| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package regexp implements a simple regular expression library. |
| // |
| // The syntax of the regular expressions accepted is: |
| // |
| // regexp: |
| // concatenation { '|' concatenation } |
| // concatenation: |
| // { closure } |
| // closure: |
| // term [ '*' | '+' | '?' ] |
| // term: |
| // '^' |
| // '$' |
| // '.' |
| // character |
| // '[' [ '^' ] character-ranges ']' |
| // '(' regexp ')' |
| // |
| package regexp |
| |
| import ( |
| "bytes"; |
| "container/vector"; |
| "io"; |
| "os"; |
| "runtime"; |
| "utf8"; |
| ) |
| |
| var debug = false; |
| |
| // Error codes returned by failures to parse an expression. |
| var ( |
| ErrInternal = os.NewError("internal error"); |
| ErrUnmatchedLpar = os.NewError("unmatched '('"); |
| ErrUnmatchedRpar = os.NewError("unmatched ')'"); |
| ErrUnmatchedLbkt = os.NewError("unmatched '['"); |
| ErrUnmatchedRbkt = os.NewError("unmatched ']'"); |
| ErrBadRange = os.NewError("bad range in character class"); |
| ErrExtraneousBackslash = os.NewError("extraneous backslash"); |
| ErrBadClosure = os.NewError("repeated closure (**, ++, etc.)"); |
| ErrBareClosure = os.NewError("closure applies to nothing"); |
| ErrBadBackslash = os.NewError("illegal backslash escape"); |
| ) |
| |
| // An instruction executed by the NFA |
| type instr interface { |
| kind() int; // the type of this instruction: _CHAR, _ANY, etc. |
| next() instr; // the instruction to execute after this one |
| setNext(i instr); |
| index() int; |
| setIndex(i int); |
| print(); |
| } |
| |
| // Fields and methods common to all instructions |
| type common struct { |
| _next instr; |
| _index int; |
| } |
| |
| func (c *common) next() instr { return c._next } |
| func (c *common) setNext(i instr) { c._next = i } |
| func (c *common) index() int { return c._index } |
| func (c *common) setIndex(i int) { c._index = i } |
| |
| // Regexp is the representation of a compiled regular expression. |
| // The public interface is entirely through methods. |
| type Regexp struct { |
| expr string; // the original expression |
| ch chan<- *Regexp; // reply channel when we're done |
| error os.Error; // compile- or run-time error; nil if OK |
| inst *vector.Vector; |
| start instr; |
| nbra int; // number of brackets in expression, for subexpressions |
| } |
| |
| const ( |
| _START // beginning of program |
| = iota; |
| _END; // end of program: success |
| _BOT; // '^' beginning of text |
| _EOT; // '$' end of text |
| _CHAR; // 'a' regular character |
| _CHARCLASS; // [a-z] character class |
| _ANY; // '.' any character including newline |
| _NOTNL; // [^\n] special case: any character but newline |
| _BRA; // '(' parenthesized expression |
| _EBRA; // ')'; end of '(' parenthesized expression |
| _ALT; // '|' alternation |
| _NOP; // do nothing; makes it easy to link without patching |
| ) |
| |
| // --- START start of program |
| type _Start struct { |
| common |
| } |
| |
| func (start *_Start) kind() int { return _START } |
| func (start *_Start) print() { print("start") } |
| |
| // --- END end of program |
| type _End struct { |
| common |
| } |
| |
| func (end *_End) kind() int { return _END } |
| func (end *_End) print() { print("end") } |
| |
| // --- BOT beginning of text |
| type _Bot struct { |
| common |
| } |
| |
| func (bot *_Bot) kind() int { return _BOT } |
| func (bot *_Bot) print() { print("bot") } |
| |
| // --- EOT end of text |
| type _Eot struct { |
| common |
| } |
| |
| func (eot *_Eot) kind() int { return _EOT } |
| func (eot *_Eot) print() { print("eot") } |
| |
| // --- CHAR a regular character |
