| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This Go implementation is derived in part from the reference |
| // ANSI C implementation, which carries the following notice: |
| // |
| // rijndael-alg-fst.c |
| // |
| // @version 3.0 (December 2000) |
| // |
| // Optimised ANSI C code for the Rijndael cipher (now AES) |
| // |
| // @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> |
| // @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> |
| // @author Paulo Barreto <paulo.barreto@terra.com.br> |
| // |
| // This code is hereby placed in the public domain. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS |
| // OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| // OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
| // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission |
| // for implementation details. |
| // http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf |
| // http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf |
| |
| package aes |
| |
| // Encrypt one block from src into dst, using the expanded key xk. |
| func encryptBlock(xk []uint32, src, dst []byte) { |
| var s0, s1, s2, s3, t0, t1, t2, t3 uint32; |
| |
| s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]); |
| s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]); |
| s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11]); |
| s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15]); |
| |
| // First round just XORs input with key. |
| s0 ^= xk[0]; |
| s1 ^= xk[1]; |
| s2 ^= xk[2]; |
| s3 ^= xk[3]; |
| |
| // Middle rounds shuffle using tables. |
| // Number of rounds is set by length of expanded key. |
| nr := len(xk)/4 - 2; // - 2: one above, one more below |
| k := 4; |
| for r := 0; r < nr; r++ { |
| t0 = xk[k+0] ^ te[0][s0>>24] ^ te[1][s1>>16 & 0xff] ^ te[2][s2>>8 & 0xff] ^ te[3][s3 & 0xff]; |
| t1 = xk[k+1] ^ te[0][s1>>24] ^ te[1][s2>>16 & 0xff] ^ te[2][s3>>8 & 0xff] ^ te[3][s0 & 0xff]; |
| t2 = xk[k+2] ^ te[0][s2>>24] ^ te[1][s3>>16 & 0xff] ^ te[2][s0>>8 & 0xff] ^ te[3][s1 & 0xff]; |
| t3 = xk[k+3] ^ te[0][s3>>24] ^ te[1][s0>>16 & 0xff] ^ te[2][s1>>8 & 0xff] ^ te[3][s2 & 0xff]; |
| k += 4; |
| s0, s1, s2, s3 = t0, t1, t2, t3; |
| } |
| |
| // Last round uses s-box directly and XORs to produce output. |
| s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16 & 0xff])<<16 | uint32(sbox0[t2>>8 & 0xff])<<8 | uint32(sbox0[t3 & 0xff]); |
| s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16 & 0xff])<<16 | uint32(sbox0[t3>>8 & 0xff])<<8 | uint32(sbox0[t0 & 0xff]); |
| s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16 & 0xff])<<16 | uint32(sbox0[t0>>8 & 0xff])<<8 | uint32(sbox0[t1 & 0xff]); |
| s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16 & 0xff])<<16 | uint32(sbox0[t1>>8 & 0xff])<<8 | uint32(sbox0[t2 & 0xff]); |
| |
| s0 ^= xk[k+0]; |
| s1 ^= xk[k+1]; |
| s2 ^= xk[k+2]; |
| s3 ^= xk[k+3]; |
| |
| dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0); |
| dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1); |
| dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2); |
| dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3); |
| } |
| |
| // Decrypt one block from src into dst, using the expanded key xk. |
| func decryptBlock(xk []uint32, src, dst []byte) { |
| var s0, s1, s2, s3, t0, t1, t2, t3 uint32; |
| |
| s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]); |
