| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector. |
| |
| #include "runtime.h" |
| #include "arch_GOARCH.h" |
| #include "malloc.h" |
| #include "stack.h" |
| #include "mgc0.h" |
| #include "race.h" |
| #include "type.h" |
| #include "typekind.h" |
| #include "hashmap.h" |
| |
| enum { |
| Debug = 0, |
| DebugMark = 0, // run second pass to check mark |
| CollectStats = 0, |
| ScanStackByFrames = 0, |
| |
| // Four bits per word (see #defines below). |
| wordsPerBitmapWord = sizeof(void*)*8/4, |
| bitShift = sizeof(void*)*8/4, |
| |
| handoffThreshold = 4, |
| IntermediateBufferCapacity = 64, |
| |
| // Bits in type information |
| PRECISE = 1, |
| LOOP = 2, |
| PC_BITS = PRECISE | LOOP, |
| }; |
| |
| // Bits in per-word bitmap. |
| // #defines because enum might not be able to hold the values. |
| // |
| // Each word in the bitmap describes wordsPerBitmapWord words |
| // of heap memory. There are 4 bitmap bits dedicated to each heap word, |
| // so on a 64-bit system there is one bitmap word per 16 heap words. |
| // The bits in the word are packed together by type first, then by |
| // heap location, so each 64-bit bitmap word consists of, from top to bottom, |
| // the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits, |
| // then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits. |
| // This layout makes it easier to iterate over the bits of a given type. |
| // |
| // The bitmap starts at mheap.arena_start and extends *backward* from |
| // there. On a 64-bit system the off'th word in the arena is tracked by |
| // the off/16+1'th word before mheap.arena_start. (On a 32-bit system, |
| // the only difference is that the divisor is 8.) |
| // |
| // To pull out the bits corresponding to a given pointer p, we use: |
| // |
| // off = p - (uintptr*)mheap.arena_start; // word offset |
| // b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1; |
| // shift = off % wordsPerBitmapWord |
| // bits = *b >> shift; |
| // /* then test bits & bitAllocated, bits & bitMarked, etc. */ |
| // |
| #define bitAllocated ((uintptr)1<<(bitShift*0)) |
| #define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */ |
| #define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */ |
| #define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */ |
| #define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */ |
| |
| #define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial) |
| |
| // Holding worldsema grants an M the right to try to stop the world. |
| // The procedure is: |
| // |
| // runtime·semacquire(&runtime·worldsema); |
| // m->gcing = 1; |
| // runtime·stoptheworld(); |
| // |
| // ... do stuff ... |
| // |
| // m->gcing = 0; |
| // runtime·semrelease(&runtime·worldsema); |
| // runtime·starttheworld(); |
| // |
| uint32 runtime·worldsema = 1; |
| |
| static int32 gctrace; |
| |
| typedef struct Obj Obj; |
| struct Obj |
| { |
| byte *p; // data pointer |
| uintptr n; // size of data in bytes |
| uintptr ti; // type info |
| }; |
| |
| // The size of Workbuf is N*PageSize. |
| typedef struct Workbuf Workbuf; |
| struct Workbuf |
| { |
| #define SIZE (2*PageSize-sizeof(LFNode)-sizeof(uintptr)) |
| LFNode node; // must be first |
| uintptr nobj; |
| Obj obj[SIZE/sizeof(Obj) - 1]; |
| uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)]; |
| #undef SIZE |
| }; |
| |
| typedef struct Finalizer Finalizer; |
| struct Finalizer |
| { |
| FuncVal *fn; |
| void *arg; |
| uintptr nret; |
| }; |
| |
| typedef struct FinBlock FinBlock; |
| struct FinBlock |
| { |
| FinBlock *alllink; |
| FinBlock *next; |
| int32 cnt; |
| int32 cap; |
| Finalizer fin[1]; |
| }; |
| |
| extern byte data[]; |
| extern byte edata[]; |
| extern byte bss[]; |
| extern byte ebss[]; |
| |
| extern byte gcdata[]; |
| extern byte gcbss[]; |
| |
| static G *fing; |
| static FinBlock *finq; // list of finalizers that are to be executed |
| static FinBlock *finc; // cache of free blocks |
| static FinBlock *allfin; // list of all blocks |
| static Lock finlock; |
| static int32 fingwait; |
| |
| static void runfinq(void); |
| static Workbuf* getempty(Workbuf*); |
| static Workbuf* getfull(Workbuf*); |
| static void putempty(Workbuf*); |
| static Workbuf* handoff(Workbuf*); |
| static void gchelperstart(void); |
| |
| static struct { |
| uint64 full; // lock-free list of full blocks |
| uint64 empty; // lock-free list of empty blocks |
| byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait |
| uint32 nproc; |
| volatile uint32 nwait; |
| volatile uint32 ndone; |
| volatile uint32 debugmarkdone; |
| Note alldone; |
| ParFor *markfor; |
| ParFor *sweepfor; |
| |
| Lock; |
| byte *chunk; |
| uintptr nchunk; |
| |
| Obj *roots; |
| uint32 nroot; |
| uint32 rootcap; |
| } work; |
| |
| enum { |
| GC_DEFAULT_PTR = GC_NUM_INSTR, |
| GC_MAP_NEXT, |
| GC_CHAN, |
| |
| GC_NUM_INSTR2 |
| }; |
| |
| static struct { |
| struct { |
| uint64 sum; |
| uint64 cnt; |
| } ptr; |
| uint64 nbytes; |
| struct { |
| uint64 sum; |
| uint64 cnt; |
| uint64 notype; |
| uint64 typelookup; |
| } obj; |
| uint64 rescan; |
| uint64 rescanbytes; |
| uint64 instr[GC_NUM_INSTR2]; |
| uint64 putempty; |
| uint64 getfull; |
| } gcstats; |
| |
| // markonly marks an object. It returns true if the object |
| // has been marked by this function, false otherwise. |
| // This function doesn't append the object to any buffer. |
| static bool |
| markonly(void *obj) |
| { |
| byte *p; |
| uintptr *bitp, bits, shift, x, xbits, off; |
| MSpan *s; |
| PageID k; |
