| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Code generated by generate.go. DO NOT EDIT. |
| |
| package fiat |
| |
| import ( |
| "crypto/subtle" |
| "errors" |
| ) |
| |
| // P256Element is an integer modulo 2^256 - 2^224 + 2^192 + 2^96 - 1. |
| // |
| // The zero value is a valid zero element. |
| type P256Element struct { |
| // Values are represented internally always in the Montgomery domain, and |
| // converted in Bytes and SetBytes. |
| x p256MontgomeryDomainFieldElement |
| } |
| |
| const p256ElementLen = 32 |
| |
| type p256UntypedFieldElement = [4]uint64 |
| |
| // One sets e = 1, and returns e. |
| func (e *P256Element) One() *P256Element { |
| p256SetOne(&e.x) |
| return e |
| } |
| |
| // Equal returns 1 if e == t, and zero otherwise. |
| func (e *P256Element) Equal(t *P256Element) int { |
| eBytes := e.Bytes() |
| tBytes := t.Bytes() |
| return subtle.ConstantTimeCompare(eBytes, tBytes) |
| } |
| |
| // IsZero returns 1 if e == 0, and zero otherwise. |
| func (e *P256Element) IsZero() int { |
| zero := make([]byte, p256ElementLen) |
| eBytes := e.Bytes() |
| return subtle.ConstantTimeCompare(eBytes, zero) |
| } |
| |
| // Set sets e = t, and returns e. |
| func (e *P256Element) Set(t *P256Element) *P256Element { |
| e.x = t.x |
| return e |
| } |
| |
| // Bytes returns the 32-byte big-endian encoding of e. |
| func (e *P256Element) Bytes() []byte { |
| // This function is outlined to make the allocations inline in the caller |
| // rather than happen on the heap. |
| var out [p256ElementLen]byte |
| return e.bytes(&out) |
| } |
| |
| func (e *P256Element) bytes(out *[p256ElementLen]byte) []byte { |
| var tmp p256NonMontgomeryDomainFieldElement |
| p256FromMontgomery(&tmp, &e.x) |
| p256ToBytes(out, (*p256UntypedFieldElement)(&tmp)) |
| p256InvertEndianness(out[:]) |
| return out[:] |
| } |
| |
| // SetBytes sets e = v, where v is a big-endian 32-byte encoding, and returns e. |
| // If v is not 32 bytes or it encodes a value higher than 2^256 - 2^224 + 2^192 + 2^96 - 1, |
| // SetBytes returns nil and an error, and e is unchanged. |
| func (e *P256Element) SetBytes(v []byte) (*P256Element, error) { |
| if len(v) != p256ElementLen { |
| return nil, errors.New("invalid P256Element encoding") |
| } |
| |
| // Check for non-canonical encodings (p + k, 2p + k, etc.) by comparing to |
| // the encoding of -1 mod p, so p - 1, the highest canonical encoding. |
| var minusOneEncoding = new(P256Element).Sub( |
| new(P256Element), new(P256Element).One()).Bytes() |
| for i := range v { |
| if v[i] < minusOneEncoding[i] { |
| break |
| } |
| if v[i] > minusOneEncoding[i] { |
| return nil, errors.New("invalid P256Element encoding") |
| } |
| } |
| |
| var in [p256ElementLen]byte |
| copy(in[:], v) |
| p256InvertEndianness(in[:]) |
| var tmp p256NonMontgomeryDomainFieldElement |
| p256FromBytes((*p256UntypedFieldElement)(&tmp), &in) |
| p256ToMontgomery(&e.x, &tmp) |
| return e, nil |
| } |
| |
| // Add sets e = t1 + t2, and returns e. |
| func (e *P256Element) Add(t1, t2 *P256Element) *P256Element { |
| p256Add(&e.x, &t1.x, &t2.x) |
| return e |
| } |
| |
| // Sub sets e = t1 - t2, and returns e. |
| func (e *P256Element) Sub(t1, t2 *P256Element) *P256Element { |
| p256Sub(&e.x, &t1.x, &t2.x) |
| return e |
| } |
| |
| // Mul sets e = t1 * t2, and returns e. |
| func (e *P256Element) Mul(t1, t2 *P256Element) *P256Element { |
| p256Mul(&e.x, &t1.x, &t2.x) |
| return e |
| } |
| |
| // Square sets e = t * t, and returns e. |
| func (e *P256Element) Square(t *P256Element) *P256Element { |
| p256Square(&e.x, &t.x) |
| return e |
| } |
| |
| // Select sets v to a if cond == 1, and to b if cond == 0. |
| func (v *P256Element) Select(a, b *P256Element, cond int) *P256Element { |
| p256Selectznz((*p256UntypedFieldElement)(&v.x), p256Uint1(cond), |
| (*p256UntypedFieldElement)(&b.x), (*p256UntypedFieldElement)(&a.x)) |
| return v |
| } |
| |
| func p256InvertEndianness(v []byte) { |
| for i := 0; i < len(v)/2; i++ { |
| v[i], v[len(v)-1-i] = v[len(v)-1-i], v[i] |
| } |
| } |