blob: 08a2d47974c20e24cf7cfec1516a42c3c47223df [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"bytes"
"context"
"crypto"
"crypto/ecdh"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/rsa"
"crypto/subtle"
"crypto/x509"
"errors"
"fmt"
"hash"
"internal/godebug"
"io"
"net"
"strconv"
"strings"
"time"
)
type clientHandshakeState struct {
c *Conn
ctx context.Context
serverHello *serverHelloMsg
hello *clientHelloMsg
suite *cipherSuite
finishedHash finishedHash
masterSecret []byte
session *SessionState // the session being resumed
ticket []byte // a fresh ticket received during this handshake
}
var testingOnlyForceClientHelloSignatureAlgorithms []SignatureScheme
func (c *Conn) makeClientHello() (*clientHelloMsg, *ecdh.PrivateKey, error) {
config := c.config
if len(config.ServerName) == 0 && !config.InsecureSkipVerify {
return nil, nil, errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config")
}
nextProtosLength := 0
for _, proto := range config.NextProtos {
if l := len(proto); l == 0 || l > 255 {
return nil, nil, errors.New("tls: invalid NextProtos value")
} else {
nextProtosLength += 1 + l
}
}
if nextProtosLength > 0xffff {
return nil, nil, errors.New("tls: NextProtos values too large")
}
supportedVersions := config.supportedVersions(roleClient)
if len(supportedVersions) == 0 {
return nil, nil, errors.New("tls: no supported versions satisfy MinVersion and MaxVersion")
}
clientHelloVersion := config.maxSupportedVersion(roleClient)
// The version at the beginning of the ClientHello was capped at TLS 1.2
// for compatibility reasons. The supported_versions extension is used
// to negotiate versions now. See RFC 8446, Section 4.2.1.
if clientHelloVersion > VersionTLS12 {
clientHelloVersion = VersionTLS12
}
hello := &clientHelloMsg{
vers: clientHelloVersion,
compressionMethods: []uint8{compressionNone},
random: make([]byte, 32),
extendedMasterSecret: true,
ocspStapling: true,
scts: true,
serverName: hostnameInSNI(config.ServerName),
supportedCurves: config.curvePreferences(),
supportedPoints: []uint8{pointFormatUncompressed},
secureRenegotiationSupported: true,
alpnProtocols: config.NextProtos,
supportedVersions: supportedVersions,
}
if c.handshakes > 0 {
hello.secureRenegotiation = c.clientFinished[:]
}
preferenceOrder := cipherSuitesPreferenceOrder
if !hasAESGCMHardwareSupport {
preferenceOrder = cipherSuitesPreferenceOrderNoAES
}
configCipherSuites := config.cipherSuites()
hello.cipherSuites = make([]uint16, 0, len(configCipherSuites))
for _, suiteId := range preferenceOrder {
suite := mutualCipherSuite(configCipherSuites, suiteId)
if suite == nil {
continue
}
// Don't advertise TLS 1.2-only cipher suites unless
// we're attempting TLS 1.2.
if hello.vers < VersionTLS12 && suite.flags&suiteTLS12 != 0 {
continue
}
hello.cipherSuites = append(hello.cipherSuites, suiteId)
}
_, err := io.ReadFull(config.rand(), hello.random)
if err != nil {
return nil, nil, errors.New("tls: short read from Rand: " + err.Error())
}
// A random session ID is used to detect when the server accepted a ticket
// and is resuming a session (see RFC 5077). In TLS 1.3, it's always set as
// a compatibility measure (see RFC 8446, Section 4.1.2).
//
// The session ID is not set for QUIC connections (see RFC 9001, Section 8.4).
if c.quic == nil {
hello.sessionId = make([]byte, 32)
if _, err := io.ReadFull(config.rand(), hello.sessionId); err != nil {
return nil, nil, errors.New("tls: short read from Rand: " + err.Error())
}
}
if hello.vers >= VersionTLS12 {
hello.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
}
if testingOnlyForceClientHelloSignatureAlgorithms != nil {
hello.supportedSignatureAlgorithms = testingOnlyForceClientHelloSignatureAlgorithms
}
var key *ecdh.PrivateKey
if hello.supportedVersions[0] == VersionTLS13 {
// Reset the list of ciphers when the client only supports TLS 1.3.
if len(hello.supportedVersions) == 1 {
hello.cipherSuites = nil
}
if hasAESGCMHardwareSupport {
hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13...)