| |
| // Words outside the arena cannot be pointers. |
| if(obj < runtime·mheap->arena_start || obj >= runtime·mheap->arena_used) |
| return false; |
| |
| // obj may be a pointer to a live object. |
| // Try to find the beginning of the object. |
| |
| // Round down to word boundary. |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| |
| // Find bits for this word. |
| off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; |
| bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Pointing at the beginning of a block? |
| if((bits & (bitAllocated|bitBlockBoundary)) != 0) |
| goto found; |
| |
| // Otherwise consult span table to find beginning. |
| // (Manually inlined copy of MHeap_LookupMaybe.) |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| if(sizeof(void*) == 8) |
| x -= (uintptr)runtime·mheap->arena_start>>PageShift; |
| s = runtime·mheap->map[x]; |
| if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) |
| return false; |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| if((byte*)obj >= (byte*)s->limit) |
| return false; |
| uintptr size = s->elemsize; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; |
| bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| found: |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // Only care about allocated and not marked. |
| if((bits & (bitAllocated|bitMarked)) != bitAllocated) |
| return false; |
| if(work.nproc == 1) |
| *bitp |= bitMarked<<shift; |
| else { |
| for(;;) { |
| x = *bitp; |
| if(x & (bitMarked<<shift)) |
| return false; |
| if(runtime·casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift)))) |
| break; |
| } |
| } |
| |
| // The object is now marked |
| return true; |
| } |
| |
| // PtrTarget is a structure used by intermediate buffers. |
| // The intermediate buffers hold GC data before it |
| // is moved/flushed to the work buffer (Workbuf). |
| // The size of an intermediate buffer is very small, |
| // such as 32 or 64 elements. |
| typedef struct PtrTarget PtrTarget; |
| struct PtrTarget |
| { |
| void *p; |
| uintptr ti; |
| }; |
| |
| typedef struct BufferList BufferList; |
| struct BufferList |
| { |
| PtrTarget ptrtarget[IntermediateBufferCapacity]; |
| Obj obj[IntermediateBufferCapacity]; |
| uint32 busy; |
| byte pad[CacheLineSize]; |
| }; |
| #pragma dataflag 16 // no pointers |
| static BufferList bufferList[MaxGcproc]; |
| |
| static Type *itabtype; |
| |
| static void enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj); |
| |
| // flushptrbuf moves data from the PtrTarget buffer to the work buffer. |
| // The PtrTarget buffer contains blocks irrespective of whether the blocks have been marked or scanned, |
| // while the work buffer contains blocks which have been marked |
| // and are prepared to be scanned by the garbage collector. |
| // |
| // _wp, _wbuf, _nobj are input/output parameters and are specifying the work buffer. |
| // |
| // A simplified drawing explaining how the todo-list moves from a structure to another: |
| // |
| // scanblock |
| // (find pointers) |
| // Obj ------> PtrTarget (pointer targets) |
| // ↑ | |
| // | | |
| // `----------' |
| // flushptrbuf |
| // (find block start, mark and enqueue) |
| static void |
| flushptrbuf(PtrTarget *ptrbuf, PtrTarget **ptrbufpos, Obj **_wp, Workbuf **_wbuf, uintptr *_nobj) |
| { |
| byte *p, *arena_start, *obj; |
| uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n; |
| MSpan *s; |
| PageID k; |
| Obj *wp; |
| Workbuf *wbuf; |
| PtrTarget *ptrbuf_end; |
| |
| arena_start = runtime·mheap->arena_start; |
| |
| wp = *_wp; |
| wbuf = *_wbuf; |
| nobj = *_nobj; |
| |
| ptrbuf_end = *ptrbufpos; |
| n = ptrbuf_end - ptrbuf; |
| *ptrbufpos = ptrbuf; |
| |
| if(CollectStats) { |
| runtime·xadd64(&gcstats.ptr.sum, n); |
| runtime·xadd64(&gcstats.ptr.cnt, 1); |
| } |
| |
| // If buffer is nearly full, get a new one. |
| if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| |
| if(n >= nelem(wbuf->obj)) |
| runtime·throw("ptrbuf has to be smaller than WorkBuf"); |
| } |
| |
| // TODO(atom): This block is a branch of an if-then-else statement. |
| // The single-threaded branch may be added in a next CL. |
| { |
| // Multi-threaded version. |
| |
| while(ptrbuf < ptrbuf_end) { |
| obj = ptrbuf->p; |
| ti = ptrbuf->ti; |
| ptrbuf++; |
| |
| // obj belongs to interval [mheap.arena_start, mheap.arena_used). |
| if(Debug > 1) { |
| if(obj < runtime·mheap->arena_start || obj >= runtime·mheap->arena_used) |
| runtime·throw("object is outside of mheap"); |
| } |
| |
| // obj may be a pointer to a live object. |
| // Try to find the beginning of the object. |
| |
| // Round down to word boundary. |
| if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) { |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| ti = 0; |
| } |
| |
| // Find bits for this word. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Pointing at the beginning of a block? |
| if((bits & (bitAllocated|bitBlockBoundary)) != 0) |
| goto found; |
| |
| ti = 0; |
| |
| // Pointing just past the beginning? |
| // Scan backward a little to find a block boundary. |
| for(j=shift; j-->0; ) { |
| if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { |
| obj = (byte*)obj - (shift-j)*PtrSize; |
| shift = j; |
| bits = xbits>>shift; |
| goto found; |
| } |
| } |
| |
| // Otherwise consult span table to find beginning. |
| // (Manually inlined copy of MHeap_LookupMaybe.) |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| if(sizeof(void*) == 8) |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime·mheap->map[x]; |
