp = frame.fp |
| if !usesLR { |
| // On x86, call instruction pushes return PC before entering new function. |
| frame.varp -= goarch.PtrSize |
| } |
| |
| // For architectures with frame pointers, if there's |
| // a frame, then there's a saved frame pointer here. |
| // |
| // NOTE: This code is not as general as it looks. |
| // On x86, the ABI is to save the frame pointer word at the |
| // top of the stack frame, so we have to back down over it. |
| // On arm64, the frame pointer should be at the bottom of |
| // the stack (with R29 (aka FP) = RSP), in which case we would |
| // not want to do the subtraction here. But we started out without |
| // any frame pointer, and when we wanted to add it, we didn't |
| // want to break all the assembly doing direct writes to 8(RSP) |
| // to set the first parameter to a called function. |
| // So we decided to write the FP link *below* the stack pointer |
| // (with R29 = RSP - 8 in Go functions). |
| // This is technically ABI-compatible but not standard. |
| // And it happens to end up mimicking the x86 layout. |
| // Other architectures may make different decisions. |
| if frame.varp > frame.sp && framepointer_enabled { |
| frame.varp -= goarch.PtrSize |
| } |
| |
| frame.argp = frame.fp + sys.MinFrameSize |
| |
| // Determine frame's 'continuation PC', where it can continue. |
| // Normally this is the return address on the stack, but if sigpanic |
| // is immediately below this function on the stack, then the frame |
| // stopped executing due to a trap, and frame.pc is probably not |
| // a safe point for looking up liveness information. In this panicking case, |
| // the function either doesn't return at all (if it has no defers or if the |
| // defers do not recover) or it returns from one of the calls to |
| // deferproc a second time (if the corresponding deferred func recovers). |
| // In the latter case, use a deferreturn call site as the continuation pc. |
| frame.continpc = frame.pc |
| if u.calleeFuncID == abi.FuncID_sigpanic { |
| if frame.fn.deferreturn != 0 { |
| frame.continpc = frame.fn.entry() + uintptr(frame.fn.deferreturn) + 1 |
| // Note: this may perhaps keep return variables alive longer than |
| // strictly necessary, as we are using "function has a defer statement" |
| // as a proxy for "function actually deferred something". It seems |
| // to be a minor drawback. (We used to actually look through the |
| // gp._defer for a defer corresponding to this function, but that |
| // is hard to do with defer records on the stack during a stack copy.) |
| // Note: the +1 is to offset the -1 that |
| // stack.go:getStackMap does to back up a return |
| // address make sure the pc is in the CALL instruction. |
| } else { |
| frame.continpc = 0 |
| } |
| } |
| } |
| |
| func (u *unwinder) next() { |
| frame := &u.frame |
| f := frame.fn |
| gp := u.g.ptr() |
| |
| // Do not unwind past the bottom of the stack. |
| if frame.lr == 0 { |
| u.finishInternal() |
| return |
| } |
| flr := findfunc(frame.lr) |
| if !flr.valid() { |
| // This happens if you get a profiling interrupt at just the wrong time. |
| // In that context it is okay to stop early. |
| // But if no error flags are set, we're doing a garbage collection and must |
| // get everything, so crash loudly. |
| fail := u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 |
| doPrint := u.flags&unwindSilentErrors == 0 |
| if doPrint && gp.m.incgo && f.funcID == abi.FuncID_sigpanic { |
| // We can inject sigpanic |
| // calls directly into C code, |
| // in which case we'll see a C |
| // return PC. Don't complain. |
| doPrint = false |
| } |
| if fail || doPrint { |
| print("runtime: g ", gp.goid, ": unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n") |
| tracebackHexdump(gp.stack, frame, 0) |
| } |
| if fail { |
| throw("unknown caller pc") |
| } |
| frame.lr = 0 |
| u.finishInternal() |
| return |
| } |
| |
| if frame.pc == frame.lr && frame.sp == frame.fp { |
| // If the next frame is identical to the current frame, we cannot make progress. |
| print("runtime: traceback stuck. pc=", hex(frame.pc), " sp=", hex(frame.sp), "\n") |
| tracebackHexdump(gp.stack, frame, frame.sp) |
| throw("traceback stuck") |
| } |
| |
| injectedCall := f.funcID == abi.FuncID_sigpanic || f.funcID == abi.FuncID_asyncPreempt || f.funcID == abi.FuncID_debugCallV2 |
| if injectedCall { |
| u.flags |= unwindTrap |
| } else { |
| u.flags &^= unwindTrap |
| } |
| |
| // Unwind to next frame. |
| u.calleeFuncID = f.funcID |
| frame.fn = flr |
| frame.pc = frame.lr |
| frame.lr = 0 |
| frame.sp = frame.fp |
| frame.fp = 0 |
| |
| // On link register architectures, sighandler saves the LR on stack |
| // before faking a call. |
| if usesLR && injectedCall { |
| x := *(*uintptr)(unsafe.Pointer(frame.sp)) |
| frame.sp += alignUp(sys.MinFrameSize, sys.StackAlign) |
| f = findfunc(frame.pc) |
| frame.fn = f |
| if !f.valid() { |
| frame.pc = x |
| } else if funcspdelta(f, frame.pc) == 0 { |
| frame.lr = x |
| } |
| } |
| |
| u.resolveInternal(false, false) |
| } |
| |
| // finishInternal is an unwinder-internal helper called after the stack has been |
| // exhausted. It sets the unwinder to an invalid state and checks that it |
| // successfully unwound the entire stack. |
| func (u *unwinder) finishInternal() { |
| u.frame.pc = 0 |
| |
| // Note that panic != nil is okay here: there can be leftover panics, |
| // because the defers on the panic stack do not nest in frame order as |
| // they do on the defer stack. If you have: |
| // |
| // frame 1 defers d1 |
| // frame 2 defers d2 |