| type _Char struct { |
| common; |
| char int; |
| } |
| |
| func (char *_Char) kind() int { return _CHAR } |
| func (char *_Char) print() { print("char ", string(char.char)) } |
| |
| func newChar(char int) *_Char { |
| c := new(_Char); |
| c.char = char; |
| return c; |
| } |
| |
| // --- CHARCLASS [a-z] |
| |
| type _CharClass struct { |
| common; |
| char int; |
| negate bool; // is character class negated? ([^a-z]) |
| // vector of int, stored pairwise: [a-z] is (a,z); x is (x,x): |
| ranges *vector.IntVector; |
| } |
| |
| func (cclass *_CharClass) kind() int { return _CHARCLASS } |
| |
| func (cclass *_CharClass) print() { |
| print("charclass"); |
| if cclass.negate { |
| print(" (negated)"); |
| } |
| for i := 0; i < cclass.ranges.Len(); i += 2 { |
| l := cclass.ranges.At(i); |
| r := cclass.ranges.At(i+1); |
| if l == r { |
| print(" [", string(l), "]"); |
| } else { |
| print(" [", string(l), "-", string(r), "]"); |
| } |
| } |
| } |
| |
| func (cclass *_CharClass) addRange(a, b int) { |
| // range is a through b inclusive |
| cclass.ranges.Push(a); |
| cclass.ranges.Push(b); |
| } |
| |
| func (cclass *_CharClass) matches(c int) bool { |
| for i := 0; i < cclass.ranges.Len(); i = i+2 { |
| min := cclass.ranges.At(i); |
| max := cclass.ranges.At(i+1); |
| if min <= c && c <= max { |
| return !cclass.negate |
| } |
| } |
| return cclass.negate |
| } |
| |
| func newCharClass() *_CharClass { |
| c := new(_CharClass); |
| c.ranges = vector.NewIntVector(0); |
| return c; |
| } |
| |
| // --- ANY any character |
| type _Any struct { |
| common |
| } |
| |
| func (any *_Any) kind() int { return _ANY } |
| func (any *_Any) print() { print("any") } |
| |
| // --- NOTNL any character but newline |
| type _NotNl struct { |
| common |
| } |
| |
| func (notnl *_NotNl) kind() int { return _NOTNL } |
| func (notnl *_NotNl) print() { print("notnl") } |
| |
| // --- BRA parenthesized expression |
| type _Bra struct { |
| common; |
| n int; // subexpression number |
| } |
| |
| func (bra *_Bra) kind() int { return _BRA } |
| func (bra *_Bra) print() { print("bra", bra.n); } |
| |
| // --- EBRA end of parenthesized expression |
| type _Ebra struct { |
| common; |
| n int; // subexpression number |
| } |
| |
| func (ebra *_Ebra) kind() int { return _EBRA } |
| func (ebra *_Ebra) print() { print("ebra ", ebra.n); } |
| |
| // --- ALT alternation |
| type _Alt struct { |
| common; |
| left instr; // other branch |
| } |
| |
| func (alt *_Alt) kind() int { return _ALT } |
| func (alt *_Alt) print() { print("alt(", alt.left.index(), ")"); } |
| |
| // --- NOP no operation |
| type _Nop struct { |
| common |
| } |
| |
| func (nop *_Nop) kind() int { return _NOP } |
| func (nop *_Nop) print() { print("nop") } |
| |
| // report error and exit compiling/executing goroutine |
| func (re *Regexp) setError(err os.Error) { |
| re.error = err; |
| re.ch <- re; |
| runtime.Goexit(); |
| } |
| |
| func (re *Regexp) add(i instr) instr { |
| i.setIndex(re.inst.Len()); |
| re.inst.Push(i); |
| return i; |
| } |
| |
| type parser struct { |
| re *Regexp; |
| nlpar int; // number of unclosed lpars |
| pos int; |
| ch int; |
| } |
| |
| const endOfFile = -1 |
| |
| func (p *parser) c() int { |
| return p.ch; |
| } |
| |
| func (p *parser) nextc() int { |
| if p.pos >= len(p.re.expr) { |
| p.ch = endOfFile |
| } else { |
| c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:len(p.re.expr)]); |
| p.ch = c; |
| p.pos += w; |
| } |
| return p.ch; |
| } |
| |
| func newParser(re *Regexp) *parser { |
| p := new(parser); |
| p.re = re; |
| p.nextc(); // load p.ch |
| return p; |
| } |
| |
| var iNULL instr |