| if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) |
| continue; |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| if((byte*)obj >= (byte*)s->limit) |
| continue; |
| size = s->elemsize; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| found: |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // Only care about allocated and not marked. |
| if((bits & (bitAllocated|bitMarked)) != bitAllocated) |
| continue; |
| if(work.nproc == 1) |
| *bitp |= bitMarked<<shift; |
| else { |
| for(;;) { |
| x = *bitp; |
| if(x & (bitMarked<<shift)) |
| goto continue_obj; |
| if(runtime·casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift)))) |
| break; |
| } |
| } |
| |
| // If object has no pointers, don't need to scan further. |
| if((bits & bitNoPointers) != 0) |
| continue; |
| |
| // Ask span about size class. |
| // (Manually inlined copy of MHeap_Lookup.) |
| x = (uintptr)obj >> PageShift; |
| if(sizeof(void*) == 8) |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime·mheap->map[x]; |
| |
| PREFETCH(obj); |
| |
| *wp = (Obj){obj, s->elemsize, ti}; |
| wp++; |
| nobj++; |
| continue_obj:; |
| } |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| } |
| |
| *_wp = wp; |
| *_wbuf = wbuf; |
| *_nobj = nobj; |
| } |
| |
| static void |
| flushobjbuf(Obj *objbuf, Obj **objbufpos, Obj **_wp, Workbuf **_wbuf, uintptr *_nobj) |
| { |
| uintptr nobj, off; |
| Obj *wp, obj; |
| Workbuf *wbuf; |
| Obj *objbuf_end; |
| |
| wp = *_wp; |
| wbuf = *_wbuf; |
| nobj = *_nobj; |
| |
| objbuf_end = *objbufpos; |
| *objbufpos = objbuf; |
| |
| while(objbuf < objbuf_end) { |
| obj = *objbuf++; |
| |
| // Align obj.b to a word boundary. |
| off = (uintptr)obj.p & (PtrSize-1); |
| if(off != 0) { |
| obj.p += PtrSize - off; |
| obj.n -= PtrSize - off; |
| obj.ti = 0; |
| } |
| |
| if(obj.p == nil || obj.n == 0) |
| continue; |
| |
| // If buffer is full, get a new one. |
| if(wbuf == nil || nobj >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| } |
| |
| *wp = obj; |
| wp++; |
| nobj++; |
| } |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| |
| *_wp = wp; |
| *_wbuf = wbuf; |
| *_nobj = nobj; |
| } |
| |
| // Program that scans the whole block and treats every block element as a potential pointer |
| static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR}; |
| |
| // Hashmap iterator program |
| static uintptr mapProg[2] = {0, GC_MAP_NEXT}; |
| |
| // Hchan program |
| static uintptr chanProg[2] = {0, GC_CHAN}; |
| |
| // Local variables of a program fragment or loop |
| typedef struct Frame Frame; |
| struct Frame { |
| uintptr count, elemsize, b; |
| uintptr *loop_or_ret; |
| }; |
| |
| // Sanity check for the derived type info objti. |
| static void |
| checkptr(void *obj, uintptr objti) |
| { |
| uintptr *pc1, *pc2, type, tisize, i, j, x; |
| byte *objstart; |
| Type *t; |
| MSpan *s; |
| |
| if(!Debug) |
| runtime·throw("checkptr is debug only"); |
| |
| if(obj < runtime·mheap->arena_start || obj >= runtime·mheap->arena_used) |
| return; |
| type = runtime·gettype(obj); |
| t = (Type*)(type & ~(uintptr)(PtrSize-1)); |
| if(t == nil) |
| return; |
| x = (uintptr)obj >> PageShift; |
| if(sizeof(void*) == 8) |
| x -= (uintptr)(runtime·mheap->arena_start)>>PageShift; |
| s = runtime·mheap->map[x]; |
| objstart = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass != 0) { |
| i = ((byte*)obj - objstart)/s->elemsize; |
| objstart += i*s->elemsize; |
| } |
| tisize = *(uintptr*)objti; |
| // Sanity check for object size: it should fit into the memory block. |
| if((byte*)obj + tisize > objstart + s->elemsize) |
| runtime·throw("invalid gc type info"); |
| if(obj != objstart) |
| return; |
| // If obj points to the beginning of the memory block, |
| // check type info as well. |
| if(t->string == nil || |
| // Gob allocates unsafe pointers for indirection. |
| (runtime·strcmp(t->string->str, (byte*)"unsafe.Pointer") && |
| // Runtime and gc think differently about closures. |
| runtime·strstr(t->string->str, (byte*)"struct { F uintptr") != t->string->str)) { |
| pc1 = (uintptr*)objti; |
| pc2 = (uintptr*)t->gc; |
| // A simple best-effort check until first GC_END. |
| for(j = 1; pc1[j] != GC_END && pc2[j] != GC_END; j++) { |
| if(pc1[j] != pc2[j]) { |
| runtime·printf("invalid gc type info for '%s' at %p, type info %p, block info %p\n", |
| t->string ? (int8*)t->string->str : (int8*)"?", j, pc1[j], pc2[j]); |
| runtime·throw("invalid gc type info"); |
| } |
| } |
| } |
| } |
| |
| // scanblock scans a block of n bytes starting at pointer b for references |
| // to other objects, scanning any it finds recursively until there are no |
| // unscanned objects left. Instead of using an explicit recursion, it keeps |
| // a work list in the Workbuf* structures and loops in the main function |
| // body. Keeping an explicit work list is easier on the stack allocator and |
| // more efficient. |
| // |
| // wbuf: current work buffer |
| // wp: storage for next queued pointer (write pointer) |
| // nobj: number of queued objects |
| static void |
| scanblock(Workbuf *wbuf, Obj *wp, uintptr nobj, bool keepworking) |
| { |
| byte *b, *arena_start, *arena_used; |
| uintptr n, i, end_b, elemsize, size, ti, objti, count, type; |
| uintptr *pc, precise_type, nominal_size; |
| uintptr *map_ret, mapkey_size, mapval_size, mapkey_ti, mapval_ti, *chan_ret; |
| void *obj; |
| Type *t; |
| Slice *sliceptr; |
| Frame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4]; |