} else {
hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13NoAES...)
}
curveID := config.curvePreferences()[0]
if _, ok := curveForCurveID(curveID); !ok {
return nil, nil, errors.New("tls: CurvePreferences includes unsupported curve")
}
key, err = generateECDHEKey(config.rand(), curveID)
if err != nil {
return nil, nil, err
}
hello.keyShares = []keyShare{{group: curveID, data: key.PublicKey().Bytes()}}
}
if c.quic != nil {
p, err := c.quicGetTransportParameters()
if err != nil {
return nil, nil, err
}
if p == nil {
p = []byte{}
}
hello.quicTransportParameters = p
}
return hello, key, nil
}
func (c *Conn) clientHandshake(ctx context.Context) (err error) {
if c.config == nil {
c.config = defaultConfig()
}
// This may be a renegotiation handshake, in which case some fields
// need to be reset.
c.didResume = false
hello, ecdheKey, err := c.makeClientHello()
if err != nil {
return err
}
c.serverName = hello.serverName
session, earlySecret, binderKey, err := c.loadSession(hello)
if err != nil {
return err
}
if session != nil {
defer func() {
// If we got a handshake failure when resuming a session, throw away
// the session ticket. See RFC 5077, Section 3.2.
//
// RFC 8446 makes no mention of dropping tickets on failure, but it
// does require servers to abort on invalid binders, so we need to
// delete tickets to recover from a corrupted PSK.
if err != nil {
if cacheKey := c.clientSessionCacheKey(); cacheKey != "" {
c.config.ClientSessionCache.Put(cacheKey, nil)
}
}
}()
}
if _, err := c.writeHandshakeRecord(hello, nil); err != nil {
return err
}
if hello.earlyData {
suite := cipherSuiteTLS13ByID(session.cipherSuite)
transcript := suite.hash.New()
if err := transcriptMsg(hello, transcript); err != nil {
return err
}
earlyTrafficSecret := suite.deriveSecret(earlySecret, clientEarlyTrafficLabel, transcript)
c.quicSetWriteSecret(QUICEncryptionLevelEarly, suite.id, earlyTrafficSecret)
}
// serverHelloMsg is not included in the transcript
msg, err := c.readHandshake(nil)
if err != nil {
return err
}
serverHello, ok := msg.(*serverHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(serverHello, msg)
}
if err := c.pickTLSVersion(serverHello); err != nil {
return err
}
// If we are negotiating a protocol version that's lower than what we
// support, check for the server downgrade canaries.
// See RFC 8446, Section 4.1.3.
maxVers := c.config.maxSupportedVersion(roleClient)
tls12Downgrade := string(serverHello.random[24:]) == downgradeCanaryTLS12
tls11Downgrade := string(serverHello.random[24:]) == downgradeCanaryTLS11
if maxVers == VersionTLS13 && c.vers <= VersionTLS12 && (tls12Downgrade || tls11Downgrade) ||
maxVers == VersionTLS12 && c.vers <= VersionTLS11 && tls11Downgrade {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: downgrade attempt detected, possibly due to a MitM attack or a broken middlebox")
}
if c.vers == VersionTLS13 {
hs := &clientHandshakeStateTLS13{
c: c,
ctx: ctx,
serverHello: serverHello,
hello: hello,
ecdheKey: ecdheKey,
session: session,
earlySecret: earlySecret,
binderKey: binderKey,
}
// In TLS 1.3, session tickets are delivered after the handshake.