| |
| func special(c int) bool { |
| s := `\.+*?()|[]^$`; |
| for i := 0; i < len(s); i++ { |
| if c == int(s[i]) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| func specialcclass(c int) bool { |
| s := `\-[]`; |
| for i := 0; i < len(s); i++ { |
| if c == int(s[i]) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| func (p *parser) charClass() instr { |
| cc := newCharClass(); |
| if p.c() == '^' { |
| cc.negate = true; |
| p.nextc(); |
| } |
| left := -1; |
| for { |
| switch c := p.c(); c { |
| case ']', endOfFile: |
| if left >= 0 { |
| p.re.setError(ErrBadRange); |
| } |
| // Is it [^\n]? |
| if cc.negate && cc.ranges.Len() == 2 && |
| cc.ranges.At(0) == '\n' && cc.ranges.At(1) == '\n' { |
| nl := new(_NotNl); |
| p.re.add(nl); |
| return nl; |
| } |
| p.re.add(cc); |
| return cc; |
| case '-': // do this before backslash processing |
| p.re.setError(ErrBadRange); |
| case '\\': |
| c = p.nextc(); |
| switch { |
| case c == endOfFile: |
| p.re.setError(ErrExtraneousBackslash); |
| case c == 'n': |
| c = '\n'; |
| case specialcclass(c): |
| // c is as delivered |
| default: |
| p.re.setError(ErrBadBackslash); |
| } |
| fallthrough; |
| default: |
| p.nextc(); |
| switch { |
| case left < 0: // first of pair |
| if p.c() == '-' { // range |
| p.nextc(); |
| left = c; |
| } else { // single char |
| cc.addRange(c, c); |
| } |
| case left <= c: // second of pair |
| cc.addRange(left, c); |
| left = -1; |
| default: |
| p.re.setError(ErrBadRange); |
| } |
| } |
| } |
| return iNULL |
| } |
| |
| func (p *parser) term() (start, end instr) { |
| switch c := p.c(); c { |
| case '|', endOfFile: |
| return iNULL, iNULL; |
| case '*', '+': |
| p.re.setError(ErrBareClosure); |
| case ')': |
| if p.nlpar == 0 { |
| p.re.setError(ErrUnmatchedRpar); |
| } |
| return iNULL, iNULL; |
| case ']': |
| p.re.setError(ErrUnmatchedRbkt); |
| case '^': |
| p.nextc(); |
| start = p.re.add(new(_Bot)); |
| return start, start; |
| case '$': |
| p.nextc(); |
| start = p.re.add(new(_Eot)); |
| return start, start; |
| case '.': |
| p.nextc(); |
| start = p.re.add(new(_Any)); |
| return start, start; |
| case '[': |
| p.nextc(); |
| start = p.charClass(); |
| if p.c() != ']' { |
| p.re.setError(ErrUnmatchedLbkt); |
| } |
| p.nextc(); |
| return start, start; |
| case '(': |
| p.nextc(); |
| p.nlpar++; |
| p.re.nbra++; // increment first so first subexpr is \1 |
| nbra := p.re.nbra; |
| start, end = p.regexp(); |
| if p.c() != ')' { |
| p.re.setError(ErrUnmatchedLpar); |
| } |
| p.nlpar--; |
| p.nextc(); |
| bra := new(_Bra); |
| p.re.add(bra); |
| ebra := new(_Ebra); |
| p.re.add(ebra); |
| bra.n = nbra; |
| ebra.n = nbra; |
| if start == iNULL { |
| if end == iNULL { |
| p.re.setError(ErrInternal) |
| } |
| start = ebra |
| } else { |
| end.setNext(ebra); |
| } |
| bra.setNext(start); |
| return bra, ebra; |
| case '\\': |
| c = p.nextc(); |
| switch { |
| case c == endOfFile: |
| p.re.setError(ErrExtraneousBackslash); |
| case c == 'n': |
| c = '\n'; |
| case special(c): |
| // c is as delivered |
| default: |
| p.re.setError(ErrBadBackslash); |
| } |
| fallthrough; |
| default: |
| p.nextc(); |
| start = newChar(c); |
| p.re.add(start); |
| return start, start |
| } |
| panic("unreachable"); |
| } |
| |
| func (p *parser) closure() (start, end instr) { |
| start, end = p.term(); |
| if start == iNULL { |
| return |
| } |
| switch p.c() { |
| case '*': |
| // (start,end)*: |
| alt := new(_Alt); |
| p.re.add(alt); |
| end.setNext(alt); // after end, do alt |
| alt.left = start; // alternate brach: return to start |
| start = alt; // alt becomes new (start, end) |
| end = alt; |
| case '+': |