| // frame 3 defers d3 |
| // frame 4 panics |
| // frame 4's panic starts running defers |
| // frame 5, running d3, defers d4 |
| // frame 5 panics |
| // frame 5's panic starts running defers |
| // frame 6, running d4, garbage collects |
| // frame 6, running d2, garbage collects |
| // |
| // During the execution of d4, the panic stack is d4 -> d3, which |
| // is nested properly, and we'll treat frame 3 as resumable, because we |
| // can find d3. (And in fact frame 3 is resumable. If d4 recovers |
| // and frame 5 continues running, d3, d3 can recover and we'll |
| // resume execution in (returning from) frame 3.) |
| // |
| // During the execution of d2, however, the panic stack is d2 -> d3, |
| // which is inverted. The scan will match d2 to frame 2 but having |
| // d2 on the stack until then means it will not match d3 to frame 3. |
| // This is okay: if we're running d2, then all the defers after d2 have |
| // completed and their corresponding frames are dead. Not finding d3 |
| // for frame 3 means we'll set frame 3's continpc == 0, which is correct |
| // (frame 3 is dead). At the end of the walk the panic stack can thus |
| // contain defers (d3 in this case) for dead frames. The inversion here |
| // always indicates a dead frame, and the effect of the inversion on the |
| // scan is to hide those dead frames, so the scan is still okay: |
| // what's left on the panic stack are exactly (and only) the dead frames. |
| // |
| // We require callback != nil here because only when callback != nil |
| // do we know that gentraceback is being called in a "must be correct" |
| // context as opposed to a "best effort" context. The tracebacks with |
| // callbacks only happen when everything is stopped nicely. |
| // At other times, such as when gathering a stack for a profiling signal |
| // or when printing a traceback during a crash, everything may not be |
| // stopped nicely, and the stack walk may not be able to complete. |
| gp := u.g.ptr() |
| if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && u.frame.sp != gp.stktopsp { |
| print("runtime: g", gp.goid, ": frame.sp=", hex(u.frame.sp), " top=", hex(gp.stktopsp), "\n") |
| print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "\n") |
| throw("traceback did not unwind completely") |
| } |
| } |
| |
| // symPC returns the PC that should be used for symbolizing the current frame. |
| // Specifically, this is the PC of the last instruction executed in this frame. |
| // |
| // If this frame did a normal call, then frame.pc is a return PC, so this will |
| // return frame.pc-1, which points into the CALL instruction. If the frame was |
| // interrupted by a signal (e.g., profiler, segv, etc) then frame.pc is for the |
| // trapped instruction, so this returns frame.pc. See issue #34123. Finally, |
| // frame.pc can be at function entry when the frame is initialized without |
| // actually running code, like in runtime.mstart, in which case this returns |
| // frame.pc because that's the best we can do. |
| func (u *unwinder) symPC() uintptr { |
| if u.flags&unwindTrap == 0 && u.frame.pc > u.frame.fn.entry() { |
| // Regular call. |
| return u.frame.pc - 1 |
| } |
| // Trapping instruction or we're at the function entry point. |
| return u.frame.pc |
| } |
| |
| // cgoCallers populates pcBuf with the cgo callers of the current frame using |
| // the registered cgo unwinder. It returns the number of PCs written to pcBuf. |
| // If the current frame is not a cgo frame or if there's no registered cgo |
| // unwinder, it returns 0. |
| func (u *unwinder) cgoCallers(pcBuf []uintptr) int { |
| if cgoTraceback == nil || u.frame.fn.funcID != abi.FuncID_cgocallback || u.cgoCtxt < 0 { |
| // We don't have a cgo unwinder (typical case), or we do but we're not |
| // in a cgo frame or we're out of cgo context. |
| return 0 |
| } |
| |
| ctxt := u.g.ptr().cgoCtxt[u.cgoCtxt] |
| u.cgoCtxt-- |
| cgoContextPCs(ctxt, pcBuf) |
| for i, pc := range pcBuf { |
| if pc == 0 { |
| return i |
| } |
| } |
| return len(pcBuf) |
| } |
| |
| // tracebackPCs populates pcBuf with the return addresses for each frame from u |
| // and returns the number of PCs written to pcBuf. The returned PCs correspond |
| // to "logical frames" rather than "physical frames"; that is if A is inlined |
| // into B, this will still return a PCs for both A and B. This also includes PCs |
| // generated by the cgo unwinder, if one is registered. |
| // |
| // If skip != 0, this skips this many logical frames. |
| // |
| // Callers should set the unwindSilentErrors flag on u. |
| func tracebackPCs(u *unwinder, skip int, pcBuf []uintptr) int { |
| var cgoBuf [32]uintptr |
| n := 0 |
| for ; n < len(pcBuf) && u.valid(); u.next() { |
| f := u.frame.fn |
| cgoN := u.cgoCallers(cgoBuf[:]) |
| |
| // TODO: Why does &u.cache cause u to escape? (Same in traceback2) |
| for iu, uf := newInlineUnwinder(f, u.symPC()); n < len(pcBuf) && uf.valid(); uf = iu.next(uf) { |
| sf := iu.srcFunc(uf) |
| if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(u.calleeFuncID) { |
| // ignore wrappers |
| } else if skip > 0 { |
| skip-- |
| } else { |
| // Callers expect the pc buffer to contain return addresses |
| // and do the -1 themselves, so we add 1 to the call PC to |
| // create a return PC. |
| pcBuf[n] = uf.pc + 1 |
| n++ |
| } |
| u.calleeFuncID = sf.funcID |
| } |
| // Add cgo frames (if we're done skipping over the requested number of |
| // Go frames). |
| if skip == 0 { |
| n += copy(pcBuf[n:], cgoBuf[:cgoN]) |
| } |
| } |
| return n |
| } |
| |