return hs.handshake()
}
hs := &clientHandshakeState{
c: c,
ctx: ctx,
serverHello: serverHello,
hello: hello,
session: session,
}
if err := hs.handshake(); err != nil {
return err
}
return nil
}
func (c *Conn) loadSession(hello *clientHelloMsg) (
session *SessionState, earlySecret, binderKey []byte, err error) {
if c.config.SessionTicketsDisabled || c.config.ClientSessionCache == nil {
return nil, nil, nil, nil
}
hello.ticketSupported = true
if hello.supportedVersions[0] == VersionTLS13 {
// Require DHE on resumption as it guarantees forward secrecy against
// compromise of the session ticket key. See RFC 8446, Section 4.2.9.
hello.pskModes = []uint8{pskModeDHE}
}
// Session resumption is not allowed if renegotiating because
// renegotiation is primarily used to allow a client to send a client
// certificate, which would be skipped if session resumption occurred.
if c.handshakes != 0 {
return nil, nil, nil, nil
}
// Try to resume a previously negotiated TLS session, if available.
cacheKey := c.clientSessionCacheKey()
if cacheKey == "" {
return nil, nil, nil, nil
}
cs, ok := c.config.ClientSessionCache.Get(cacheKey)
if !ok || cs == nil {
return nil, nil, nil, nil
}
session = cs.session
// Check that version used for the previous session is still valid.
versOk := false
for _, v := range hello.supportedVersions {
if v == session.version {
versOk = true
break
}
}
if !versOk {
return nil, nil, nil, nil
}
// Check that the cached server certificate is not expired, and that it's
// valid for the ServerName. This should be ensured by the cache key, but
// protect the application from a faulty ClientSessionCache implementation.
if c.config.time().After(session.peerCertificates[0].NotAfter) {
// Expired certificate, delete the entry.
c.config.ClientSessionCache.Put(cacheKey, nil)
return nil, nil, nil, nil
}
if !c.config.InsecureSkipVerify {
if len(session.verifiedChains) == 0 {
// The original connection had InsecureSkipVerify, while this doesn't.
return nil, nil, nil, nil
}
if err := session.peerCertificates[0].VerifyHostname(c.config.ServerName); err != nil {
return nil, nil, nil, nil
}
}
if session.version != VersionTLS13 {
// In TLS 1.2 the cipher suite must match the resumed session. Ensure we
// are still offering it.
if mutualCipherSuite(hello.cipherSuites, session.cipherSuite) == nil {
return nil, nil, nil, nil
}
hello.sessionTicket = cs.ticket
return
}
// Check that the session ticket is not expired.
if c.config.time().After(time.Unix(int64(session.useBy), 0)) {
c.config.ClientSessionCache.Put(cacheKey, nil)
return nil, nil, nil, nil
}
// In TLS 1.3 the KDF hash must match the resumed session. Ensure we
// offer at least one cipher suite with that hash.
cipherSuite := cipherSuiteTLS13ByID(session.cipherSuite)
if cipherSuite == nil {
return nil, nil, nil, nil
}
cipherSuiteOk := false
for _, offeredID := range hello.cipherSuites {
offeredSuite := cipherSuiteTLS13ByID(offeredID)
if offeredSuite != nil && offeredSuite.hash == cipherSuite.hash {
cipherSuiteOk = true
break
}
}
if !cipherSuiteOk {
return nil, nil, nil, nil
}
if c.quic != nil && session.EarlyData {
// For 0-RTT, the cipher suite has to match exactly, and we need to be
// offering the same ALPN.
if mutualCipherSuiteTLS13(hello.cipherSuites, session.cipherSuite) != nil {
for _, alpn := range hello.alpnProtocols {
if alpn == session.alpnProtocol {
hello.earlyData = true
break
}
}
}
}
// Set the pre_shared_key extension. See RFC 8446, Section 4.2.11.1.
ticketAge := c.config.time().Sub(time.Unix(int64(session.createdAt), 0))
identity := pskIdentity{
label: cs.ticket,
obfuscatedTicketAge: uint32(ticketAge/time.Millisecond) + session.ageAdd,
}
hello.pskIdentities = []pskIdentity{identity}
hello.pskBinders = [][]byte{make([]byte, cipherSuite.hash.Size())}
// Compute the PSK binders. See RFC 8446, Section 4.2.11.2.
