| // Copyright 2014 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Package binutils provides access to the GNU binutils. |
| package binutils |
| |
| import ( |
| "debug/elf" |
| "debug/macho" |
| "debug/pe" |
| "encoding/binary" |
| "errors" |
| "fmt" |
| "io" |
| "os" |
| "os/exec" |
| "path/filepath" |
| "regexp" |
| "runtime" |
| "strconv" |
| "strings" |
| "sync" |
| |
| "github.com/google/pprof/internal/elfexec" |
| "github.com/google/pprof/internal/plugin" |
| ) |
| |
| // A Binutils implements plugin.ObjTool by invoking the GNU binutils. |
| type Binutils struct { |
| mu sync.Mutex |
| rep *binrep |
| } |
| |
| var ( |
| objdumpLLVMVerRE = regexp.MustCompile(`LLVM version (?:(\d*)\.(\d*)\.(\d*)|.*(trunk).*)`) |
| |
| // Defined for testing |
| elfOpen = elf.Open |
| ) |
| |
| // binrep is an immutable representation for Binutils. It is atomically |
| // replaced on every mutation to provide thread-safe access. |
| type binrep struct { |
| // Commands to invoke. |
| llvmSymbolizer string |
| llvmSymbolizerFound bool |
| addr2line string |
| addr2lineFound bool |
| nm string |
| nmFound bool |
| objdump string |
| objdumpFound bool |
| isLLVMObjdump bool |
| |
| // if fast, perform symbolization using nm (symbol names only), |
| // instead of file-line detail from the slower addr2line. |
| fast bool |
| } |
| |
| // get returns the current representation for bu, initializing it if necessary. |
| func (bu *Binutils) get() *binrep { |
| bu.mu.Lock() |
| r := bu.rep |
| if r == nil { |
| r = &binrep{} |
| initTools(r, "") |
| bu.rep = r |
| } |
| bu.mu.Unlock() |
| return r |
| } |
| |
| // update modifies the rep for bu via the supplied function. |
| func (bu *Binutils) update(fn func(r *binrep)) { |
| r := &binrep{} |
| bu.mu.Lock() |
| defer bu.mu.Unlock() |
| if bu.rep == nil { |
| initTools(r, "") |
| } else { |
| *r = *bu.rep |
| } |
| fn(r) |
| bu.rep = r |
| } |
| |
| // String returns string representation of the binutils state for debug logging. |
| func (bu *Binutils) String() string { |
| r := bu.get() |
| var llvmSymbolizer, addr2line, nm, objdump string |
| if r.llvmSymbolizerFound { |
| llvmSymbolizer = r.llvmSymbolizer |
| } |
| if r.addr2lineFound { |
| addr2line = r.addr2line |
| } |
| if r.nmFound { |
| nm = r.nm |
| } |
| if r.objdumpFound { |
| objdump = r.objdump |
| } |
| return fmt.Sprintf("llvm-symbolizer=%q addr2line=%q nm=%q objdump=%q fast=%t", |
| llvmSymbolizer, addr2line, nm, objdump, r.fast) |
| } |
| |
| // SetFastSymbolization sets a toggle that makes binutils use fast |
| // symbolization (using nm), which is much faster than addr2line but |
| // provides only symbol name information (no file/line). |
| func (bu *Binutils) SetFastSymbolization(fast bool) { |
| bu.update(func(r *binrep) { r.fast = fast }) |
| } |
| |
| // SetTools processes the contents of the tools option. It |
| // expects a set of entries separated by commas; each entry is a pair |
| // of the form t:path, where cmd will be used to look only for the |
| // tool named t. If t is not specified, the path is searched for all |
| // tools. |
| func (bu *Binutils) SetTools(config string) { |
| bu.update(func(r *binrep) { initTools(r, config) }) |
| } |
| |
| func initTools(b *binrep, config string) { |
| // paths collect paths per tool; Key "" contains the default. |
| paths := make(map[string][]string) |
| for _, t := range strings.Split(config, ",") { |
| name, path := "", t |