| BufferList *scanbuffers; |
| PtrTarget *ptrbuf, *ptrbuf_end, *ptrbufpos; |
| Obj *objbuf, *objbuf_end, *objbufpos; |
| Eface *eface; |
| Iface *iface; |
| Hmap *hmap; |
| MapType *maptype; |
| bool mapkey_kind, mapval_kind; |
| struct hash_gciter map_iter; |
| struct hash_gciter_data d; |
| Hchan *chan; |
| ChanType *chantype; |
| |
| if(sizeof(Workbuf) % PageSize != 0) |
| runtime·throw("scanblock: size of Workbuf is suboptimal"); |
| |
| // Memory arena parameters. |
| arena_start = runtime·mheap->arena_start; |
| arena_used = runtime·mheap->arena_used; |
| |
| stack_ptr = stack+nelem(stack)-1; |
| |
| precise_type = false; |
| nominal_size = 0; |
| |
| // Allocate ptrbuf |
| { |
| scanbuffers = &bufferList[m->helpgc]; |
| ptrbuf = &scanbuffers->ptrtarget[0]; |
| ptrbuf_end = &scanbuffers->ptrtarget[0] + nelem(scanbuffers->ptrtarget); |
| objbuf = &scanbuffers->obj[0]; |
| objbuf_end = &scanbuffers->obj[0] + nelem(scanbuffers->obj); |
| } |
| |
| ptrbufpos = ptrbuf; |
| objbufpos = objbuf; |
| |
| // (Silence the compiler) |
| map_ret = nil; |
| mapkey_size = mapval_size = 0; |
| mapkey_kind = mapval_kind = false; |
| mapkey_ti = mapval_ti = 0; |
| chan = nil; |
| chantype = nil; |
| chan_ret = nil; |
| |
| goto next_block; |
| |
| for(;;) { |
| // Each iteration scans the block b of length n, queueing pointers in |
| // the work buffer. |
| if(Debug > 1) { |
| runtime·printf("scanblock %p %D\n", b, (int64)n); |
| } |
| |
| if(CollectStats) { |
| runtime·xadd64(&gcstats.nbytes, n); |
| runtime·xadd64(&gcstats.obj.sum, nobj); |
| runtime·xadd64(&gcstats.obj.cnt, 1); |
| } |
| |
| if(ti != 0) { |
| pc = (uintptr*)(ti & ~(uintptr)PC_BITS); |
| precise_type = (ti & PRECISE); |
| stack_top.elemsize = pc[0]; |
| if(!precise_type) |
| nominal_size = pc[0]; |
| if(ti & LOOP) { |
| stack_top.count = 0; // 0 means an infinite number of iterations |
| stack_top.loop_or_ret = pc+1; |
| } else { |
| stack_top.count = 1; |
| } |
| if(Debug) { |
| // Simple sanity check for provided type info ti: |
| // The declared size of the object must be not larger than the actual size |
| // (it can be smaller due to inferior pointers). |
| // It's difficult to make a comprehensive check due to inferior pointers, |
| // reflection, gob, etc. |
| if(pc[0] > n) { |
| runtime·printf("invalid gc type info: type info size %p, block size %p\n", pc[0], n); |
| runtime·throw("invalid gc type info"); |
| } |
| } |
| } else if(UseSpanType) { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.obj.notype, 1); |
| |
| type = runtime·gettype(b); |
| if(type != 0) { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.obj.typelookup, 1); |
| |
| t = (Type*)(type & ~(uintptr)(PtrSize-1)); |
| switch(type & (PtrSize-1)) { |
| case TypeInfo_SingleObject: |
| pc = (uintptr*)t->gc; |
| precise_type = true; // type information about 'b' is precise |
| stack_top.count = 1; |
| stack_top.elemsize = pc[0]; |
| break; |
| case TypeInfo_Array: |
| pc = (uintptr*)t->gc; |
| if(pc[0] == 0) |
| goto next_block; |
| precise_type = true; // type information about 'b' is precise |
| stack_top.count = 0; // 0 means an infinite number of iterations |
| stack_top.elemsize = pc[0]; |
| stack_top.loop_or_ret = pc+1; |
| break; |
| case TypeInfo_Map: |
| hmap = (Hmap*)b; |
| maptype = (MapType*)t; |
| if(hash_gciter_init(hmap, &map_iter)) { |
| mapkey_size = maptype->key->size; |
| mapkey_kind = maptype->key->kind; |
| mapkey_ti = (uintptr)maptype->key->gc | PRECISE; |
| mapval_size = maptype->elem->size; |
| mapval_kind = maptype->elem->kind; |
| mapval_ti = (uintptr)maptype->elem->gc | PRECISE; |
| |
| map_ret = nil; |
| pc = mapProg; |
| } else { |
| goto next_block; |
| } |
| break; |
| case TypeInfo_Chan: |
| chan = (Hchan*)b; |
| chantype = (ChanType*)t; |
| chan_ret = nil; |
| pc = chanProg; |
| break; |
| default: |
| runtime·throw("scanblock: invalid type"); |
| return; |
| } |
| } else { |
| pc = defaultProg; |
| } |
| } else { |
| pc = defaultProg; |
| } |
| |
| pc++; |
| stack_top.b = (uintptr)b; |
| |
| end_b = (uintptr)b + n - PtrSize; |
| |
| for(;;) { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.instr[pc[0]], 1); |
| |
| obj = nil; |
| objti = 0; |
| switch(pc[0]) { |
| case GC_PTR: |
| obj = *(void**)(stack_top.b + pc[1]); |
| objti = pc[2]; |
| pc += 3; |
| if(Debug) |
| checkptr(obj, objti); |
| break; |
| |
| case GC_SLICE: |
| sliceptr = (Slice*)(stack_top.b + pc[1]); |
| if(sliceptr->cap != 0) { |
| obj = sliceptr->array; |
| objti = pc[2] | PRECISE | LOOP; |
| } |
| pc += 3; |
| break; |
| |
| case GC_APTR: |
| obj = *(void**)(stack_top.b + pc[1]); |
| pc += 2; |
| break; |
| |
| case GC_STRING: |
| obj = *(void**)(stack_top.b + pc[1]); |
| markonly(obj); |
| pc += 2; |
| continue; |
| |
| case GC_EFACE: |
| eface = (Eface*)(stack_top.b + pc[1]); |
| pc += 2; |
| if(eface->type == nil) |
| continue; |
| |
| // eface->type |
| t = eface->type; |
| if((void*)t >= arena_start && (void*)t < arena_used) { |
| *ptrbufpos++ = (PtrTarget){t, 0}; |
| if(ptrbufpos == ptrbuf_end) |
| flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); |
| } |
| |
| // eface->data |
| if(eface->data >= arena_start && eface->data < arena_used) { |
| if(t->size <= sizeof(void*)) { |
| if((t->kind & KindNoPointers)) |
| continue; |
| |
| obj = eface->data; |
| if((t->kind & ~KindNoPointers) == KindPtr) |
| objti = (uintptr)((PtrType*)t)->elem->gc; |
| } else { |
| obj = eface->data; |
| objti = (uintptr)t->gc; |
| } |
| } |
| break; |
| |
| case GC_IFACE: |