| // (start,end)+: |
| alt := new(_Alt); |
| p.re.add(alt); |
| end.setNext(alt); // after end, do alt |
| alt.left = start; // alternate brach: return to start |
| end = alt; // start is unchanged; end is alt |
| case '?': |
| // (start,end)?: |
| alt := new(_Alt); |
| p.re.add(alt); |
| nop := new(_Nop); |
| p.re.add(nop); |
| alt.left = start; // alternate branch is start |
| alt.setNext(nop); // follow on to nop |
| end.setNext(nop); // after end, go to nop |
| start = alt; // start is now alt |
| end = nop; // end is nop pointed to by both branches |
| default: |
| return |
| } |
| switch p.nextc() { |
| case '*', '+', '?': |
| p.re.setError(ErrBadClosure); |
| } |
| return |
| } |
| |
| func (p *parser) concatenation() (start, end instr) { |
| start, end = iNULL, iNULL; |
| for { |
| nstart, nend := p.closure(); |
| switch { |
| case nstart == iNULL: // end of this concatenation |
| if start == iNULL { // this is the empty string |
| nop := p.re.add(new(_Nop)); |
| return nop, nop; |
| } |
| return; |
| case start == iNULL: // this is first element of concatenation |
| start, end = nstart, nend; |
| default: |
| end.setNext(nstart); |
| end = nend; |
| } |
| } |
| panic("unreachable"); |
| } |
| |
| func (p *parser) regexp() (start, end instr) { |
| start, end = p.concatenation(); |
| for { |
| switch p.c() { |
| default: |
| return; |
| case '|': |
| p.nextc(); |
| nstart, nend := p.concatenation(); |
| alt := new(_Alt); |
| p.re.add(alt); |
| alt.left = start; |
| alt.setNext(nstart); |
| nop := new(_Nop); |
| p.re.add(nop); |
| end.setNext(nop); |
| nend.setNext(nop); |
| start, end = alt, nop; |
| } |
| } |
| panic("unreachable"); |
| } |
| |
| func unNop(i instr) instr { |
| for i.kind() == _NOP { |
| i = i.next() |
| } |
| return i |
| } |
| |
| func (re *Regexp) eliminateNops() { |
| for i := 0; i < re.inst.Len(); i++ { |
| inst := re.inst.At(i).(instr); |
| if inst.kind() == _END { |
| continue |
| } |
| inst.setNext(unNop(inst.next())); |
| if inst.kind() == _ALT { |
| alt := inst.(*_Alt); |
| alt.left = unNop(alt.left); |
| } |
| } |
| } |
| |
| func (re *Regexp) dump() { |
| for i := 0; i < re.inst.Len(); i++ { |
| inst := re.inst.At(i).(instr); |
| print(inst.index(), ": "); |
| inst.print(); |
| if inst.kind() != _END { |
| print(" -> ", inst.next().index()) |
| } |
| print("\n"); |
| } |
| } |
| |
| func (re *Regexp) doParse() { |
| p := newParser(re); |
| start := new(_Start); |
| re.add(start); |
| s, e := p.regexp(); |
| start.setNext(s); |
| re.start = start; |
| e.setNext(re.add(new(_End))); |
| |
| if debug { |
| re.dump(); |
| println(); |
| } |
| |
| re.eliminateNops(); |
| |
| if debug { |
| re.dump(); |
| println(); |
| } |
| } |
| |
| |
| func compiler(str string, ch chan *Regexp) { |
| re := new(Regexp); |
| re.expr = str; |
| re.inst = vector.New(0); |
| re.ch = ch; |
| re.doParse(); |
| ch <- re; |
| } |
| |
| // Compile parses a regular expression and returns, if successful, a Regexp |
| // object that can be used to match against text. |
| func Compile(str string) (regexp *Regexp, error os.Error) { |
| // Compile in a separate goroutine and wait for the result. |
| ch := make(chan *Regexp); |
| go compiler(str, ch); |
| re := <-ch; |
| return re, re.error |
| } |
| |
| type state struct { |
| inst instr; // next instruction to execute |
| match []int; // pairs of bracketing submatches. 0th is start,end |
| } |
| |
| // Append new state to to-do list. Leftmost-longest wins so avoid |
| // adding a state that's already active. |
| func addState(s []state, inst instr, match []int) []state { |
| index := inst.index(); |
| l := len(s); |
