| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package heap provides heap operations for any type that implements |
| // heap.Interface. A heap is a tree with the property that each node is the |
| // minimum-valued node in its subtree. |
| // |
| // The minimum element in the tree is the root, at index 0. |
| // |
| // A heap is a common way to implement a priority queue. To build a priority |
| // queue, implement the Heap interface with the (negative) priority as the |
| // ordering for the Less method, so Push adds items while Pop removes the |
| // highest-priority item from the queue. The Examples include such an |
| // implementation; the file example_pq_test.go has the complete source. |
| package heap |
| |
| import "sort" |
| |
| // The Interface type describes the requirements |
| // for a type using the routines in this package. |
| // Any type that implements it may be used as a |
| // min-heap with the following invariants (established after |
| // [Init] has been called or if the data is empty or sorted): |
| // |
| // !h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len() |
| // |
| // Note that [Push] and [Pop] in this interface are for package heap's |
| // implementation to call. To add and remove things from the heap, |
| // use [heap.Push] and [heap.Pop]. |
| type Interface interface { |
| sort.Interface |
| Push(x any) // add x as element Len() |
| Pop() any // remove and return element Len() - 1. |
| } |
| |
| // Init establishes the heap invariants required by the other routines in this package. |
| // Init is idempotent with respect to the heap invariants |
| // and may be called whenever the heap invariants may have been invalidated. |
| // The complexity is O(n) where n = h.Len(). |
| func Init(h Interface) { |
| // heapify |
| n := h.Len() |
| for i := n/2 - 1; i >= 0; i-- { |
| down(h, i, n) |
| } |
| } |
| |
| // Push pushes the element x onto the heap. |
| // The complexity is O(log n) where n = h.Len(). |
| func Push(h Interface, x any) { |
| h.Push(x) |
| up(h, h.Len()-1) |
| } |
| |
| // Pop removes and returns the minimum element (according to Less) from the heap. |
| // The complexity is O(log n) where n = h.Len(). |
| // Pop is equivalent to [Remove](h, 0). |
| func Pop(h Interface) any { |
| n := h.Len() - 1 |
| h.Swap(0, n) |
| down(h, 0, n) |
| return h.Pop() |
| } |
| |
| // Remove removes and returns the element at index i from the heap. |
| // The complexity is O(log n) where n = h.Len(). |
| func Remove(h Interface, i int) any { |
| n := h.Len() - 1 |
| if n != i { |
| h.Swap(i, n) |
| if !down(h, i, n) { |
| up(h, i) |
| } |
| } |
| return h.Pop() |
| } |
| |
| // Fix re-establishes the heap ordering after the element at index i has changed its value. |
| // Changing the value of the element at index i and then calling Fix is equivalent to, |
| // but less expensive than, calling [Remove](h, i) followed by a Push of the new value. |
| // The complexity is O(log n) where n = h.Len(). |
| func Fix(h Interface, i int) { |
| if !down(h, i, h.Len()) { |
| up(h, i) |
| } |
| } |
| |
| func up(h Interface, j int) { |
| for { |
| i := (j - 1) / 2 // parent |
| if i == j || !h.Less(j, i) { |
| break |
| } |
| h.Swap(i, j) |
| j = i |
| } |
| } |
| |
| func down(h Interface, i0, n int) bool { |
| i := i0 |
| for { |
| j1 := 2*i + 1 |
| if j1 >= n || j1 < 0 { // j1 < 0 after int overflow |
| break |
| } |
| j := j1 // left child |
| if j2 := j1 + 1; j2 < n && h.Less(j2, j1) { |
| j = j2 // = 2*i + 2 // right child |
| } |
| if !h.Less(j, i) { |
| break |
| } |
| h.Swap(i, j) |
| i = j |
| } |
| return i > i0 |
| } |