| iface = (Iface*)(stack_top.b + pc[1]); |
| pc += 2; |
| if(iface->tab == nil) |
| continue; |
| |
| // iface->tab |
| if((void*)iface->tab >= arena_start && (void*)iface->tab < arena_used) { |
| *ptrbufpos++ = (PtrTarget){iface->tab, (uintptr)itabtype->gc}; |
| if(ptrbufpos == ptrbuf_end) |
| flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); |
| } |
| |
| // iface->data |
| if(iface->data >= arena_start && iface->data < arena_used) { |
| t = iface->tab->type; |
| if(t->size <= sizeof(void*)) { |
| if((t->kind & KindNoPointers)) |
| continue; |
| |
| obj = iface->data; |
| if((t->kind & ~KindNoPointers) == KindPtr) |
| objti = (uintptr)((PtrType*)t)->elem->gc; |
| } else { |
| obj = iface->data; |
| objti = (uintptr)t->gc; |
| } |
| } |
| break; |
| |
| case GC_DEFAULT_PTR: |
| while(stack_top.b <= end_b) { |
| obj = *(byte**)stack_top.b; |
| stack_top.b += PtrSize; |
| if(obj >= arena_start && obj < arena_used) { |
| *ptrbufpos++ = (PtrTarget){obj, 0}; |
| if(ptrbufpos == ptrbuf_end) |
| flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); |
| } |
| } |
| goto next_block; |
| |
| case GC_END: |
| if(--stack_top.count != 0) { |
| // Next iteration of a loop if possible. |
| stack_top.b += stack_top.elemsize; |
| if(stack_top.b + stack_top.elemsize <= end_b+PtrSize) { |
| pc = stack_top.loop_or_ret; |
| continue; |
| } |
| i = stack_top.b; |
| } else { |
| // Stack pop if possible. |
| if(stack_ptr+1 < stack+nelem(stack)) { |
| pc = stack_top.loop_or_ret; |
| stack_top = *(++stack_ptr); |
| continue; |
| } |
| i = (uintptr)b + nominal_size; |
| } |
| if(!precise_type) { |
| // Quickly scan [b+i,b+n) for possible pointers. |
| for(; i<=end_b; i+=PtrSize) { |
| if(*(byte**)i != nil) { |
| // Found a value that may be a pointer. |
| // Do a rescan of the entire block. |
| enqueue((Obj){b, n, 0}, &wbuf, &wp, &nobj); |
| if(CollectStats) { |
| runtime·xadd64(&gcstats.rescan, 1); |
| runtime·xadd64(&gcstats.rescanbytes, n); |
| } |
| break; |
| } |
| } |
| } |
| goto next_block; |
| |
| case GC_ARRAY_START: |
| i = stack_top.b + pc[1]; |
| count = pc[2]; |
| elemsize = pc[3]; |
| pc += 4; |
| |
| // Stack push. |
| *stack_ptr-- = stack_top; |
| stack_top = (Frame){count, elemsize, i, pc}; |
| continue; |
| |
| case GC_ARRAY_NEXT: |
| if(--stack_top.count != 0) { |
| stack_top.b += stack_top.elemsize; |
| pc = stack_top.loop_or_ret; |
| } else { |
| // Stack pop. |
| stack_top = *(++stack_ptr); |
| pc += 1; |
| } |
| continue; |
| |
| case GC_CALL: |
| // Stack push. |
| *stack_ptr-- = stack_top; |
| stack_top = (Frame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/}; |
| pc = (uintptr*)((byte*)pc + *(int32*)(pc+2)); // target of the CALL instruction |
| continue; |
| |
| case GC_MAP_PTR: |
| hmap = *(Hmap**)(stack_top.b + pc[1]); |
| if(hmap == nil) { |
| pc += 3; |
| continue; |
| } |
| if(markonly(hmap)) { |
| maptype = (MapType*)pc[2]; |
| if(hash_gciter_init(hmap, &map_iter)) { |
| mapkey_size = maptype->key->size; |
| mapkey_kind = maptype->key->kind; |
| mapkey_ti = (uintptr)maptype->key->gc | PRECISE; |
| mapval_size = maptype->elem->size; |
| mapval_kind = maptype->elem->kind; |
| mapval_ti = (uintptr)maptype->elem->gc | PRECISE; |
| |
| // Start mapProg. |
| map_ret = pc+3; |
| pc = mapProg+1; |
| } else { |
| pc += 3; |
| } |
| } else { |
| pc += 3; |
| } |
| continue; |
| |
| case GC_MAP_NEXT: |
| // Add all keys and values to buffers, mark all subtables. |
| while(hash_gciter_next(&map_iter, &d)) { |
| // buffers: reserve space for 2 objects. |
| if(ptrbufpos+2 >= ptrbuf_end) |
| flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); |
| if(objbufpos+2 >= objbuf_end) |
| flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); |
| |
| if(d.st != nil) |
| markonly(d.st); |
| |
| if(d.key_data != nil) { |
| if(!(mapkey_kind & KindNoPointers) || d.indirectkey) { |
| if(!d.indirectkey) |
| *objbufpos++ = (Obj){d.key_data, mapkey_size, mapkey_ti}; |
| else { |
| if(Debug) { |
| obj = *(void**)d.key_data; |
| if(!(arena_start <= obj && obj < arena_used)) |
| runtime·throw("scanblock: inconsistent hashmap"); |
| } |
| *ptrbufpos++ = (PtrTarget){*(void**)d.key_data, mapkey_ti}; |
| } |
| } |
| if(!(mapval_kind & KindNoPointers) || d.indirectval) { |
| if(!d.indirectval) |
| *objbufpos++ = (Obj){d.val_data, mapval_size, mapval_ti}; |
| else { |
| if(Debug) { |
| obj = *(void**)d.val_data; |
| if(!(arena_start <= obj && obj < arena_used)) |
| runtime·throw("scanblock: inconsistent hashmap"); |
| } |
| *ptrbufpos++ = (PtrTarget){*(void**)d.val_data, mapval_ti}; |
| } |
| } |
| } |
| } |
| if(map_ret == nil) |
| goto next_block; |
| pc = map_ret; |
| continue; |
| |
| case GC_REGION: |
| obj = (void*)(stack_top.b + pc[1]); |
| size = pc[2]; |
| objti = pc[3]; |
| pc += 4; |
| |
| *objbufpos++ = (Obj){obj, size, objti}; |
| if(objbufpos == objbuf_end) |
| flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); |
| continue; |
| |
| case GC_CHAN_PTR: |
| // Similar to GC_MAP_PTR |
| chan = *(Hchan**)(stack_top.b + pc[1]); |
| if(chan == nil) { |
| pc += 3; |
| continue; |
| } |
| if(markonly(chan)) { |
| chantype = (ChanType*)pc[2]; |
| if(!(chantype->elem->kind & KindNoPointers)) { |
| // Start chanProg. |
| chan_ret = pc+3; |
| pc = chanProg+1; |
| continue; |
| } |
| } |
| pc += 3; |
| continue; |
| |
| case GC_CHAN: |
| // There are no heap pointers in struct Hchan, |
| // so we can ignore the leading sizeof(Hchan) bytes. |
| if(!(chantype->elem->kind & KindNoPointers)) { |
| // Channel's buffer follows Hchan immediately in memory. |