| // printArgs prints function arguments in traceback. |
| func printArgs(f funcInfo, argp unsafe.Pointer, pc uintptr) { |
| // The "instruction" of argument printing is encoded in _FUNCDATA_ArgInfo. |
| // See cmd/compile/internal/ssagen.emitArgInfo for the description of the |
| // encoding. |
| // These constants need to be in sync with the compiler. |
| const ( |
| _endSeq = 0xff |
| _startAgg = 0xfe |
| _endAgg = 0xfd |
| _dotdotdot = 0xfc |
| _offsetTooLarge = 0xfb |
| ) |
| |
| const ( |
| limit = 10 // print no more than 10 args/components |
| maxDepth = 5 // no more than 5 layers of nesting |
| maxLen = (maxDepth*3+2)*limit + 1 // max length of _FUNCDATA_ArgInfo (see the compiler side for reasoning) |
| ) |
| |
| p := (*[maxLen]uint8)(funcdata(f, abi.FUNCDATA_ArgInfo)) |
| if p == nil { |
| return |
| } |
| |
| liveInfo := funcdata(f, abi.FUNCDATA_ArgLiveInfo) |
| liveIdx := pcdatavalue(f, abi.PCDATA_ArgLiveIndex, pc) |
| startOffset := uint8(0xff) // smallest offset that needs liveness info (slots with a lower offset is always live) |
| if liveInfo != nil { |
| startOffset = *(*uint8)(liveInfo) |
| } |
| |
| isLive := func(off, slotIdx uint8) bool { |
| if liveInfo == nil || liveIdx <= 0 { |
| return true // no liveness info, always live |
| } |
| if off < startOffset { |
| return true |
| } |
| bits := *(*uint8)(add(liveInfo, uintptr(liveIdx)+uintptr(slotIdx/8))) |
| return bits&(1<<(slotIdx%8)) != 0 |
| } |
| |
| print1 := func(off, sz, slotIdx uint8) { |
| x := readUnaligned64(add(argp, uintptr(off))) |
| // mask out irrelevant bits |
| if sz < 8 { |
| shift := 64 - sz*8 |
| if goarch.BigEndian { |
| x = x >> shift |
| } else { |
| x = x << shift >> shift |
| } |
| } |
| print(hex(x)) |
| if !isLive(off, slotIdx) { |
| print("?") |
| } |
| } |
| |
| start := true |
| printcomma := func() { |
| if !start { |
| print(", ") |
| } |
| } |
| pi := 0 |
| slotIdx := uint8(0) // register arg spill slot index |
| printloop: |
| for { |
| o := p[pi] |
| pi++ |
| switch o { |
| case _endSeq: |
| break printloop |
| case _startAgg: |
| printcomma() |
| print("{") |
| start = true |
| continue |
| case _endAgg: |
| print("}") |
| case _dotdotdot: |
| printcomma() |
| print("...") |
| case _offsetTooLarge: |
| printcomma() |
| print("_") |
| default: |
| printcomma() |
| sz := p[pi] |
| pi++ |
| print1(o, sz, slotIdx) |
| if o >= startOffset { |
| slotIdx++ |
| } |
| } |
| start = false |
| } |
| } |
| |
| // funcNamePiecesForPrint returns the function name for printing to the user. |
| // It returns three pieces so it doesn't need an allocation for string |
| // concatenation. |
| func funcNamePiecesForPrint(name string) (string, string, string) { |
| // Replace the shape name in generic function with "...". |
| i := bytealg.IndexByteString(name, '[') |
| if i < 0 { |
| return name, "", "" |
| } |
| j := len(name) - 1 |
| for name[j] != ']' { |
| j-- |
| } |
| if j <= i { |
| return name, "", "" |
| } |
| return name[:i], "[...]", name[j+1:] |
| } |
| |
| // funcNameForPrint returns the function name for printing to the user. |
| func funcNameForPrint(name string) string { |
| a, b, c := funcNamePiecesForPrint(name) |
| return a + b + c |
| } |
| |
| // printFuncName prints a function name. name is the function name in |
| // the binary's func data table. |
| func printFuncName(name string) { |
| if name == "runtime.gopanic" { |
| print("panic") |
| return |
| } |
| a, b, c := funcNamePiecesForPrint(name) |
| print(a, b, c) |
| } |
| |
| func printcreatedby(gp *g) { |
| // Show what created goroutine, except main goroutine (goid 1). |
| pc := gp.gopc |
| f := findfunc(pc) |
| if f.valid() && showframe(f.srcFunc(), gp, false, abi.FuncIDNormal) && gp.goid != 1 { |
| printcreatedby1(f, pc, gp.parentGoid) |
| } |
| } |
| |
| func printcreatedby1(f funcInfo, pc uintptr, goid uint64) { |
| print("created by ") |
| printFuncName(funcname(f)) |
| if goid != 0 { |
| print(" in goroutine ", goid) |
| } |
| print("\n") |
| tracepc := pc // back up to CALL instruction for funcline. |
| if pc > f.entry() { |
| tracepc -= sys.PCQuantum |
| } |
| file, line := funcline(f, tracepc) |
| print("\t", file, ":", line) |
| if pc > f.entry() { |
| print(" +", hex(pc-f.entry())) |
| } |
| print("\n") |
| } |
| |
| func traceback(pc, sp, lr uintptr, gp *g) { |
| traceback1(pc, sp, lr, gp, 0) |
| } |
| |
| // tracebacktrap is like traceback but expects that the PC and SP were obtained |
| // from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp. |
| // Because they are from a trap instead of from a saved pair, |
| // the initial PC must not be rewound to the previous instruction. |
| // (All the saved pairs record a PC that is a return address, so we |
| // rewind it into the CALL instruction.) |
| // If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to |
| // the pc/sp/lr passed in. |
| func tracebacktrap(pc, sp, lr uintptr, gp *g) { |
| if gp.m.libcallsp != 0 { |
| // We're in C code somewhere, traceback from the saved position. |
| traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0) |
| return |
| } |
| traceback1(pc, sp, lr, gp, unwindTrap) |
| } |
| |
| func traceback1(pc, sp, lr uintptr, gp *g, flags unwindFlags) { |
| // If the goroutine is in cgo, and we have a cgo traceback, print that. |
| if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 { |
| // Lock cgoCallers so that a signal handler won't |
| // change it, copy the array, reset it, unlock it. |
| // We are locked to the thread and are not running |
| // concurrently with a signal handler. |