| pos := match[0]; |
| // TODO: Once the state is a vector and we can do insert, have inputs always |
| // go in order correctly and this "earlier" test is never necessary, |
| for i := 0; i < l; i++ { |
| if s[i].inst.index() == index && // same instruction |
| s[i].match[0] < pos { // earlier match already going; lefmost wins |
| return s |
| } |
| } |
| if l == cap(s) { |
| s1 := make([]state, 2*l)[0:l]; |
| for i := 0; i < l; i++ { |
| s1[i] = s[i]; |
| } |
| s = s1; |
| } |
| s = s[0:l+1]; |
| s[l].inst = inst; |
| s[l].match = match; |
| return s; |
| } |
| |
| // Accepts either string or bytes - the logic is identical either way. |
| // If bytes == nil, scan str. |
| func (re *Regexp) doExecute(str string, bytes []byte, pos int) []int { |
| var s [2][]state; // TODO: use a vector when state values (not ptrs) can be vector elements |
| s[0] = make([]state, 10)[0:0]; |
| s[1] = make([]state, 10)[0:0]; |
| in, out := 0, 1; |
| var final state; |
| found := false; |
| end := len(str); |
| if bytes != nil { |
| end = len(bytes) |
| } |
| for pos <= end { |
| if !found { |
| // prime the pump if we haven't seen a match yet |
| match := make([]int, 2*(re.nbra+1)); |
| for i := 0; i < len(match); i++ { |
| match[i] = -1; // no match seen; catches cases like "a(b)?c" on "ac" |
| } |
| match[0] = pos; |
| s[out] = addState(s[out], re.start.next(), match); |
| } |
| in, out = out, in; // old out state is new in state |
| s[out] = s[out][0:0]; // clear out state |
| if len(s[in]) == 0 { |
| // machine has completed |
| break; |
| } |
| charwidth := 1; |
| c := endOfFile; |
| if pos < end { |
| if bytes == nil { |
| c, charwidth = utf8.DecodeRuneInString(str[pos:end]); |
| } else { |
| c, charwidth = utf8.DecodeRune(bytes[pos:end]); |
| } |
| } |
| for i := 0; i < len(s[in]); i++ { |
| st := s[in][i]; |
| switch s[in][i].inst.kind() { |
| case _BOT: |
| if pos == 0 { |
| s[in] = addState(s[in], st.inst.next(), st.match) |
| } |
| case _EOT: |
| if pos == end { |
| s[in] = addState(s[in], st.inst.next(), st.match) |
| } |
| case _CHAR: |
| if c == st.inst.(*_Char).char { |
| s[out] = addState(s[out], st.inst.next(), st.match) |
| } |
| case _CHARCLASS: |
| if st.inst.(*_CharClass).matches(c) { |
| s[out] = addState(s[out], st.inst.next(), st.match) |
| } |
| case _ANY: |
| if c != endOfFile { |
| s[out] = addState(s[out], st.inst.next(), st.match) |
| } |
| case _NOTNL: |
| if c != endOfFile && c != '\n' { |
| s[out] = addState(s[out], st.inst.next(), st.match) |
| } |
| case _BRA: |
| n := st.inst.(*_Bra).n; |
| st.match[2*n] = pos; |
| s[in] = addState(s[in], st.inst.next(), st.match); |
| case _EBRA: |
| n := st.inst.(*_Ebra).n; |
| st.match[2*n+1] = pos; |
| s[in] = addState(s[in], st.inst.next(), st.match); |
| case _ALT: |
| s[in] = addState(s[in], st.inst.(*_Alt).left, st.match); |
| // give other branch a copy of this match vector |
| s1 := make([]int, 2*(re.nbra+1)); |
| for i := 0; i < len(s1); i++ { |
| s1[i] = st.match[i] |
| } |
| s[in] = addState(s[in], st.inst.next(), s1); |
| case _END: |
| // choose leftmost longest |
| if !found || // first |
| st.match[0] < final.match[0] || // leftmost |
| (st.match[0] == final.match[0] && pos > final.match[1]) { // longest |
| final = st; |
| final.match[1] = pos; |
| } |
| found = true; |
| default: |
| st.inst.print(); |
| panic("unknown instruction in execute"); |
| } |
| } |
| pos += charwidth; |
| } |
| return final.match; |
| } |
| |
| |
| // ExecuteString matches the Regexp against the string s. |
| // The return value is an array of integers, in pairs, identifying the positions of |
| // substrings matched by the expression. |