| // Size of buffer (cap(c)) is second int in the chan struct. |
| n = ((uintgo*)chan)[1]; |
| if(n > 0) { |
| // TODO(atom): split into two chunks so that only the |
| // in-use part of the circular buffer is scanned. |
| // (Channel routines zero the unused part, so the current |
| // code does not lead to leaks, it's just a little inefficient.) |
| *objbufpos++ = (Obj){(byte*)chan+runtime·Hchansize, n*chantype->elem->size, |
| (uintptr)chantype->elem->gc | PRECISE | LOOP}; |
| if(objbufpos == objbuf_end) |
| flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); |
| } |
| } |
| if(chan_ret == nil) |
| goto next_block; |
| pc = chan_ret; |
| continue; |
| |
| default: |
| runtime·throw("scanblock: invalid GC instruction"); |
| return; |
| } |
| |
| if(obj >= arena_start && obj < arena_used) { |
| *ptrbufpos++ = (PtrTarget){obj, objti}; |
| if(ptrbufpos == ptrbuf_end) |
| flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); |
| } |
| } |
| |
| next_block: |
| // Done scanning [b, b+n). Prepare for the next iteration of |
| // the loop by setting b, n, ti to the parameters for the next block. |
| |
| if(nobj == 0) { |
| flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); |
| flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); |
| |
| if(nobj == 0) { |
| if(!keepworking) { |
| if(wbuf) |
| putempty(wbuf); |
| goto endscan; |
| } |
| // Emptied our buffer: refill. |
| wbuf = getfull(wbuf); |
| if(wbuf == nil) |
| goto endscan; |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + wbuf->nobj; |
| } |
| } |
| |
| // Fetch b from the work buffer. |
| --wp; |
| b = wp->p; |
| n = wp->n; |
| ti = wp->ti; |
| nobj--; |
| } |
| |
| endscan:; |
| } |
| |
| // debug_scanblock is the debug copy of scanblock. |
| // it is simpler, slower, single-threaded, recursive, |
| // and uses bitSpecial as the mark bit. |
| static void |
| debug_scanblock(byte *b, uintptr n) |
| { |
| byte *obj, *p; |
| void **vp; |
| uintptr size, *bitp, bits, shift, i, xbits, off; |
| MSpan *s; |
| |
| if(!DebugMark) |
| runtime·throw("debug_scanblock without DebugMark"); |
| |
| if((intptr)n < 0) { |
| runtime·printf("debug_scanblock %p %D\n", b, (int64)n); |
| runtime·throw("debug_scanblock"); |
| } |
| |
| // Align b to a word boundary. |
| off = (uintptr)b & (PtrSize-1); |
| if(off != 0) { |
| b += PtrSize - off; |
| n -= PtrSize - off; |
| } |
| |
| vp = (void**)b; |
| n /= PtrSize; |
| for(i=0; i<n; i++) { |
| obj = (byte*)vp[i]; |
| |
| // Words outside the arena cannot be pointers. |
| if((byte*)obj < runtime·mheap->arena_start || (byte*)obj >= runtime·mheap->arena_used) |
| continue; |
| |
| // Round down to word boundary. |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| |
| // Consult span table to find beginning. |
| s = runtime·MHeap_LookupMaybe(runtime·mheap, obj); |
| if(s == nil) |
| continue; |
| |
| p = (byte*)((uintptr)s->start<<PageShift); |
| size = s->elemsize; |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| if((byte*)obj >= (byte*)s->limit) |
| continue; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; |
| bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // If not allocated or already marked, done. |
| if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked |
| continue; |
| *bitp |= bitSpecial<<shift; |
| if(!(bits & bitMarked)) |
| runtime·printf("found unmarked block %p in %p\n", obj, vp+i); |
| |
| // If object has no pointers, don't need to scan further. |
| if((bits & bitNoPointers) != 0) |
| continue; |
| |
| debug_scanblock(obj, size); |
| } |
| } |
| |
| // Append obj to the work buffer. |
| // _wbuf, _wp, _nobj are input/output parameters and are specifying the work buffer. |
| static void |
| enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj) |
| { |
| uintptr nobj, off; |
| Obj *wp; |
| Workbuf *wbuf; |
| |
| if(Debug > 1) |
| runtime·printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti); |
| |
| // Align obj.b to a word boundary. |
| off = (uintptr)obj.p & (PtrSize-1); |
| if(off != 0) { |
| obj.p += PtrSize - off; |
| obj.n -= PtrSize - off; |
| obj.ti = 0; |
| } |
| |
| if(obj.p == nil || obj.n == 0) |
| return; |
| |
| // Load work buffer state |
| wp = *_wp; |
| wbuf = *_wbuf; |
| nobj = *_nobj; |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| |
| // If buffer is full, get a new one. |
| if(wbuf == nil || nobj >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| } |
| |
| *wp = obj; |
| wp++; |
| nobj++; |
| |
| // Save work buffer state |
| *_wp = wp; |
| *_wbuf = wbuf; |
| *_nobj = nobj; |
| } |
| |
| static void |
| markroot(ParFor *desc, uint32 i) |
| { |
| Obj *wp; |
| Workbuf *wbuf; |
| uintptr nobj; |
| |
| USED(&desc); |
| wp = nil; |
| wbuf = nil; |
| nobj = 0; |
| enqueue(work.roots[i], &wbuf, &wp, &nobj); |
| scanblock(wbuf, wp, nobj, false); |
| } |
| |
| // Get an empty work buffer off the work.empty list, |
| // allocating new buffers as needed. |
| static Workbuf* |
| getempty(Workbuf *b) |
| { |
| if(b != nil) |
| runtime·lfstackpush(&work.full, &b->node); |
| b = (Workbuf*)runtime·lfstackpop(&work.empty); |
| if(b == nil) { |
| // Need to allocate. |
| runtime·lock(&work); |
| if(work.nchunk < sizeof *b) { |
| work.nchunk = 1<<20; |
| work.chunk = runtime·SysAlloc(work.nchunk); |
| if(work.chunk == nil) |
| runtime·throw("runtime: cannot allocate memory"); |
| } |
| b = (Workbuf*)work.chunk; |
| work.chunk += sizeof *b; |
| work.nchunk -= sizeof *b; |
| runtime·unlock(&work); |
| } |
| b->nobj = 0; |