| // We just have to stop a signal handler from interrupting |
| // in the middle of our copy. |
| gp.m.cgoCallersUse.Store(1) |
| cgoCallers := *gp.m.cgoCallers |
| gp.m.cgoCallers[0] = 0 |
| gp.m.cgoCallersUse.Store(0) |
| |
| printCgoTraceback(&cgoCallers) |
| } |
| |
| if readgstatus(gp)&^_Gscan == _Gsyscall { |
| // Override registers if blocked in system call. |
| pc = gp.syscallpc |
| sp = gp.syscallsp |
| flags &^= unwindTrap |
| } |
| if gp.m != nil && gp.m.vdsoSP != 0 { |
| // Override registers if running in VDSO. This comes after the |
| // _Gsyscall check to cover VDSO calls after entersyscall. |
| pc = gp.m.vdsoPC |
| sp = gp.m.vdsoSP |
| flags &^= unwindTrap |
| } |
| |
| // Print traceback. |
| // |
| // We print the first tracebackInnerFrames frames, and the last |
| // tracebackOuterFrames frames. There are many possible approaches to this. |
| // There are various complications to this: |
| // |
| // - We'd prefer to walk the stack once because in really bad situations |
| // traceback may crash (and we want as much output as possible) or the stack |
| // may be changing. |
| // |
| // - Each physical frame can represent several logical frames, so we might |
| // have to pause in the middle of a physical frame and pick up in the middle |
| // of a physical frame. |
| // |
| // - The cgo symbolizer can expand a cgo PC to more than one logical frame, |
| // and involves juggling state on the C side that we don't manage. Since its |
| // expansion state is managed on the C side, we can't capture the expansion |
| // state part way through, and because the output strings are managed on the |
| // C side, we can't capture the output. Thus, our only choice is to replay a |
| // whole expansion, potentially discarding some of it. |
| // |
| // Rejected approaches: |
| // |
| // - Do two passes where the first pass just counts and the second pass does |
| // all the printing. This is undesirable if the stack is corrupted or changing |
| // because we won't see a partial stack if we panic. |
| // |
| // - Keep a ring buffer of the last N logical frames and use this to print |
| // the bottom frames once we reach the end of the stack. This works, but |
| // requires keeping a surprising amount of state on the stack, and we have |
| // to run the cgo symbolizer twice—once to count frames, and a second to |
| // print them—since we can't retain the strings it returns. |
| // |
| // Instead, we print the outer frames, and if we reach that limit, we clone |
| // the unwinder, count the remaining frames, and then skip forward and |
| // finish printing from the clone. This makes two passes over the outer part |
| // of the stack, but the single pass over the inner part ensures that's |
| // printed immediately and not revisited. It keeps minimal state on the |
| // stack. And through a combination of skip counts and limits, we can do all |
| // of the steps we need with a single traceback printer implementation. |
| // |
| // We could be more lax about exactly how many frames we print, for example |
| // always stopping and resuming on physical frame boundaries, or at least |
| // cgo expansion boundaries. It's not clear that's much simpler. |
| flags |= unwindPrintErrors |
| var u unwinder |
| tracebackWithRuntime := func(showRuntime bool) int { |
| const maxInt int = 0x7fffffff |
| u.initAt(pc, sp, lr, gp, flags) |
| n, lastN := traceback2(&u, showRuntime, 0, tracebackInnerFrames) |
| if n < tracebackInnerFrames { |
| // We printed the whole stack. |
| return n |
| } |
| // Clone the unwinder and figure out how many frames are left. This |
| // count will include any logical frames already printed for u's current |
| // physical frame. |
| u2 := u |
| remaining, _ := traceback2(&u, showRuntime, maxInt, 0) |
| elide := remaining - lastN - tracebackOuterFrames |
| if elide > 0 { |
| print("...", elide, " frames elided...\n") |
| traceback2(&u2, showRuntime, lastN+elide, tracebackOuterFrames) |
| } else if elide <= 0 { |
| // There are tracebackOuterFrames or fewer frames left to print. |
| // Just print the rest of the stack. |
| traceback2(&u2, showRuntime, lastN, tracebackOuterFrames) |
| } |
| return n |
| } |
| // By default, omits runtime frames. If that means we print nothing at all, |
| // repeat forcing all frames printed. |
| if tracebackWithRuntime(false) == 0 { |
| tracebackWithRuntime(true) |
| } |
| printcreatedby(gp) |
| |
| if gp.ancestors == nil { |
| return |
| } |
| for _, ancestor := range *gp.ancestors { |
| printAncestorTraceback(ancestor) |
| } |
| } |
| |
| // traceback2 prints a stack trace starting at u. It skips the first "skip" |
| // logical frames, after which it prints at most "max" logical frames. It |
| // returns n, which is the number of logical frames skipped and printed, and |
| // lastN, which is the number of logical frames skipped or printed just in the |
| // physical frame that u references. |
| func traceback2(u *unwinder, showRuntime bool, skip, max int) (n, lastN int) { |
| // commitFrame commits to a logical frame and returns whether this frame |
| // should be printed and whether iteration should stop. |
| commitFrame := func() (pr, stop bool) { |
| if skip == 0 && max == 0 { |
| // Stop |
| return false, true |
| } |
| n++ |
| lastN++ |
| if skip > 0 { |
| // Skip |
| skip-- |
| return false, false |
| } |
| // Print |
| max-- |
| return true, false |
| } |
| |
| gp := u.g.ptr() |
| level, _, _ := gotraceback() |
| var cgoBuf [32]uintptr |
| for ; u.valid(); u.next() { |
| lastN = 0 |
| f := u.frame.fn |
| for iu, uf := newInlineUnwinder(f, u.symPC()); uf.valid(); uf = iu.next(uf) { |