| if ct := strings.SplitN(t, ":", 2); len(ct) == 2 { |
| name, path = ct[0], ct[1] |
| } |
| paths[name] = append(paths[name], path) |
| } |
| |
| defaultPath := paths[""] |
| b.llvmSymbolizer, b.llvmSymbolizerFound = chooseExe([]string{"llvm-symbolizer"}, []string{}, append(paths["llvm-symbolizer"], defaultPath...)) |
| b.addr2line, b.addr2lineFound = chooseExe([]string{"addr2line"}, []string{"gaddr2line"}, append(paths["addr2line"], defaultPath...)) |
| // The "-n" option is supported by LLVM since 2011. The output of llvm-nm |
| // and GNU nm with "-n" option is interchangeable for our purposes, so we do |
| // not need to differrentiate them. |
| b.nm, b.nmFound = chooseExe([]string{"llvm-nm", "nm"}, []string{"gnm"}, append(paths["nm"], defaultPath...)) |
| b.objdump, b.objdumpFound, b.isLLVMObjdump = findObjdump(append(paths["objdump"], defaultPath...)) |
| } |
| |
| // findObjdump finds and returns path to preferred objdump binary. |
| // Order of preference is: llvm-objdump, objdump. |
| // On MacOS only, also looks for gobjdump with least preference. |
| // Accepts a list of paths and returns: |
| // a string with path to the preferred objdump binary if found, |
| // or an empty string if not found; |
| // a boolean if any acceptable objdump was found; |
| // a boolean indicating if it is an LLVM objdump. |
| func findObjdump(paths []string) (string, bool, bool) { |
| objdumpNames := []string{"llvm-objdump", "objdump"} |
| if runtime.GOOS == "darwin" { |
| objdumpNames = append(objdumpNames, "gobjdump") |
| } |
| |
| for _, objdumpName := range objdumpNames { |
| if objdump, objdumpFound := findExe(objdumpName, paths); objdumpFound { |
| cmdOut, err := exec.Command(objdump, "--version").Output() |
| if err != nil { |
| continue |
| } |
| if isLLVMObjdump(string(cmdOut)) { |
| return objdump, true, true |
| } |
| if isBuObjdump(string(cmdOut)) { |
| return objdump, true, false |
| } |
| } |
| } |
| return "", false, false |
| } |
| |
| // chooseExe finds and returns path to preferred binary. names is a list of |
| // names to search on both Linux and OSX. osxNames is a list of names specific |
| // to OSX. names always has a higher priority than osxNames. The order of |
| // the name within each list decides its priority (e.g. the first name has a |
| // higher priority than the second name in the list). |
| // |
| // It returns a string with path to the binary and a boolean indicating if any |
| // acceptable binary was found. |
| func chooseExe(names, osxNames []string, paths []string) (string, bool) { |
| if runtime.GOOS == "darwin" { |
| names = append(names, osxNames...) |
| } |
| for _, name := range names { |
| if binary, found := findExe(name, paths); found { |
| return binary, true |
| } |
| } |
| return "", false |
| } |
| |
| // isLLVMObjdump accepts a string with path to an objdump binary, |
| // and returns a boolean indicating if the given binary is an LLVM |
| // objdump binary of an acceptable version. |
| func isLLVMObjdump(output string) bool { |
| fields := objdumpLLVMVerRE.FindStringSubmatch(output) |
| if len(fields) != 5 { |
| return false |
| } |
| if fields[4] == "trunk" { |
| return true |
| } |
| verMajor, err := strconv.Atoi(fields[1]) |
| if err != nil { |
| return false |
| } |
| verPatch, err := strconv.Atoi(fields[3]) |
| if err != nil { |
| return false |
| } |
| if runtime.GOOS == "linux" && verMajor >= 8 { |
| // Ensure LLVM objdump is at least version 8.0 on Linux. |