| // s[a[0]:a[1]] is the substring matched by the entire expression. |
| // s[a[2*i]:a[2*i+1]] for i > 0 is the substring matched by the ith parenthesized subexpression. |
| // A negative value means the subexpression did not match any element of the string. |
| // An empty array means "no match". |
| func (re *Regexp) ExecuteString(s string) (a []int) { |
| return re.doExecute(s, nil, 0) |
| } |
| |
| |
| // Execute matches the Regexp against the byte slice b. |
| // The return value is an array of integers, in pairs, identifying the positions of |
| // subslices matched by the expression. |
| // b[a[0]:a[1]] is the subslice matched by the entire expression. |
| // b[a[2*i]:a[2*i+1]] for i > 0 is the subslice matched by the ith parenthesized subexpression. |
| // A negative value means the subexpression did not match any element of the slice. |
| // An empty array means "no match". |
| func (re *Regexp) Execute(b []byte) (a []int) { |
| return re.doExecute("", b, 0) |
| } |
| |
| |
| // MatchString returns whether the Regexp matches the string s. |
| // The return value is a boolean: true for match, false for no match. |
| func (re *Regexp) MatchString(s string) bool { |
| return len(re.doExecute(s, nil, 0)) > 0 |
| } |
| |
| |
| // Match returns whether the Regexp matches the byte slice b. |
| // The return value is a boolean: true for match, false for no match. |
| func (re *Regexp) Match(b []byte) bool { |
| return len(re.doExecute("", b, 0)) > 0 |
| } |
| |
| |
| // MatchStrings matches the Regexp against the string s. |
| // The return value is an array of strings matched by the expression. |
| // a[0] is the substring matched by the entire expression. |
| // a[i] for i > 0 is the substring matched by the ith parenthesized subexpression. |
| // An empty array means ``no match''. |
| func (re *Regexp) MatchStrings(s string) (a []string) { |
| r := re.doExecute(s, nil, 0); |
| if r == nil { |
| return nil |
| } |
| a = make([]string, len(r)/2); |
| for i := 0; i < len(r); i += 2 { |
| if r[i] != -1 { // -1 means no match for this subexpression |
| a[i/2] = s[r[i] : r[i+1]] |
| } |
| } |
| return |
| } |
| |
| // MatchSlices matches the Regexp against the byte slice b. |
| // The return value is an array of subslices matched by the expression. |
| // a[0] is the subslice matched by the entire expression. |
| // a[i] for i > 0 is the subslice matched by the ith parenthesized subexpression. |
| // An empty array means ``no match''. |
| func (re *Regexp) MatchSlices(b []byte) (a [][]byte) { |
| r := re.doExecute("", b, 0); |
| if r == nil { |
| return nil |
| } |
| a = make([][]byte, len(r)/2); |
| for i := 0; i < len(r); i += 2 { |
| if r[i] != -1 { // -1 means no match for this subexpression |
| a[i/2] = b[r[i] : r[i+1]] |
| } |
| } |
| return |
| } |
| |
| // MatchString checks whether a textual regular expression |
| // matches a string. More complicated queries need |
| // to use Compile and the full Regexp interface. |
| func MatchString(pattern string, s string) (matched bool, error os.Error) { |
| re, err := Compile(pattern); |
| if err != nil { |
| return false, err |
| } |
| return re.MatchString(s), nil |
| } |
| |
| // Match checks whether a textual regular expression |
| // matches a byte slice. More complicated queries need |
| // to use Compile and the full Regexp interface. |
| func Match(pattern string, b []byte) (matched bool, error os.Error) { |
| re, err := Compile(pattern); |
| if err != nil { |
| return false, err |
| } |
| return re.Match(b), nil |
| } |
| |
| // ReplaceAllString returns a copy of src in which all matches for the Regexp |