| sf := iu.srcFunc(uf) |
| callee := u.calleeFuncID |
| u.calleeFuncID = sf.funcID |
| if !(showRuntime || showframe(sf, gp, n == 0, callee)) { |
| continue |
| } |
| |
| if pr, stop := commitFrame(); stop { |
| return |
| } else if !pr { |
| continue |
| } |
| |
| name := sf.name() |
| file, line := iu.fileLine(uf) |
| // Print during crash. |
| // main(0x1, 0x2, 0x3) |
| // /home/rsc/go/src/runtime/x.go:23 +0xf |
| // |
| printFuncName(name) |
| print("(") |
| if iu.isInlined(uf) { |
| print("...") |
| } else { |
| argp := unsafe.Pointer(u.frame.argp) |
| printArgs(f, argp, u.symPC()) |
| } |
| print(")\n") |
| print("\t", file, ":", line) |
| if !iu.isInlined(uf) { |
| if u.frame.pc > f.entry() { |
| print(" +", hex(u.frame.pc-f.entry())) |
| } |
| if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 { |
| print(" fp=", hex(u.frame.fp), " sp=", hex(u.frame.sp), " pc=", hex(u.frame.pc)) |
| } |
| } |
| print("\n") |
| } |
| |
| // Print cgo frames. |
| if cgoN := u.cgoCallers(cgoBuf[:]); cgoN > 0 { |
| var arg cgoSymbolizerArg |
| anySymbolized := false |
| stop := false |
| for _, pc := range cgoBuf[:cgoN] { |
| if cgoSymbolizer == nil { |
| if pr, stop := commitFrame(); stop { |
| break |
| } else if pr { |
| print("non-Go function at pc=", hex(pc), "\n") |
| } |
| } else { |
| stop = printOneCgoTraceback(pc, commitFrame, &arg) |
| anySymbolized = true |
| if stop { |
| break |
| } |
| } |
| } |
| if anySymbolized { |
| // Free symbolization state. |
| arg.pc = 0 |
| callCgoSymbolizer(&arg) |
| } |
| if stop { |
| return |
| } |
| } |
| } |
| return n, 0 |
| } |
| |
| // printAncestorTraceback prints the traceback of the given ancestor. |
| // TODO: Unify this with gentraceback and CallersFrames. |
| func printAncestorTraceback(ancestor ancestorInfo) { |
| print("[originating from goroutine ", ancestor.goid, "]:\n") |
| for fidx, pc := range ancestor.pcs { |
| f := findfunc(pc) // f previously validated |
| if showfuncinfo(f.srcFunc(), fidx == 0, abi.FuncIDNormal) { |
| printAncestorTracebackFuncInfo(f, pc) |
| } |
| } |
| if len(ancestor.pcs) == tracebackInnerFrames { |
| print("...additional frames elided...\n") |
| } |
| // Show what created goroutine, except main goroutine (goid 1). |
| f := findfunc(ancestor.gopc) |
| if f.valid() && showfuncinfo(f.srcFunc(), false, abi.FuncIDNormal) && ancestor.goid != 1 { |
| // In ancestor mode, we'll already print the goroutine ancestor. |
| // Pass 0 for the goid parameter so we don't print it again. |
| printcreatedby1(f, ancestor.gopc, 0) |
| } |
| } |
| |
| // printAncestorTracebackFuncInfo prints the given function info at a given pc |
| // within an ancestor traceback. The precision of this info is reduced |
| // due to only have access to the pcs at the time of the caller |
| // goroutine being created. |
| func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) { |
| u, uf := newInlineUnwinder(f, pc) |
| file, line := u.fileLine(uf) |
| printFuncName(u.srcFunc(uf).name()) |
| print("(...)\n") |
| print("\t", file, ":", line) |
| if pc > f.entry() { |
| print(" +", hex(pc-f.entry())) |
| } |
| print("\n") |
| } |
| |
| func callers(skip int, pcbuf []uintptr) int { |
| sp := getcallersp() |
| pc := getcallerpc() |
| gp := getg() |
| var n int |
| systemstack(func() { |
| var u unwinder |
| u.initAt(pc, sp, 0, gp, unwindSilentErrors) |
| n = tracebackPCs(&u, skip, pcbuf) |
| }) |
| return n |
| } |
| |
| func gcallers(gp *g, skip int, pcbuf []uintptr) int { |
| var u unwinder |
| u.init(gp, unwindSilentErrors) |
| return tracebackPCs(&u, skip, pcbuf) |
| } |
| |
| // showframe reports whether the frame with the given characteristics should |
| // be printed during a traceback. |
| func showframe(sf srcFunc, gp *g, firstFrame bool, calleeID abi.FuncID) bool { |
| mp := getg().m |
| if mp.throwing >= throwTypeRuntime && gp != nil && (gp == mp.curg || gp == mp.caughtsig.ptr()) { |
| return true |
| } |
| return showfuncinfo(sf, firstFrame, calleeID) |
| } |
| |
| // showfuncinfo reports whether a function with the given characteristics should |
| // be printed during a traceback. |
| func showfuncinfo(sf srcFunc, firstFrame bool, calleeID abi.FuncID) bool { |
| level, _, _ := gotraceback() |
| if level > 1 { |
| // Show all frames. |
| return true |
| } |
| |
| if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(calleeID) { |
| return false |
| } |
| |
| name := sf.name() |
| |
| // Special case: always show runtime.gopanic frame |
| // in the middle of a stack trace, so that we can |
| // see the boundary between ordinary code and |
| // panic-induced deferred code. |
| // See golang.org/issue/5832. |
| if name == "runtime.gopanic" && !firstFrame { |
| return true |
| } |
| |
| return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name)) |
| } |
| |
| // isExportedRuntime reports whether name is an exported runtime function. |
| // It is only for runtime functions, so ASCII A-Z is fine. |
| // TODO: this handles exported functions but not exported methods. |
| func isExportedRuntime(name string) bool { |
| const n = len("runtime.") |
| return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z' |
| } |
| |
| // elideWrapperCalling reports whether a wrapper function that called |
| // function id should be elided from stack traces. |
| func elideWrapperCalling(id abi.FuncID) bool { |
| // If the wrapper called a panic function instead of the |
| // wrapped function, we want to include it in stacks. |
| return !(id == abi.FuncID_gopanic || id == abi.FuncID_sigpanic || id == abi.FuncID_panicwrap) |