| // Some flags, like --demangle, and double dashes for options are |
| // not supported by previous versions. |
| return true |
| } |
| if runtime.GOOS == "darwin" { |
| // Ensure LLVM objdump is at least version 10.0.1 on MacOS. |
| return verMajor > 10 || (verMajor == 10 && verPatch >= 1) |
| } |
| return false |
| } |
| |
| // isBuObjdump accepts a string with path to an objdump binary, |
| // and returns a boolean indicating if the given binary is a GNU |
| // binutils objdump binary. No version check is performed. |
| func isBuObjdump(output string) bool { |
| return strings.Contains(output, "GNU objdump") |
| } |
| |
| // findExe looks for an executable command on a set of paths. |
| // If it cannot find it, returns cmd. |
| func findExe(cmd string, paths []string) (string, bool) { |
| for _, p := range paths { |
| cp := filepath.Join(p, cmd) |
| if c, err := exec.LookPath(cp); err == nil { |
| return c, true |
| } |
| } |
| return cmd, false |
| } |
| |
| // Disasm returns the assembly instructions for the specified address range |
| // of a binary. |
| func (bu *Binutils) Disasm(file string, start, end uint64, intelSyntax bool) ([]plugin.Inst, error) { |
| b := bu.get() |
| if !b.objdumpFound { |
| return nil, errors.New("cannot disasm: no objdump tool available") |
| } |
| args := []string{"--disassemble", "--demangle", "--no-show-raw-insn", |
| "--line-numbers", fmt.Sprintf("--start-address=%#x", start), |
| fmt.Sprintf("--stop-address=%#x", end)} |
| |
| if intelSyntax { |
| if b.isLLVMObjdump { |
| args = append(args, "--x86-asm-syntax=intel") |
| } else { |
| args = append(args, "-M", "intel") |
| } |
| } |
| |
| args = append(args, file) |
| cmd := exec.Command(b.objdump, args...) |
| out, err := cmd.Output() |
| if err != nil { |
| return nil, fmt.Errorf("%v: %v", cmd.Args, err) |
| } |
| |
| return disassemble(out) |
| } |
| |
| // Open satisfies the plugin.ObjTool interface. |
| func (bu *Binutils) Open(name string, start, limit, offset uint64, relocationSymbol string) (plugin.ObjFile, error) { |
| b := bu.get() |
| |
| // Make sure file is a supported executable. |
| // This uses magic numbers, mainly to provide better error messages but |
| // it should also help speed. |
| |
| if _, err := os.Stat(name); err != nil { |
| // For testing, do not require file name to exist. |
| if strings.Contains(b.addr2line, "testdata/") { |
| return &fileAddr2Line{file: file{b: b, name: name}}, nil |
| } |
| return nil, err |
| } |
| |
| // Read the first 4 bytes of the file. |
| |
| f, err := os.Open(name) |
| if err != nil { |
| return nil, fmt.Errorf("error opening %s: %v", name, err) |
| } |
| defer f.Close() |
| |
| var header [4]byte |
| if _, err = io.ReadFull(f, header[:]); err != nil { |
| return nil, fmt.Errorf("error reading magic number from %s: %v", name, err) |
| } |
| |
| elfMagic := string(header[:]) |
| |
| // Match against supported file types. |
| if elfMagic == elf.ELFMAG { |
| f, err := b.openELF(name, start, limit, offset, relocationSymbol) |
| if err != nil { |
| return nil, fmt.Errorf("error reading ELF file %s: %v", name, err) |
| } |
| return f, nil |
| } |
| |
| // Mach-O magic numbers can be big or little endian. |
| machoMagicLittle := binary.LittleEndian.Uint32(header[:]) |
| machoMagicBig := binary.BigEndian.Uint32(header[:]) |
| |
| if machoMagicLittle == macho.Magic32 || machoMagicLittle == macho.Magic64 || |
| machoMagicBig == macho.Magic32 || machoMagicBig == macho.Magic64 { |