earlySecret = cipherSuite.extract(session.secret, nil)
binderKey = cipherSuite.deriveSecret(earlySecret, resumptionBinderLabel, nil)
transcript := cipherSuite.hash.New()
helloBytes, err := hello.marshalWithoutBinders()
if err != nil {
return nil, nil, nil, err
}
transcript.Write(helloBytes)
pskBinders := [][]byte{cipherSuite.finishedHash(binderKey, transcript)}
if err := hello.updateBinders(pskBinders); err != nil {
return nil, nil, nil, err
}
return
}
func (c *Conn) pickTLSVersion(serverHello *serverHelloMsg) error {
peerVersion := serverHello.vers
if serverHello.supportedVersion != 0 {
peerVersion = serverHello.supportedVersion
}
vers, ok := c.config.mutualVersion(roleClient, []uint16{peerVersion})
if !ok {
c.sendAlert(alertProtocolVersion)
return fmt.Errorf("tls: server selected unsupported protocol version %x", peerVersion)
}
c.vers = vers
c.haveVers = true
c.in.version = vers
c.out.version = vers
return nil
}
// Does the handshake, either a full one or resumes old session. Requires hs.c,
// hs.hello, hs.serverHello, and, optionally, hs.session to be set.
func (hs *clientHandshakeState) handshake() error {
c := hs.c
isResume, err := hs.processServerHello()
if err != nil {
return err
}
hs.finishedHash = newFinishedHash(c.vers, hs.suite)
// No signatures of the handshake are needed in a resumption.
// Otherwise, in a full handshake, if we don't have any certificates
// configured then we will never send a CertificateVerify message and
// thus no signatures are needed in that case either.
if isResume || (len(c.config.Certificates) == 0 && c.config.GetClientCertificate == nil) {
hs.finishedHash.discardHandshakeBuffer()
}
if err := transcriptMsg(hs.hello, &hs.finishedHash); err != nil {
return err
}
if err := transcriptMsg(hs.serverHello, &hs.finishedHash); err != nil {
return err
}
c.buffering = true
c.didResume = isResume
if isResume {
if err := hs.establishKeys(); err != nil {
return err
}
if err := hs.readSessionTicket(); err != nil {
return err
}
if err := hs.readFinished(c.serverFinished[:]); err != nil {
return err
}
c.clientFinishedIsFirst = false
// Make sure the connection is still being verified whether or not this
// is a resumption. Resumptions currently don't reverify certificates so
// they don't call verifyServerCertificate. See Issue 31641.
if c.config.VerifyConnection != nil {
if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
if err := hs.sendFinished(c.clientFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
} else {
if err := hs.doFullHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
if err := hs.sendFinished(c.clientFinished[:]); err != nil {
return err
}
if _, err := c.flush(); err != nil {
return err
}
c.clientFinishedIsFirst = true
if err := hs.readSessionTicket(); err != nil {
return err
}
if err := hs.readFinished(c.serverFinished[:]); err != nil {
return err
}
}
if err := hs.saveSessionTicket(); err != nil {
return err
}
c.ekm = ekmFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random)
c.isHandshakeComplete.Store(true)
return nil
}
func (hs *clientHandshakeState) pickCipherSuite() error {
if hs.suite = mutualCipherSuite(hs.hello.cipherSuites, hs.serverHello.cipherSuite); hs.suite == nil {
hs.c.sendAlert(alertHandshakeFailure)
return errors.New("tls: server chose an unconfigured cipher suite")
}
if hs.c.config.CipherSuites == nil && !needFIPS() && rsaKexCiphers[hs.suite.id] {
tlsrsakex.IncNonDefault()
}
hs.c.cipherSuite = hs.suite.id
return nil
}
func (hs *clientHandshakeState) doFullHandshake() error {
c := hs.c
msg, err := c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
certMsg, ok := msg.(*certificateMsg)
if !ok || len(certMsg.certificates) == 0 {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
msg, err = c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
cs, ok := msg.(*certificateStatusMsg)
if ok {
// RFC4366 on Certificate Status Request:
// The server MAY return a "certificate_status" message.