| } |
| |
| var gStatusStrings = [...]string{ |
| _Gidle: "idle", |
| _Grunnable: "runnable", |
| _Grunning: "running", |
| _Gsyscall: "syscall", |
| _Gwaiting: "waiting", |
| _Gdead: "dead", |
| _Gcopystack: "copystack", |
| _Gpreempted: "preempted", |
| } |
| |
| func goroutineheader(gp *g) { |
| level, _, _ := gotraceback() |
| |
| gpstatus := readgstatus(gp) |
| |
| isScan := gpstatus&_Gscan != 0 |
| gpstatus &^= _Gscan // drop the scan bit |
| |
| // Basic string status |
| var status string |
| if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) { |
| status = gStatusStrings[gpstatus] |
| } else { |
| status = "???" |
| } |
| |
| // Override. |
| if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero { |
| status = gp.waitreason.String() |
| } |
| |
| // approx time the G is blocked, in minutes |
| var waitfor int64 |
| if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 { |
| waitfor = (nanotime() - gp.waitsince) / 60e9 |
| } |
| print("goroutine ", gp.goid) |
| if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 { |
| print(" gp=", gp) |
| if gp.m != nil { |
| print(" m=", gp.m.id, " mp=", gp.m) |
| } else { |
| print(" m=nil") |
| } |
| } |
| print(" [", status) |
| if isScan { |
| print(" (scan)") |
| } |
| if waitfor >= 1 { |
| print(", ", waitfor, " minutes") |
| } |
| if gp.lockedm != 0 { |
| print(", locked to thread") |
| } |
| print("]:\n") |
| } |
| |
| func tracebackothers(me *g) { |
| level, _, _ := gotraceback() |
| |
| // Show the current goroutine first, if we haven't already. |
| curgp := getg().m.curg |
| if curgp != nil && curgp != me { |
| print("\n") |
| goroutineheader(curgp) |
| traceback(^uintptr(0), ^uintptr(0), 0, curgp) |
| } |
| |
| // We can't call locking forEachG here because this may be during fatal |
| // throw/panic, where locking could be out-of-order or a direct |
| // deadlock. |
| // |
| // Instead, use forEachGRace, which requires no locking. We don't lock |
| // against concurrent creation of new Gs, but even with allglock we may |
| // miss Gs created after this loop. |
| forEachGRace(func(gp *g) { |
| if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 { |
| return |
| } |
| print("\n") |
| goroutineheader(gp) |
| // Note: gp.m == getg().m occurs when tracebackothers is called |
| // from a signal handler initiated during a systemstack call. |
| // The original G is still in the running state, and we want to |
| // print its stack. |
| if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning { |
| print("\tgoroutine running on other thread; stack unavailable\n") |
| printcreatedby(gp) |
| } else { |
| traceback(^uintptr(0), ^uintptr(0), 0, gp) |
| } |
| }) |
| } |
| |
| // tracebackHexdump hexdumps part of stk around frame.sp and frame.fp |
| // for debugging purposes. If the address bad is included in the |
| // hexdumped range, it will mark it as well. |
| func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) { |
| const expand = 32 * goarch.PtrSize |
| const maxExpand = 256 * goarch.PtrSize |
| // Start around frame.sp. |
| lo, hi := frame.sp, frame.sp |
| // Expand to include frame.fp. |
| if frame.fp != 0 && frame.fp < lo { |
| lo = frame.fp |
| } |
| if frame.fp != 0 && frame.fp > hi { |
| hi = frame.fp |
| } |
| // Expand a bit more. |
| lo, hi = lo-expand, hi+expand |
| // But don't go too far from frame.sp. |
| if lo < frame.sp-maxExpand { |
| lo = frame.sp - maxExpand |
| } |
| if hi > frame.sp+maxExpand { |
| hi = frame.sp + maxExpand |
| } |
| // And don't go outside the stack bounds. |
| if lo < stk.lo { |
| lo = stk.lo |
| } |
| if hi > stk.hi { |
| hi = stk.hi |
| } |
| |
| // Print the hex dump. |
| print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n") |
| hexdumpWords(lo, hi, func(p uintptr) byte { |
| switch p { |
| case frame.fp: |
| return '>' |
| case frame.sp: |
| return '<' |
| case bad: |
| return '!' |
| } |
| return 0 |
| }) |
| } |
| |
| // isSystemGoroutine reports whether the goroutine g must be omitted |
| // in stack dumps and deadlock detector. This is any goroutine that |
| // starts at a runtime.* entry point, except for runtime.main, |
| // runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq. |
| // |
| // If fixed is true, any goroutine that can vary between user and |
| // system (that is, the finalizer goroutine) is considered a user |
| // goroutine. |
| func isSystemGoroutine(gp *g, fixed bool) bool { |
| // Keep this in sync with internal/trace.IsSystemGoroutine. |
| f := findfunc(gp.startpc) |
| if !f.valid() { |
| return false |
| } |
| if f.funcID == abi.FuncID_runtime_main || f.funcID == abi.FuncID_corostart || f.funcID == abi.FuncID_handleAsyncEvent { |
| return false |
| } |
| if f.funcID == abi.FuncID_runfinq { |
| // We include the finalizer goroutine if it's calling |
| // back into user code. |
| if fixed { |
| // This goroutine can vary. In fixed mode, |
| // always consider it a user goroutine. |
| return false |
| } |
| return fingStatus.Load()&fingRunningFinalizer == 0 |
| } |
| return hasPrefix(funcname(f), "runtime.") |
| } |
| |
| // SetCgoTraceback records three C functions to use to gather |
| // traceback information from C code and to convert that traceback |
| // information into symbolic information. These are used when printing |
| // stack traces for a program that uses cgo. |
| // |
| // The traceback and context functions may be called from a signal |
| // handler, and must therefore use only async-signal safe functions. |
| // The symbolizer function may be called while the program is |