| f, err := b.openMachO(name, start, limit, offset) |
| if err != nil { |
| return nil, fmt.Errorf("error reading Mach-O file %s: %v", name, err) |
| } |
| return f, nil |
| } |
| if machoMagicLittle == macho.MagicFat || machoMagicBig == macho.MagicFat { |
| f, err := b.openFatMachO(name, start, limit, offset) |
| if err != nil { |
| return nil, fmt.Errorf("error reading fat Mach-O file %s: %v", name, err) |
| } |
| return f, nil |
| } |
| |
| peMagic := string(header[:2]) |
| if peMagic == "MZ" { |
| f, err := b.openPE(name, start, limit, offset) |
| if err != nil { |
| return nil, fmt.Errorf("error reading PE file %s: %v", name, err) |
| } |
| return f, nil |
| } |
| |
| return nil, fmt.Errorf("unrecognized binary format: %s", name) |
| } |
| |
| func (b *binrep) openMachOCommon(name string, of *macho.File, start, limit, offset uint64) (plugin.ObjFile, error) { |
| |
| // Subtract the load address of the __TEXT section. Usually 0 for shared |
| // libraries or 0x100000000 for executables. You can check this value by |
| // running `objdump -private-headers <file>`. |
| |
| textSegment := of.Segment("__TEXT") |
| if textSegment == nil { |
| return nil, fmt.Errorf("could not identify base for %s: no __TEXT segment", name) |
| } |
| if textSegment.Addr > start { |
| return nil, fmt.Errorf("could not identify base for %s: __TEXT segment address (0x%x) > mapping start address (0x%x)", |
| name, textSegment.Addr, start) |
| } |
| |
| base := start - textSegment.Addr |
| |
| if b.fast || (!b.addr2lineFound && !b.llvmSymbolizerFound) { |
| return &fileNM{file: file{b: b, name: name, base: base}}, nil |
| } |
| return &fileAddr2Line{file: file{b: b, name: name, base: base}}, nil |
| } |
| |
| func (b *binrep) openFatMachO(name string, start, limit, offset uint64) (plugin.ObjFile, error) { |
| of, err := macho.OpenFat(name) |
| if err != nil { |
| return nil, fmt.Errorf("error parsing %s: %v", name, err) |
| } |
| defer of.Close() |
| |
| if len(of.Arches) == 0 { |
| return nil, fmt.Errorf("empty fat Mach-O file: %s", name) |
| } |
| |
| var arch macho.Cpu |
| // Use the host architecture. |
| // TODO: This is not ideal because the host architecture may not be the one |
| // that was profiled. E.g. an amd64 host can profile a 386 program. |
| switch runtime.GOARCH { |
| case "386": |
| arch = macho.Cpu386 |
| case "amd64", "amd64p32": |
| arch = macho.CpuAmd64 |
| case "arm", "armbe", "arm64", "arm64be": |
| arch = macho.CpuArm |
| case "ppc": |
| arch = macho.CpuPpc |
| case "ppc64", "ppc64le": |
| arch = macho.CpuPpc64 |
| default: |
| return nil, fmt.Errorf("unsupported host architecture for %s: %s", name, runtime.GOARCH) |
| } |
| for i := range of.Arches { |
| if of.Arches[i].Cpu == arch { |
| return b.openMachOCommon(name, of.Arches[i].File, start, limit, offset) |
| } |
| } |
| return nil, fmt.Errorf("architecture not found in %s: %s", name, runtime.GOARCH) |
| } |
| |
| func (b *binrep) openMachO(name string, start, limit, offset uint64) (plugin.ObjFile, error) { |
| of, err := macho.Open(name) |
| if err != nil { |
| return nil, fmt.Errorf("error parsing %s: %v", name, err) |
| } |
| defer of.Close() |
| |
| return b.openMachOCommon(name, of, start, limit, offset) |
| } |
| |
| func (b *binrep) openELF(name string, start, limit, offset uint64, relocationSymbol string) (plugin.ObjFile, error) { |
| ef, err := elfOpen(name) |
| if err != nil { |
| return nil, fmt.Errorf("error parsing %s: %v", name, err) |
| } |
| defer ef.Close() |
| |