if !hs.serverHello.ocspStapling {
// If a server returns a "CertificateStatus" message, then the
// server MUST have included an extension of type "status_request"
// with empty "extension_data" in the extended server hello.
c.sendAlert(alertUnexpectedMessage)
return errors.New("tls: received unexpected CertificateStatus message")
}
c.ocspResponse = cs.response
msg, err = c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
}
if c.handshakes == 0 {
// If this is the first handshake on a connection, process and
// (optionally) verify the server's certificates.
if err := c.verifyServerCertificate(certMsg.certificates); err != nil {
return err
}
} else {
// This is a renegotiation handshake. We require that the
// server's identity (i.e. leaf certificate) is unchanged and
// thus any previous trust decision is still valid.
//
// See https://mitls.org/pages/attacks/3SHAKE for the
// motivation behind this requirement.
if !bytes.Equal(c.peerCertificates[0].Raw, certMsg.certificates[0]) {
c.sendAlert(alertBadCertificate)
return errors.New("tls: server's identity changed during renegotiation")
}
}
keyAgreement := hs.suite.ka(c.vers)
skx, ok := msg.(*serverKeyExchangeMsg)
if ok {
err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, c.peerCertificates[0], skx)
if err != nil {
c.sendAlert(alertUnexpectedMessage)
return err
}
msg, err = c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
}
var chainToSend *Certificate
var certRequested bool
certReq, ok := msg.(*certificateRequestMsg)
if ok {
certRequested = true
cri := certificateRequestInfoFromMsg(hs.ctx, c.vers, certReq)
if chainToSend, err = c.getClientCertificate(cri); err != nil {
c.sendAlert(alertInternalError)
return err
}
msg, err = c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
}
shd, ok := msg.(*serverHelloDoneMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(shd, msg)
}
// If the server requested a certificate then we have to send a
// Certificate message, even if it's empty because we don't have a
// certificate to send.
if certRequested {
certMsg = new(certificateMsg)
certMsg.certificates = chainToSend.Certificate
if _, err := hs.c.writeHandshakeRecord(certMsg, &hs.finishedHash); err != nil {
return err
}
}
preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, c.peerCertificates[0])
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if ckx != nil {
if _, err := hs.c.writeHandshakeRecord(ckx, &hs.finishedHash); err != nil {
return err
}
}
if hs.serverHello.extendedMasterSecret {
c.extMasterSecret = true
hs.masterSecret = extMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret,
hs.finishedHash.Sum())
} else {
hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret,
hs.hello.random, hs.serverHello.random)
}
if err := c.config.writeKeyLog(keyLogLabelTLS12, hs.hello.random, hs.masterSecret); err != nil {
c.sendAlert(alertInternalError)
return errors.New("tls: failed to write to key log: " + err.Error())
}
if chainToSend != nil && len(chainToSend.Certificate) > 0 {
certVerify := &certificateVerifyMsg{}
key, ok := chainToSend.PrivateKey.(crypto.Signer)
if !ok {
c.sendAlert(alertInternalError)
return fmt.Errorf("tls: client certificate private key of type %T does not implement crypto.Signer", chainToSend.PrivateKey)
}
var sigType uint8
var sigHash crypto.Hash
if c.vers >= VersionTLS12 {
signatureAlgorithm, err := selectSignatureScheme(c.vers, chainToSend, certReq.supportedSignatureAlgorithms)
if err != nil {
c.sendAlert(alertIllegalParameter)
return err
}
sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
if err != nil {
return c.sendAlert(alertInternalError)
}
certVerify.hasSignatureAlgorithm = true
certVerify.signatureAlgorithm = signatureAlgorithm
} else {
sigType, sigHash, err = legacyTypeAndHashFromPublicKey(key.Public())
if err != nil {
c.sendAlert(alertIllegalParameter)
return err
}
}
signed := hs.finishedHash.hashForClientCertificate(sigType, sigHash)
signOpts := crypto.SignerOpts(sigHash)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
}
certVerify.signature, err = key.Sign(c.config.rand(), signed, signOpts)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if _, err := hs.c.writeHandshakeRecord(certVerify, &hs.finishedHash); err != nil {
return err
}
}
hs.finishedHash.discardHandshakeBuffer()
return nil
}
func (hs *clientHandshakeState) establishKeys() error {
c := hs.c
clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV :=
keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen)
var clientCipher, serverCipher any
var clientHash, serverHash hash.Hash
if hs.suite.cipher != nil {
clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */)
clientHash = hs.suite.mac(clientMAC)
serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */)
serverHash = hs.suite.mac(serverMAC)
} else {
clientCipher = hs.suite.aead(clientKey, clientIV)
serverCipher = hs.suite.aead(serverKey, serverIV)
}
c.in.prepareCipherSpec(c.vers, serverCipher, serverHash)
c.out.prepareCipherSpec(c.vers, clientCipher, clientHash)
return nil
}
func (hs *clientHandshakeState) serverResumedSession() bool {
// If the server responded with the same sessionId then it means the
// sessionTicket is being used to resume a TLS session.