| // have been replaced by repl. No support is provided for expressions |
| // (e.g. \1 or $1) in the replacement string. |
| func (re *Regexp) ReplaceAllString(src, repl string) string { |
| lastMatchEnd := 0; // end position of the most recent match |
| searchPos := 0; // position where we next look for a match |
| buf := new(bytes.Buffer); |
| for searchPos <= len(src) { |
| a := re.doExecute(src, nil, searchPos); |
| if len(a) == 0 { |
| break; // no more matches |
| } |
| |
| // Copy the unmatched characters before this match. |
| io.WriteString(buf, src[lastMatchEnd:a[0]]); |
| |
| // Now insert a copy of the replacement string, but not for a |
| // match of the empty string immediately after another match. |
| // (Otherwise, we get double replacement for patterns that |
| // match both empty and nonempty strings.) |
| if a[1] > lastMatchEnd || a[0] == 0 { |
| io.WriteString(buf, repl); |
| } |
| lastMatchEnd = a[1]; |
| |
| // Advance past this match; always advance at least one character. |
| _, width := utf8.DecodeRuneInString(src[searchPos:len(src)]); |
| if searchPos + width > a[1] { |
| searchPos += width; |
| } else if searchPos + 1 > a[1] { |
| // This clause is only needed at the end of the input |
| // string. In that case, DecodeRuneInString returns width=0. |
| searchPos++; |
| } else { |
| searchPos = a[1]; |
| } |
| } |
| |
| // Copy the unmatched characters after the last match. |
| io.WriteString(buf, src[lastMatchEnd:len(src)]); |
| |
| return buf.String(); |
| } |
| |
| // ReplaceAll returns a copy of src in which all matches for the Regexp |
| // have been replaced by repl. No support is provided for expressions |
| // (e.g. \1 or $1) in the replacement text. |
| func (re *Regexp) ReplaceAll(src, repl []byte) []byte { |
| lastMatchEnd := 0; // end position of the most recent match |
| searchPos := 0; // position where we next look for a match |
| buf := new(bytes.Buffer); |
| for searchPos <= len(src) { |
| a := re.doExecute("", src, searchPos); |
| if len(a) == 0 { |
| break; // no more matches |
| } |
| |
| // Copy the unmatched characters before this match. |
| buf.Write(src[lastMatchEnd:a[0]]); |
| |
| // Now insert a copy of the replacement string, but not for a |
| // match of the empty string immediately after another match. |
| // (Otherwise, we get double replacement for patterns that |
| // match both empty and nonempty strings.) |
| if a[1] > lastMatchEnd || a[0] == 0 { |
| buf.Write(repl); |
| } |
| lastMatchEnd = a[1]; |
| |
| // Advance past this match; always advance at least one character. |
| _, width := utf8.DecodeRune(src[searchPos:len(src)]); |
| if searchPos + width > a[1] { |
| searchPos += width; |
| } else if searchPos + 1 > a[1] { |
| // This clause is only needed at the end of the input |
| // string. In that case, DecodeRuneInString returns width=0. |
| searchPos++; |
| } else { |
| searchPos = a[1]; |
| } |
| } |
| |
| // Copy the unmatched characters after the last match. |
| buf.Write(src[lastMatchEnd:len(src)]); |
| |
| return buf.Bytes(); |
| } |
| |
| // QuoteMeta returns a string that quotes all regular expression metacharacters |
| // inside the argument text; the returned string is a regular expression matching |
| // the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`. |
| func QuoteMeta(s string) string { |
| b := make([]byte, 2 * len(s)); |
| |
| // A byte loop is correct because all metacharacters are ASCII. |
| j := 0; |
| for i := 0; i < len(s); i++ { |
| if special(int(s[i])) { |
| b[j] = '\\'; |
| j++; |
| } |
| b[j] = s[i]; |
| j++; |
| } |
| return string(b[0:j]); |
| } |
| |