| // crashing, and so must be cautious about using memory. None of the |
| // functions may call back into Go. |
| // |
| // The context function will be called with a single argument, a |
| // pointer to a struct: |
| // |
| // struct { |
| // Context uintptr |
| // } |
| // |
| // In C syntax, this struct will be |
| // |
| // struct { |
| // uintptr_t Context; |
| // }; |
| // |
| // If the Context field is 0, the context function is being called to |
| // record the current traceback context. It should record in the |
| // Context field whatever information is needed about the current |
| // point of execution to later produce a stack trace, probably the |
| // stack pointer and PC. In this case the context function will be |
| // called from C code. |
| // |
| // If the Context field is not 0, then it is a value returned by a |
| // previous call to the context function. This case is called when the |
| // context is no longer needed; that is, when the Go code is returning |
| // to its C code caller. This permits the context function to release |
| // any associated resources. |
| // |
| // While it would be correct for the context function to record a |
| // complete a stack trace whenever it is called, and simply copy that |
| // out in the traceback function, in a typical program the context |
| // function will be called many times without ever recording a |
| // traceback for that context. Recording a complete stack trace in a |
| // call to the context function is likely to be inefficient. |
| // |
| // The traceback function will be called with a single argument, a |
| // pointer to a struct: |
| // |
| // struct { |
| // Context uintptr |
| // SigContext uintptr |
| // Buf *uintptr |
| // Max uintptr |
| // } |
| // |
| // In C syntax, this struct will be |
| // |
| // struct { |
| // uintptr_t Context; |
| // uintptr_t SigContext; |
| // uintptr_t* Buf; |
| // uintptr_t Max; |
| // }; |
| // |
| // The Context field will be zero to gather a traceback from the |
| // current program execution point. In this case, the traceback |
| // function will be called from C code. |
| // |
| // Otherwise Context will be a value previously returned by a call to |
| // the context function. The traceback function should gather a stack |
| // trace from that saved point in the program execution. The traceback |
| // function may be called from an execution thread other than the one |
| // that recorded the context, but only when the context is known to be |
| // valid and unchanging. The traceback function may also be called |
| // deeper in the call stack on the same thread that recorded the |
| // context. The traceback function may be called multiple times with |
| // the same Context value; it will usually be appropriate to cache the |
| // result, if possible, the first time this is called for a specific |
| // context value. |
| // |
| // If the traceback function is called from a signal handler on a Unix |
| // system, SigContext will be the signal context argument passed to |
| // the signal handler (a C ucontext_t* cast to uintptr_t). This may be |
| // used to start tracing at the point where the signal occurred. If |
| // the traceback function is not called from a signal handler, |
| // SigContext will be zero. |
| // |
| // Buf is where the traceback information should be stored. It should |
| // be PC values, such that Buf[0] is the PC of the caller, Buf[1] is |
| // the PC of that function's caller, and so on. Max is the maximum |
| // number of entries to store. The function should store a zero to |
| // indicate the top of the stack, or that the caller is on a different |
| // stack, presumably a Go stack. |
| // |
| // Unlike runtime.Callers, the PC values returned should, when passed |
| // to the symbolizer function, return the file/line of the call |
| // instruction. No additional subtraction is required or appropriate. |
| // |
| // On all platforms, the traceback function is invoked when a call from |
| // Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le, |
| // linux/arm64, and freebsd/amd64, the traceback function is also invoked |
| // when a signal is received by a thread that is executing a cgo call. |
| // The traceback function should not make assumptions about when it is |
| // called, as future versions of Go may make additional calls. |
| // |
| // The symbolizer function will be called with a single argument, a |
| // pointer to a struct: |
| // |
| // struct { |
| // PC uintptr // program counter to fetch information for |
| // File *byte // file name (NUL terminated) |
| // Lineno uintptr // line number |
| // Func *byte // function name (NUL terminated) |
| // Entry uintptr // function entry point |
| // More uintptr // set non-zero if more info for this PC |
| // Data uintptr // unused by runtime, available for function |
| // } |
| // |
| // In C syntax, this struct will be |
| // |
| // struct { |
| // uintptr_t PC; |
| // char* File; |
| // uintptr_t Lineno; |
| // char* Func; |
| // uintptr_t Entry; |
| // uintptr_t More; |
| // uintptr_t Data; |
| // }; |
| // |
| // The PC field will be a value returned by a call to the traceback |
| // function. |
| // |
| // The first time the function is called for a particular traceback, |
| // all the fields except PC will be 0. The function should fill in the |
| // other fields if possible, setting them to 0/nil if the information |
| // is not available. The Data field may be used to store any useful |
| // information across calls. The More field should be set to non-zero |