return hs.session != nil && hs.hello.sessionId != nil &&
bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId)
}
func (hs *clientHandshakeState) processServerHello() (bool, error) {
c := hs.c
if err := hs.pickCipherSuite(); err != nil {
return false, err
}
if hs.serverHello.compressionMethod != compressionNone {
c.sendAlert(alertUnexpectedMessage)
return false, errors.New("tls: server selected unsupported compression format")
}
if c.handshakes == 0 && hs.serverHello.secureRenegotiationSupported {
c.secureRenegotiation = true
if len(hs.serverHello.secureRenegotiation) != 0 {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: initial handshake had non-empty renegotiation extension")
}
}
if c.handshakes > 0 && c.secureRenegotiation {
var expectedSecureRenegotiation [24]byte
copy(expectedSecureRenegotiation[:], c.clientFinished[:])
copy(expectedSecureRenegotiation[12:], c.serverFinished[:])
if !bytes.Equal(hs.serverHello.secureRenegotiation, expectedSecureRenegotiation[:]) {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: incorrect renegotiation extension contents")
}
}
if err := checkALPN(hs.hello.alpnProtocols, hs.serverHello.alpnProtocol, false); err != nil {
c.sendAlert(alertUnsupportedExtension)
return false, err
}
c.clientProtocol = hs.serverHello.alpnProtocol
c.scts = hs.serverHello.scts
if !hs.serverResumedSession() {
return false, nil
}
if hs.session.version != c.vers {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: server resumed a session with a different version")
}
if hs.session.cipherSuite != hs.suite.id {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: server resumed a session with a different cipher suite")
}
// RFC 7627, Section 5.3
if hs.session.extMasterSecret != hs.serverHello.extendedMasterSecret {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: server resumed a session with a different EMS extension")
}
// Restore master secret and certificates from previous state
hs.masterSecret = hs.session.secret
c.extMasterSecret = hs.session.extMasterSecret
c.peerCertificates = hs.session.peerCertificates
c.activeCertHandles = hs.c.activeCertHandles
c.verifiedChains = hs.session.verifiedChains
c.ocspResponse = hs.session.ocspResponse
// Let the ServerHello SCTs override the session SCTs from the original
// connection, if any are provided
if len(c.scts) == 0 && len(hs.session.scts) != 0 {
c.scts = hs.session.scts
}
return true, nil
}
// checkALPN ensure that the server's choice of ALPN protocol is compatible with
// the protocols that we advertised in the Client Hello.
func checkALPN(clientProtos []string, serverProto string, quic bool) error {
if serverProto == "" {
if quic && len(clientProtos) > 0 {
// RFC 9001, Section 8.1
return errors.New("tls: server did not select an ALPN protocol")
}
return nil
}
if len(clientProtos) == 0 {
return errors.New("tls: server advertised unrequested ALPN extension")
}
for _, proto := range clientProtos {
if proto == serverProto {
return nil
}
}
return errors.New("tls: server selected unadvertised ALPN protocol")
}
func (hs *clientHandshakeState) readFinished(out []byte) error {
c := hs.c
if err := c.readChangeCipherSpec(); err != nil {
return err
}
// finishedMsg is included in the transcript, but not until after we
// check the client version, since the state before this message was
// sent is used during verification.