| return b; |
| } |
| |
| static void |
| putempty(Workbuf *b) |
| { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.putempty, 1); |
| |
| runtime·lfstackpush(&work.empty, &b->node); |
| } |
| |
| // Get a full work buffer off the work.full list, or return nil. |
| static Workbuf* |
| getfull(Workbuf *b) |
| { |
| int32 i; |
| |
| if(CollectStats) |
| runtime·xadd64(&gcstats.getfull, 1); |
| |
| if(b != nil) |
| runtime·lfstackpush(&work.empty, &b->node); |
| b = (Workbuf*)runtime·lfstackpop(&work.full); |
| if(b != nil || work.nproc == 1) |
| return b; |
| |
| runtime·xadd(&work.nwait, +1); |
| for(i=0;; i++) { |
| if(work.full != 0) { |
| runtime·xadd(&work.nwait, -1); |
| b = (Workbuf*)runtime·lfstackpop(&work.full); |
| if(b != nil) |
| return b; |
| runtime·xadd(&work.nwait, +1); |
| } |
| if(work.nwait == work.nproc) |
| return nil; |
| if(i < 10) { |
| m->gcstats.nprocyield++; |
| runtime·procyield(20); |
| } else if(i < 20) { |
| m->gcstats.nosyield++; |
| runtime·osyield(); |
| } else { |
| m->gcstats.nsleep++; |
| runtime·usleep(100); |
| } |
| } |
| } |
| |
| static Workbuf* |
| handoff(Workbuf *b) |
| { |
| int32 n; |
| Workbuf *b1; |
| |
| // Make new buffer with half of b's pointers. |
| b1 = getempty(nil); |
| n = b->nobj/2; |
| b->nobj -= n; |
| b1->nobj = n; |
| runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); |
| m->gcstats.nhandoff++; |
| m->gcstats.nhandoffcnt += n; |
| |
| // Put b on full list - let first half of b get stolen. |
| runtime·lfstackpush(&work.full, &b->node); |
| return b1; |
| } |
| |
| static void |
| addroot(Obj obj) |
| { |
| uint32 cap; |
| Obj *new; |
| |
| if(work.nroot >= work.rootcap) { |
| cap = PageSize/sizeof(Obj); |
| if(cap < 2*work.rootcap) |
| cap = 2*work.rootcap; |
| new = (Obj*)runtime·SysAlloc(cap*sizeof(Obj)); |
| if(new == nil) |
| runtime·throw("runtime: cannot allocate memory"); |
| if(work.roots != nil) { |
| runtime·memmove(new, work.roots, work.rootcap*sizeof(Obj)); |
| runtime·SysFree(work.roots, work.rootcap*sizeof(Obj)); |
| } |
| work.roots = new; |
| work.rootcap = cap; |
| } |
| work.roots[work.nroot] = obj; |
| work.nroot++; |
| } |
| |
| // Scan a stack frame. The doframe parameter is a signal that the previously |
| // scanned activation has an unknown argument size. When *doframe is true the |
| // current activation must have its entire frame scanned. Otherwise, only the |
| // locals need to be scanned. |
| static void |
| addframeroots(Func *f, byte*, byte *sp, void *doframe) |
| { |
| uintptr outs; |
| |
| if(thechar == '5') |
| sp += sizeof(uintptr); |
| if(f->locals == 0 || *(bool*)doframe == true) |
| addroot((Obj){sp, f->frame - sizeof(uintptr), 0}); |
| else if(f->locals > 0) { |
| outs = f->frame - sizeof(uintptr) - f->locals; |
| addroot((Obj){sp + outs, f->locals, 0}); |
| } |
| if(f->args > 0) |
| addroot((Obj){sp + f->frame, f->args, 0}); |
| *(bool*)doframe = (f->args == ArgsSizeUnknown); |
| } |
| |
| static void |
| addstackroots(G *gp) |
| { |
| M *mp; |
| int32 n; |
| Stktop *stk; |
| byte *sp, *guard, *pc; |
| Func *f; |
| bool doframe; |
| |
| stk = (Stktop*)gp->stackbase; |
| guard = (byte*)gp->stackguard; |
| |
| if(gp == g) { |
| // Scanning our own stack: start at &gp. |
| sp = runtime·getcallersp(&gp); |
| pc = runtime·getcallerpc(&gp); |
| } else if((mp = gp->m) != nil && mp->helpgc) { |
| // gchelper's stack is in active use and has no interesting pointers. |
| return; |
| } else if(gp->gcstack != (uintptr)nil) { |
| // Scanning another goroutine that is about to enter or might |
| // have just exited a system call. It may be executing code such |
| // as schedlock and may have needed to start a new stack segment. |
| // Use the stack segment and stack pointer at the time of |
| // the system call instead, since that won't change underfoot. |
| sp = (byte*)gp->gcsp; |
| pc = gp->gcpc; |
| stk = (Stktop*)gp->gcstack; |
| guard = (byte*)gp->gcguard; |
| } else { |
| // Scanning another goroutine's stack. |
| // The goroutine is usually asleep (the world is stopped). |
| sp = (byte*)gp->sched.sp; |
| pc = gp->sched.pc; |
| if(ScanStackByFrames && pc == (byte*)runtime·goexit && gp->fnstart != nil) { |
| // The goroutine has not started. However, its incoming |
| // arguments are live at the top of the stack and must |
| // be scanned. No other live values should be on the |
| // stack. |
| f = runtime·findfunc((uintptr)gp->fnstart->fn); |
| if(f->args > 0) { |
| if(thechar == '5') |
| sp += sizeof(uintptr); |
| addroot((Obj){sp, f->args, 0}); |
| } |
| return; |
| } |
| } |
| if (ScanStackByFrames) { |
| doframe = false; |
| runtime·gentraceback(pc, sp, nil, gp, 0, nil, 0x7fffffff, addframeroots, &doframe); |
| } else { |
| USED(pc); |
| n = 0; |
| while(stk) { |
| if(sp < guard-StackGuard || (byte*)stk < sp) { |
| runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); |
| runtime·throw("scanstack"); |
| } |
| addroot((Obj){sp, (byte*)stk - sp, (uintptr)defaultProg | PRECISE | LOOP}); |
| sp = (byte*)stk->gobuf.sp; |
| guard = stk->stackguard; |
| stk = (Stktop*)stk->stackbase; |
| n++; |
| } |
| } |
| } |
| |
| static void |
| addfinroots(void *v) |
| { |
| uintptr size; |
| void *base; |
| |
| size = 0; |
| if(!runtime·mlookup(v, &base, &size, nil) || !runtime·blockspecial(base)) |
| runtime·throw("mark - finalizer inconsistency"); |
| |
| // do not mark the finalizer block itself. just mark the things it points at. |
| addroot((Obj){base, size, 0}); |
| } |
| |
| static void |
| addroots(void) |