| buildID := "" |
| if f, err := os.Open(name); err == nil { |
| if id, err := elfexec.GetBuildID(f); err == nil { |
| buildID = fmt.Sprintf("%x", id) |
| } |
| } |
| |
| var ( |
| kernelOffset *uint64 |
| pageAligned = func(addr uint64) bool { return addr%4096 == 0 } |
| ) |
| if strings.Contains(name, "vmlinux") || !pageAligned(start) || !pageAligned(limit) || !pageAligned(offset) { |
| // Reading all Symbols is expensive, and we only rarely need it so |
| // we don't want to do it every time. But if _stext happens to be |
| // page-aligned but isn't the same as Vaddr, we would symbolize |
| // wrong. So if the name the addresses aren't page aligned, or if |
| // the name is "vmlinux" we read _stext. We can be wrong if: (1) |
| // someone passes a kernel path that doesn't contain "vmlinux" AND |
| // (2) _stext is page-aligned AND (3) _stext is not at Vaddr |
| symbols, err := ef.Symbols() |
| if err != nil && err != elf.ErrNoSymbols { |
| return nil, err |
| } |
| |
| // The kernel relocation symbol (the mapping start address) can be either |
| // _text or _stext. When profiles are generated by `perf`, which one was used is |
| // distinguished by the mapping name for the kernel image: |
| // '[kernel.kallsyms]_text' or '[kernel.kallsyms]_stext', respectively. If we haven't |
| // been able to parse it from the mapping, we default to _stext. |
| if relocationSymbol == "" { |
| relocationSymbol = "_stext" |
| } |
| for _, s := range symbols { |
| if s.Name == relocationSymbol { |
| kernelOffset = &s.Value |
| break |
| } |
| } |
| } |
| |
| // Check that we can compute a base for the binary. This may not be the |
| // correct base value, so we don't save it. We delay computing the actual base |
| // value until we have a sample address for this mapping, so that we can |
| // correctly identify the associated program segment that is needed to compute |
| // the base. |
| if _, err := elfexec.GetBase(&ef.FileHeader, elfexec.FindTextProgHeader(ef), kernelOffset, start, limit, offset); err != nil { |
| return nil, fmt.Errorf("could not identify base for %s: %v", name, err) |
| } |
| |
| if b.fast || (!b.addr2lineFound && !b.llvmSymbolizerFound) { |
| return &fileNM{file: file{ |
| b: b, |
| name: name, |
| buildID: buildID, |
| m: &elfMapping{start: start, limit: limit, offset: offset, kernelOffset: kernelOffset}, |
| }}, nil |
| } |
| return &fileAddr2Line{file: file{ |
| b: b, |
| name: name, |
| buildID: buildID, |
| m: &elfMapping{start: start, limit: limit, offset: offset, kernelOffset: kernelOffset}, |
| }}, nil |
| } |
| |
| func (b *binrep) openPE(name string, start, limit, offset uint64) (plugin.ObjFile, error) { |
| pf, err := pe.Open(name) |
| if err != nil { |
| return nil, fmt.Errorf("error parsing %s: %v", name, err) |
| } |
| defer pf.Close() |
| |
| var imageBase uint64 |
| switch h := pf.OptionalHeader.(type) { |
| case *pe.OptionalHeader32: |
| imageBase = uint64(h.ImageBase) |
| case *pe.OptionalHeader64: |
| imageBase = uint64(h.ImageBase) |
| default: |
| return nil, fmt.Errorf("unknown OptionalHeader %T", pf.OptionalHeader) |
| } |
| |
| var base uint64 |
| if start > 0 { |
| base = start - imageBase |
| } |
| if b.fast || (!b.addr2lineFound && !b.llvmSymbolizerFound) { |
| return &fileNM{file: file{b: b, name: name, base: base}}, nil |
| } |
| return &fileAddr2Line{file: file{b: b, name: name, base: base}}, nil |
| } |
| |
| // elfMapping stores the parameters of a runtime mapping that are needed to |