msg, err := c.readHandshake(nil)
if err != nil {
return err
}
serverFinished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(serverFinished, msg)
}
verify := hs.finishedHash.serverSum(hs.masterSecret)
if len(verify) != len(serverFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: server's Finished message was incorrect")
}
if err := transcriptMsg(serverFinished, &hs.finishedHash); err != nil {
return err
}
copy(out, verify)
return nil
}
func (hs *clientHandshakeState) readSessionTicket() error {
if !hs.serverHello.ticketSupported {
return nil
}
c := hs.c
if !hs.hello.ticketSupported {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: server sent unrequested session ticket")
}
msg, err := c.readHandshake(&hs.finishedHash)
if err != nil {
return err
}
sessionTicketMsg, ok := msg.(*newSessionTicketMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(sessionTicketMsg, msg)
}
hs.ticket = sessionTicketMsg.ticket
return nil
}
func (hs *clientHandshakeState) saveSessionTicket() error {
if hs.ticket == nil {
return nil
}
c := hs.c
cacheKey := c.clientSessionCacheKey()
if cacheKey == "" {
return nil
}
session, err := c.sessionState()
if err != nil {
return err
}
session.secret = hs.masterSecret
cs := &ClientSessionState{ticket: hs.ticket, session: session}
c.config.ClientSessionCache.Put(cacheKey, cs)
return nil
}
func (hs *clientHandshakeState) sendFinished(out []byte) error {
c := hs.c
if err := c.writeChangeCipherRecord(); err != nil {
return err
}
finished := new(finishedMsg)
finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret)
if _, err := hs.c.writeHandshakeRecord(finished, &hs.finishedHash); err != nil {
return err
}
copy(out, finished.verifyData)
return nil
}
// defaultMaxRSAKeySize is the maximum RSA key size in bits that we are willing
// to verify the signatures of during a TLS handshake.
const defaultMaxRSAKeySize = 8192
var tlsmaxrsasize = godebug.New("tlsmaxrsasize")
func checkKeySize(n int) (max int, ok bool) {
if v := tlsmaxrsasize.Value(); v != "" {
if max, err := strconv.Atoi(v); err == nil {
if (n <= max) != (n <= defaultMaxRSAKeySize) {
tlsmaxrsasize.IncNonDefault()
}
return max, n <= max
}
}
return defaultMaxRSAKeySize, n <= defaultMaxRSAKeySize
}
// verifyServerCertificate parses and verifies the provided chain, setting
// c.verifiedChains and c.peerCertificates or sending the appropriate alert.
func (c *Conn) verifyServerCertificate(certificates [][]byte) error {
activeHandles := make([]*activeCert, len(certificates))
certs := make([]*x509.Certificate, len(certificates))
for i, asn1Data := range certificates {
cert, err := globalCertCache.newCert(asn1Data)
if err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("tls: failed to parse certificate from server: " + err.Error())
}
if cert.cert.PublicKeyAlgorithm == x509.RSA {
n := cert.cert.PublicKey.(*rsa.PublicKey).N.BitLen()
if max, ok := checkKeySize(n); !ok {
c.sendAlert(alertBadCertificate)
return fmt.Errorf("tls: server sent certificate containing RSA key larger than %d bits", max)
}
}
activeHandles[i] = cert
certs[i] = cert.cert
}
if !c.config.InsecureSkipVerify {
opts := x509.VerifyOptions{
Roots: c.config.RootCAs,
CurrentTime: c.config.time(),
DNSName: c.config.ServerName,
Intermediates: x509.NewCertPool(),
}
for _, cert := range certs[1:] {
opts.Intermediates.AddCert(cert)
}
var err error
c.verifiedChains, err = certs[0].Verify(opts)
if err != nil {
c.sendAlert(alertBadCertificate)
return &CertificateVerificationError{UnverifiedCertificates: certs, Err: err}
}
}
switch certs[0].PublicKey.(type) {
case *rsa.PublicKey, *ecdsa.PublicKey, ed25519.PublicKey:
break
default:
c.sendAlert(alertUnsupportedCertificate)
return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", certs[0].PublicKey)
}
c.activeCertHandles = activeHandles
c.peerCertificates = certs
if c.config.VerifyPeerCertificate != nil {
if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
if c.config.VerifyConnection != nil {
if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
return nil
}
// certificateRequestInfoFromMsg generates a CertificateRequestInfo from a TLS
// <= 1.2 CertificateRequest, making an effort to fill in missing information.