| // if there is more information for this PC, zero otherwise. If More |
| // is set non-zero, the function will be called again with the same |
| // PC, and may return different information (this is intended for use |
| // with inlined functions). If More is zero, the function will be |
| // called with the next PC value in the traceback. When the traceback |
| // is complete, the function will be called once more with PC set to |
| // zero; this may be used to free any information. Each call will |
| // leave the fields of the struct set to the same values they had upon |
| // return, except for the PC field when the More field is zero. The |
| // function must not keep a copy of the struct pointer between calls. |
| // |
| // When calling SetCgoTraceback, the version argument is the version |
| // number of the structs that the functions expect to receive. |
| // Currently this must be zero. |
| // |
| // The symbolizer function may be nil, in which case the results of |
| // the traceback function will be displayed as numbers. If the |
| // traceback function is nil, the symbolizer function will never be |
| // called. The context function may be nil, in which case the |
| // traceback function will only be called with the context field set |
| // to zero. If the context function is nil, then calls from Go to C |
| // to Go will not show a traceback for the C portion of the call stack. |
| // |
| // SetCgoTraceback should be called only once, ideally from an init function. |
| func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) { |
| if version != 0 { |
| panic("unsupported version") |
| } |
| |
| if cgoTraceback != nil && cgoTraceback != traceback || |
| cgoContext != nil && cgoContext != context || |
| cgoSymbolizer != nil && cgoSymbolizer != symbolizer { |
| panic("call SetCgoTraceback only once") |
| } |
| |
| cgoTraceback = traceback |
| cgoContext = context |
| cgoSymbolizer = symbolizer |
| |
| // The context function is called when a C function calls a Go |
| // function. As such it is only called by C code in runtime/cgo. |
| if _cgo_set_context_function != nil { |
| cgocall(_cgo_set_context_function, context) |
| } |
| } |
| |
| var cgoTraceback unsafe.Pointer |
| var cgoContext unsafe.Pointer |
| var cgoSymbolizer unsafe.Pointer |
| |
| // cgoTracebackArg is the type passed to cgoTraceback. |
| type cgoTracebackArg struct { |
| context uintptr |
| sigContext uintptr |
| buf *uintptr |
| max uintptr |
| } |
| |
| // cgoContextArg is the type passed to the context function. |
| type cgoContextArg struct { |
| context uintptr |
| } |
| |
| // cgoSymbolizerArg is the type passed to cgoSymbolizer. |
| type cgoSymbolizerArg struct { |
| pc uintptr |
| file *byte |
| lineno uintptr |
| funcName *byte |
| entry uintptr |
| more uintptr |
| data uintptr |
| } |
| |
| // printCgoTraceback prints a traceback of callers. |
| func printCgoTraceback(callers *cgoCallers) { |
| if cgoSymbolizer == nil { |
| for _, c := range callers { |
| if c == 0 { |
| break |
| } |
| print("non-Go function at pc=", hex(c), "\n") |
| } |
| return |
| } |
| |
| commitFrame := func() (pr, stop bool) { return true, false } |
| var arg cgoSymbolizerArg |
| for _, c := range callers { |
| if c == 0 { |
| break |
| } |
| printOneCgoTraceback(c, commitFrame, &arg) |
| } |
| arg.pc = 0 |
| callCgoSymbolizer(&arg) |
| } |
| |
| // printOneCgoTraceback prints the traceback of a single cgo caller. |
| // This can print more than one line because of inlining. |
| // It returns the "stop" result of commitFrame. |
| func printOneCgoTraceback(pc uintptr, commitFrame func() (pr, stop bool), arg *cgoSymbolizerArg) bool { |
| arg.pc = pc |
| for { |
| if pr, stop := commitFrame(); stop { |
| return true |
| } else if !pr { |
| continue |
| } |
| |
| callCgoSymbolizer(arg) |
| if arg.funcName != nil { |
| // Note that we don't print any argument |
| // information here, not even parentheses. |
| // The symbolizer must add that if appropriate. |
| println(gostringnocopy(arg.funcName)) |
| } else { |
| println("non-Go function") |
| } |
| print("\t") |
| if arg.file != nil { |
| print(gostringnocopy(arg.file), ":", arg.lineno, " ") |
| } |
| print("pc=", hex(pc), "\n") |
| if arg.more == 0 { |
| return false |
| } |
| } |
| } |
| |
| // callCgoSymbolizer calls the cgoSymbolizer function. |
| func callCgoSymbolizer(arg *cgoSymbolizerArg) { |
| call := cgocall |
| if panicking.Load() > 0 || getg().m.curg != getg() { |
| // We do not want to call into the scheduler when panicking |
| // or when on the system stack. |
| call = asmcgocall |
| } |
| if msanenabled { |
| msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{})) |
| } |
| if asanenabled { |
| asanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{})) |
| } |
| call(cgoSymbolizer, noescape(unsafe.Pointer(arg))) |
| } |
| |
| // cgoContextPCs gets the PC values from a cgo traceback. |
| func cgoContextPCs(ctxt uintptr, buf []uintptr) { |
| if cgoTraceback == nil { |
| return |
| } |
| call := cgocall |
| if panicking.Load() > 0 || getg().m.curg != getg() { |
| // We do not want to call into the scheduler when panicking |
| // or when on the system stack. |
| call = asmcgocall |
| } |
| arg := cgoTracebackArg{ |
| context: ctxt, |
| buf: (*uintptr)(noescape(unsafe.Pointer(&buf[0]))), |
| max: uintptr(len(buf)), |
| } |
| if msanenabled { |
| msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg)) |
| } |
| if asanenabled { |
| asanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg)) |
| } |
| call(cgoTraceback, noescape(unsafe.Pointer(&arg))) |
| } |