| // identify the ELF segment associated with a mapping. |
| type elfMapping struct { |
| // Runtime mapping parameters. |
| start, limit, offset uint64 |
| // Offset of kernel relocation symbol. Only defined for kernel images, nil otherwise. |
| kernelOffset *uint64 |
| } |
| |
| // findProgramHeader returns the program segment that matches the current |
| // mapping and the given address, or an error if it cannot find a unique program |
| // header. |
| func (m *elfMapping) findProgramHeader(ef *elf.File, addr uint64) (*elf.ProgHeader, error) { |
| // For user space executables, we try to find the actual program segment that |
| // is associated with the given mapping. Skip this search if limit <= start. |
| // We cannot use just a check on the start address of the mapping to tell if |
| // it's a kernel / .ko module mapping, because with quipper address remapping |
| // enabled, the address would be in the lower half of the address space. |
| |
| if m.kernelOffset != nil || m.start >= m.limit || m.limit >= (uint64(1)<<63) { |
| // For the kernel, find the program segment that includes the .text section. |
| return elfexec.FindTextProgHeader(ef), nil |
| } |
| |
| // Fetch all the loadable segments. |
| var phdrs []elf.ProgHeader |
| for i := range ef.Progs { |
| if ef.Progs[i].Type == elf.PT_LOAD { |
| phdrs = append(phdrs, ef.Progs[i].ProgHeader) |
| } |
| } |
| // Some ELF files don't contain any loadable program segments, e.g. .ko |
| // kernel modules. It's not an error to have no header in such cases. |
| if len(phdrs) == 0 { |
| return nil, nil |
| } |
| // Get all program headers associated with the mapping. |
| headers := elfexec.ProgramHeadersForMapping(phdrs, m.offset, m.limit-m.start) |
| if len(headers) == 0 { |
| return nil, errors.New("no program header matches mapping info") |
| } |
| if len(headers) == 1 { |
| return headers[0], nil |
| } |
| |
| // Use the file offset corresponding to the address to symbolize, to narrow |
| // down the header. |
| return elfexec.HeaderForFileOffset(headers, addr-m.start+m.offset) |
| } |
| |
| // file implements the binutils.ObjFile interface. |
| type file struct { |
| b *binrep |
| name string |
| buildID string |
| |
| baseOnce sync.Once // Ensures the base, baseErr and isData are computed once. |
| base uint64 |
| baseErr error // Any eventual error while computing the base. |
| isData bool |
| // Mapping information. Relevant only for ELF files, nil otherwise. |
| m *elfMapping |
| } |
| |
| // computeBase computes the relocation base for the given binary file only if |
| // the elfMapping field is set. It populates the base and isData fields and |
| // returns an error. |
| func (f *file) computeBase(addr uint64) error { |
| if f == nil || f.m == nil { |
| return nil |
| } |
| if addr < f.m.start || addr >= f.m.limit { |
| return fmt.Errorf("specified address %x is outside the mapping range [%x, %x] for file %q", addr, f.m.start, f.m.limit, f.name) |
| } |
| ef, err := elfOpen(f.name) |
| if err != nil { |
| return fmt.Errorf("error parsing %s: %v", f.name, err) |
| } |
| defer ef.Close() |
| |
| ph, err := f.m.findProgramHeader(ef, addr) |
| if err != nil { |
| return fmt.Errorf("failed to find program header for file %q, ELF mapping %#v, address %x: %v", f.name, *f.m, addr, err) |
| } |
| |
| base, err := elfexec.GetBase(&ef.FileHeader, ph, f.m.kernelOffset, f.m.start, f.m.limit, f.m.offset) |
| if err != nil { |
| return err |
| } |