| // Find matches in slice b if b is non-nil, otherwise find matches in string s. |
| func (re *Regexp) allMatches(s string, b []byte, n int, deliver func(int, int)) { |
| var end int; |
| if b == nil { |
| end = len(s); |
| } else { |
| end = len(b); |
| } |
| |
| for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { |
| matches := re.doExecute(s, b, pos); |
| if len(matches) == 0 { |
| break; |
| } |
| |
| accept := true; |
| if matches[1] == pos { |
| // We've found an empty match. |
| if matches[0] == prevMatchEnd { |
| // We don't allow an empty match right |
| // after a previous match, so ignore it. |
| accept = false; |
| } |
| var width int; |
| if b == nil { |
| _, width = utf8.DecodeRuneInString(s[pos:end]); |
| } else { |
| _, width = utf8.DecodeRune(b[pos:end]); |
| } |
| if width > 0 { |
| pos += width; |
| } else { |
| pos = end + 1; |
| } |
| } else { |
| pos = matches[1]; |
| } |
| prevMatchEnd = matches[1]; |
| |
| if accept { |
| deliver(matches[0], matches[1]); |
| i++; |
| } |
| } |
| } |
| |
| // AllMatches slices the byte slice b into substrings that are successive |
| // matches of the Regexp within b. If n > 0, the function returns at most n |
| // matches. Text that does not match the expression will be skipped. Empty |
| // matches abutting a preceding match are ignored. The function returns a slice |
| // containing the matching substrings. |
| func (re *Regexp) AllMatches(b []byte, n int) [][]byte { |
| if n <= 0 { |
| n = len(b) + 1; |
| } |
| result := make([][]byte, n); |
| i := 0; |
| re.allMatches("", b, n, func(start, end int) { |
| result[i] = b[start:end]; |
| i++; |
| }); |
| return result[0:i]; |
| } |
| |
| // AllMatchesString slices the string s into substrings that are successive |
| // matches of the Regexp within s. If n > 0, the function returns at most n |
| // matches. Text that does not match the expression will be skipped. Empty |
| // matches abutting a preceding match are ignored. The function returns a slice |
| // containing the matching substrings. |
| func (re *Regexp) AllMatchesString(s string, n int) []string { |
| if n <= 0 { |
| n = len(s) + 1; |
| } |
| result := make([]string, n); |
| i := 0; |
| re.allMatches(s, nil, n, func(start, end int) { |
| result[i] = s[start:end]; |
| i++; |
| }); |
| return result[0:i]; |
| } |
| |
| // AllMatchesIter slices the byte slice b into substrings that are successive |
| // matches of the Regexp within b. If n > 0, the function returns at most n |
| // matches. Text that does not match the expression will be skipped. Empty |
| // matches abutting a preceding match are ignored. The function returns a |
| // channel that iterates over the matching substrings. |
| func (re *Regexp) AllMatchesIter(b []byte, n int) (<-chan []byte) { |
| if n <= 0 { |
| n = len(b) + 1; |
| } |
| c := make(chan []byte, 10); |
| go func() { |
| re.allMatches("", b, n, func(start, end int) { |
| c <- b[start:end]; |
| }); |
| close(c); |
| }(); |
| return c; |
| } |
| |
| // AllMatchesStringIter slices the string s into substrings that are successive |
| // matches of the Regexp within s. If n > 0, the function returns at most n |
| // matches. Text that does not match the expression will be skipped. Empty |
| // matches abutting a preceding match are ignored. The function returns a |
| // channel that iterates over the matching substrings. |
| func (re *Regexp) AllMatchesStringIter(s string, n int) (<-chan string) { |
| if n <= 0 { |
| n = len(s) + 1; |
| } |
| c := make(chan string, 10); |
| go func() { |
| re.allMatches(s, nil, n, func(start, end int) { |
| c <- s[start:end]; |
| }); |
| close(c); |
| }(); |
| return c; |
| } |