| s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]); |
| s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11]); |
| s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15]); |
| |
| // First round just XORs input with key. |
| s0 ^= xk[0]; |
| s1 ^= xk[1]; |
| s2 ^= xk[2]; |
| s3 ^= xk[3]; |
| |
| // Middle rounds shuffle using tables. |
| // Number of rounds is set by length of expanded key. |
| nr := len(xk)/4 - 2; // - 2: one above, one more below |
| k := 4; |
| for r := 0; r < nr; r++ { |
| t0 = xk[k+0] ^ td[0][s0>>24] ^ td[1][s3>>16 & 0xff] ^ td[2][s2>>8 & 0xff] ^ td[3][s1 & 0xff]; |
| t1 = xk[k+1] ^ td[0][s1>>24] ^ td[1][s0>>16 & 0xff] ^ td[2][s3>>8 & 0xff] ^ td[3][s2 & 0xff]; |
| t2 = xk[k+2] ^ td[0][s2>>24] ^ td[1][s1>>16 & 0xff] ^ td[2][s0>>8 & 0xff] ^ td[3][s3 & 0xff]; |
| t3 = xk[k+3] ^ td[0][s3>>24] ^ td[1][s2>>16 & 0xff] ^ td[2][s1>>8 & 0xff] ^ td[3][s0 & 0xff]; |
| k += 4; |
| s0, s1, s2, s3 = t0, t1, t2, t3; |
| } |
| |
| // Last round uses s-box directly and XORs to produce output. |
| s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16 & 0xff])<<16 | uint32(sbox1[t2>>8 & 0xff])<<8 | uint32(sbox1[t1 & 0xff]); |
| s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16 & 0xff])<<16 | uint32(sbox1[t3>>8 & 0xff])<<8 | uint32(sbox1[t2 & 0xff]); |
| s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16 & 0xff])<<16 | uint32(sbox1[t0>>8 & 0xff])<<8 | uint32(sbox1[t3 & 0xff]); |
| s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16 & 0xff])<<16 | uint32(sbox1[t1>>8 & 0xff])<<8 | uint32(sbox1[t0 & 0xff]); |
| |
| s0 ^= xk[k+0]; |
| s1 ^= xk[k+1]; |
| s2 ^= xk[k+2]; |
| s3 ^= xk[k+3]; |
| |
| dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0); |
| dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1); |
| dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2); |
| dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3); |
| } |
| |
| // Apply sbox0 to each byte in w. |
| func subw(w uint32) uint32 { |
| return |
| uint32(sbox0[w>>24])<<24 | |
| uint32(sbox0[w>>16 & 0xff])<<16 | |
| uint32(sbox0[w>>8 & 0xff])<<8 | |
| uint32(sbox0[w & 0xff]); |
| } |
| |
| // Rotate |
| func rotw(w uint32) uint32 { |
| return w<<8 | w>>24; |
| } |
| |
| // Key expansion algorithm. See FIPS-197, Figure 11. |
| // Their rcon[i] is our powx[i-1] << 24. |
| func expandKey(key []byte, enc, dec []uint32) { |
| // Encryption key setup. |
| var i int; |
| nk := len(key) / 4; |
| for i = 0; i < nk; i++ { |
| enc[i] = uint32(key[4*i])<<24 | uint32(key[4*i+1])<<16 | uint32(key[4*i+2])<<8 | uint32(key[4*i+3]); |
| } |
| for ; i < len(enc); i++ { |
| t := enc[i-1]; |
| if i % nk == 0 { |
| t = subw(rotw(t)) ^ (uint32(powx[i/nk - 1]) << 24); |
| } else if nk > 6 && i % nk == 4 { |
| t = subw(t); |
| } |
| enc[i] = enc[i-nk] ^ t; |
| } |
| |
| // Derive decryption key from encryption key. |
| // Reverse the 4-word round key sets from enc to produce dec. |
| // All sets but the first and last get the MixColumn transform applied. |
| if dec == nil { |
| return; |
| } |
| n := len(enc); |
| for i := 0; i < n; i += 4 { |
| ei := n - i - 4; |
| for j := 0; j < 4; j++ { |
| x := enc[ei+j]; |
| if i > 0 && i+4 < n { |
| x = td[0][sbox0[x>>24]] ^ td[1][sbox0[x>>16 & 0xff]] ^ td[2][sbox0[x>>8 & 0xff]] ^ td[3][sbox0[x & 0xff]]; |
| } |
| dec[i+j] = x; |
| } |
| } |
| } |
| |