| f.base = base |
| f.isData = ph != nil && ph.Flags&elf.PF_X == 0 |
| return nil |
| } |
| |
| func (f *file) Name() string { |
| return f.name |
| } |
| |
| func (f *file) ObjAddr(addr uint64) (uint64, error) { |
| f.baseOnce.Do(func() { f.baseErr = f.computeBase(addr) }) |
| if f.baseErr != nil { |
| return 0, f.baseErr |
| } |
| return addr - f.base, nil |
| } |
| |
| func (f *file) BuildID() string { |
| return f.buildID |
| } |
| |
| func (f *file) SourceLine(addr uint64) ([]plugin.Frame, error) { |
| f.baseOnce.Do(func() { f.baseErr = f.computeBase(addr) }) |
| if f.baseErr != nil { |
| return nil, f.baseErr |
| } |
| return nil, nil |
| } |
| |
| func (f *file) Close() error { |
| return nil |
| } |
| |
| func (f *file) Symbols(r *regexp.Regexp, addr uint64) ([]*plugin.Sym, error) { |
| // Get from nm a list of symbols sorted by address. |
| cmd := exec.Command(f.b.nm, "-n", f.name) |
| out, err := cmd.Output() |
| if err != nil { |
| return nil, fmt.Errorf("%v: %v", cmd.Args, err) |
| } |
| |
| return findSymbols(out, f.name, r, addr) |
| } |
| |
| // fileNM implements the binutils.ObjFile interface, using 'nm' to map |
| // addresses to symbols (without file/line number information). It is |
| // faster than fileAddr2Line. |
| type fileNM struct { |
| file |
| addr2linernm *addr2LinerNM |
| } |
| |
| func (f *fileNM) SourceLine(addr uint64) ([]plugin.Frame, error) { |
| f.baseOnce.Do(func() { f.baseErr = f.computeBase(addr) }) |
| if f.baseErr != nil { |
| return nil, f.baseErr |
| } |
| if f.addr2linernm == nil { |
| addr2liner, err := newAddr2LinerNM(f.b.nm, f.name, f.base) |
| if err != nil { |
| return nil, err |
| } |
| f.addr2linernm = addr2liner |
| } |
| return f.addr2linernm.addrInfo(addr) |
| } |
| |
| // fileAddr2Line implements the binutils.ObjFile interface, using |
| // llvm-symbolizer, if that's available, or addr2line to map addresses to |
| // symbols (with file/line number information). It can be slow for large |
| // binaries with debug information. |
| type fileAddr2Line struct { |
| once sync.Once |
| file |
| addr2liner *addr2Liner |
| llvmSymbolizer *llvmSymbolizer |
| isData bool |
| } |
| |
| func (f *fileAddr2Line) SourceLine(addr uint64) ([]plugin.Frame, error) { |
| f.baseOnce.Do(func() { f.baseErr = f.computeBase(addr) }) |
| if f.baseErr != nil { |
| return nil, f.baseErr |
| } |
| f.once.Do(f.init) |
| if f.llvmSymbolizer != nil { |
| return f.llvmSymbolizer.addrInfo(addr) |
| } |
| if f.addr2liner != nil { |
| return f.addr2liner.addrInfo(addr) |
| } |
| return nil, fmt.Errorf("could not find local addr2liner") |
| } |
| |
| func (f *fileAddr2Line) init() { |
| if llvmSymbolizer, err := newLLVMSymbolizer(f.b.llvmSymbolizer, f.name, f.base, f.isData); err == nil { |
| f.llvmSymbolizer = llvmSymbolizer |
| return |
| } |
| |
| if addr2liner, err := newAddr2Liner(f.b.addr2line, f.name, f.base); err == nil { |
| f.addr2liner = addr2liner |
| |
| // When addr2line encounters some gcc compiled binaries, it |
| // drops interesting parts of names in anonymous namespaces. |
| // Fallback to NM for better function names. |
| if nm, err := newAddr2LinerNM(f.b.nm, f.name, f.base); err == nil { |
| f.addr2liner.nm = nm |
| } |
| } |
| } |
| |
| func (f *fileAddr2Line) Close() error { |
| if f.llvmSymbolizer != nil { |
| f.llvmSymbolizer.rw.close() |
| f.llvmSymbolizer = nil |
| } |
| if f.addr2liner != nil { |
| f.addr2liner.rw.close() |
| f.addr2liner = nil |
| } |
| return nil |
| } |