func certificateRequestInfoFromMsg(ctx context.Context, vers uint16, certReq *certificateRequestMsg) *CertificateRequestInfo {
cri := &CertificateRequestInfo{
AcceptableCAs: certReq.certificateAuthorities,
Version: vers,
ctx: ctx,
}
var rsaAvail, ecAvail bool
for _, certType := range certReq.certificateTypes {
switch certType {
case certTypeRSASign:
rsaAvail = true
case certTypeECDSASign:
ecAvail = true
}
}
if !certReq.hasSignatureAlgorithm {
// Prior to TLS 1.2, signature schemes did not exist. In this case we
// make up a list based on the acceptable certificate types, to help
// GetClientCertificate and SupportsCertificate select the right certificate.
// The hash part of the SignatureScheme is a lie here, because
// TLS 1.0 and 1.1 always use MD5+SHA1 for RSA and SHA1 for ECDSA.
switch {
case rsaAvail && ecAvail:
cri.SignatureSchemes = []SignatureScheme{
ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512,
PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1,
}
case rsaAvail:
cri.SignatureSchemes = []SignatureScheme{
PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1,
}
case ecAvail:
cri.SignatureSchemes = []SignatureScheme{
ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512,
}
}
return cri
}
// Filter the signature schemes based on the certificate types.
// See RFC 5246, Section 7.4.4 (where it calls this "somewhat complicated").
cri.SignatureSchemes = make([]SignatureScheme, 0, len(certReq.supportedSignatureAlgorithms))
for _, sigScheme := range certReq.supportedSignatureAlgorithms {
sigType, _, err := typeAndHashFromSignatureScheme(sigScheme)
if err != nil {
continue
}
switch sigType {
case signatureECDSA, signatureEd25519:
if ecAvail {
cri.SignatureSchemes = append(cri.SignatureSchemes, sigScheme)
}
case signatureRSAPSS, signaturePKCS1v15:
if rsaAvail {
cri.SignatureSchemes = append(cri.SignatureSchemes, sigScheme)
}
}
}
return cri
}
func (c *Conn) getClientCertificate(cri *CertificateRequestInfo) (*Certificate, error) {
if c.config.GetClientCertificate != nil {
return c.config.GetClientCertificate(cri)
}
for _, chain := range c.config.Certificates {
if err := cri.SupportsCertificate(&chain); err != nil {
continue
}
return &chain, nil
}
// No acceptable certificate found. Don't send a certificate.
return new(Certificate), nil
}
// clientSessionCacheKey returns a key used to cache sessionTickets that could
// be used to resume previously negotiated TLS sessions with a server.
func (c *Conn) clientSessionCacheKey() string {
if len(c.config.ServerName) > 0 {
return c.config.ServerName
}
if c.conn != nil {
return c.conn.RemoteAddr().String()
}
return ""
}
// hostnameInSNI converts name into an appropriate hostname for SNI.
// Literal IP addresses and absolute FQDNs are not permitted as SNI values.
// See RFC 6066, Section 3.
func hostnameInSNI(name string) string {
host := name
if len(host) > 0 && host[0] == '[' && host[len(host)-1] == ']' {
host = host[1 : len(host)-1]
}
if i := strings.LastIndex(host, "%"); i > 0 {
host = host[:i]
}
if net.ParseIP(host) != nil {
return ""
}
for len(name) > 0 && name[len(name)-1] == '.' {
name = name[:len(name)-1]
}
return name
}