| { |
| G *gp; |
| FinBlock *fb; |
| MSpan *s, **allspans; |
| uint32 spanidx; |
| |
| work.nroot = 0; |
| |
| // data & bss |
| // TODO(atom): load balancing |
| addroot((Obj){data, edata - data, (uintptr)gcdata}); |
| addroot((Obj){bss, ebss - bss, (uintptr)gcbss}); |
| |
| // MSpan.types |
| allspans = runtime·mheap->allspans; |
| for(spanidx=0; spanidx<runtime·mheap->nspan; spanidx++) { |
| s = allspans[spanidx]; |
| if(s->state == MSpanInUse) { |
| // The garbage collector ignores type pointers stored in MSpan.types: |
| // - Compiler-generated types are stored outside of heap. |
| // - The reflect package has runtime-generated types cached in its data structures. |
| // The garbage collector relies on finding the references via that cache. |
| switch(s->types.compression) { |
| case MTypes_Empty: |
| case MTypes_Single: |
| break; |
| case MTypes_Words: |
| case MTypes_Bytes: |
| markonly((byte*)s->types.data); |
| break; |
| } |
| } |
| } |
| |
| // stacks |
| for(gp=runtime·allg; gp!=nil; gp=gp->alllink) { |
| switch(gp->status){ |
| default: |
| runtime·printf("unexpected G.status %d\n", gp->status); |
| runtime·throw("mark - bad status"); |
| case Gdead: |
| break; |
| case Grunning: |
| if(gp != g) |
| runtime·throw("mark - world not stopped"); |
| addstackroots(gp); |
| break; |
| case Grunnable: |
| case Gsyscall: |
| case Gwaiting: |
| addstackroots(gp); |
| break; |
| } |
| } |
| |
| runtime·walkfintab(addfinroots); |
| |
| for(fb=allfin; fb; fb=fb->alllink) |
| addroot((Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0}); |
| } |
| |
| static bool |
| handlespecial(byte *p, uintptr size) |
| { |
| FuncVal *fn; |
| uintptr nret; |
| FinBlock *block; |
| Finalizer *f; |
| |
| if(!runtime·getfinalizer(p, true, &fn, &nret)) { |
| runtime·setblockspecial(p, false); |
| runtime·MProf_Free(p, size); |
| return false; |
| } |
| |
| runtime·lock(&finlock); |
| if(finq == nil || finq->cnt == finq->cap) { |
| if(finc == nil) { |
| finc = runtime·SysAlloc(PageSize); |
| if(finc == nil) |
| runtime·throw("runtime: cannot allocate memory"); |
| finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; |
| finc->alllink = allfin; |
| allfin = finc; |
| } |
| block = finc; |
| finc = block->next; |
| block->next = finq; |
| finq = block; |
| } |
| f = &finq->fin[finq->cnt]; |
| finq->cnt++; |
| f->fn = fn; |
| f->nret = nret; |
| f->arg = p; |
| runtime·unlock(&finlock); |
| return true; |
| } |
| |
| // Sweep frees or collects finalizers for blocks not marked in the mark phase. |
| // It clears the mark bits in preparation for the next GC round. |
| static void |
| sweepspan(ParFor *desc, uint32 idx) |
| { |
| int32 cl, n, npages; |
| uintptr size; |
| byte *p; |
| MCache *c; |
| byte *arena_start; |
| MLink head, *end; |
| int32 nfree; |
| byte *type_data; |
| byte compression; |
| uintptr type_data_inc; |
| MSpan *s; |
| |
| USED(&desc); |
| s = runtime·mheap->allspans[idx]; |
| if(s->state != MSpanInUse) |
| return; |
| arena_start = runtime·mheap->arena_start; |
| p = (byte*)(s->start << PageShift); |
| cl = s->sizeclass; |
| size = s->elemsize; |
| if(cl == 0) { |
| n = 1; |
| } else { |
| // Chunk full of small blocks. |
| npages = runtime·class_to_allocnpages[cl]; |
| n = (npages << PageShift) / size; |
| } |
| nfree = 0; |
| end = &head; |
| c = m->mcache; |
| |
| type_data = (byte*)s->types.data; |
| type_data_inc = sizeof(uintptr); |
| compression = s->types.compression; |
| switch(compression) { |
| case MTypes_Bytes: |
| type_data += 8*sizeof(uintptr); |
| type_data_inc = 1; |
| break; |
| } |
| |
| // Sweep through n objects of given size starting at p. |
| // This thread owns the span now, so it can manipulate |
| // the block bitmap without atomic operations. |
| for(; n > 0; n--, p += size, type_data+=type_data_inc) { |
| uintptr off, *bitp, shift, bits; |
| |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| if((bits & bitAllocated) == 0) |
| continue; |
| |
| if((bits & bitMarked) != 0) { |
| if(DebugMark) { |
| if(!(bits & bitSpecial)) |
| runtime·printf("found spurious mark on %p\n", p); |
| *bitp &= ~(bitSpecial<<shift); |
| } |
| *bitp &= ~(bitMarked<<shift); |
| continue; |
| } |
| |
| // Special means it has a finalizer or is being profiled. |
| // In DebugMark mode, the bit has been coopted so |
| // we have to assume all blocks are special. |
| if(DebugMark || (bits & bitSpecial) != 0) { |
| if(handlespecial(p, size)) |
| continue; |
| } |
| |
| // Mark freed; restore block boundary bit. |
| *bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| |
| if(cl == 0) { |
| // Free large span. |
| runtime·unmarkspan(p, 1<<PageShift); |
| *(uintptr*)p = (uintptr)0xdeaddeaddeaddeadll; // needs zeroing |
| runtime·MHeap_Free(runtime·mheap, s, 1); |
| c->local_alloc -= size; |
| c->local_nfree++; |
| } else { |
| // Free small object. |
| switch(compression) { |
| case MTypes_Words: |
| *(uintptr*)type_data = 0; |
| break; |
| case MTypes_Bytes: |
| *(byte*)type_data = 0; |
| break; |
| } |
| if(size > sizeof(uintptr)) |
| ((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed" |
| |
| end->next = (MLink*)p; |
| end = (MLink*)p; |
| nfree++; |
| } |
| } |
| |
| if(nfree) { |
| c->local_by_size[cl].nfree += nfree; |
| c->local_alloc -= size * nfree; |
| c->local_nfree += nfree; |
| c->local_cachealloc -= nfree * size; |
| c->local_objects -= nfree; |
| runtime·MCentral_FreeSpan(&runtime·mheap->central[cl], s, nfree, head.next, end); |
| } |
| } |
| |
| static void |
| dumpspan(uint32 idx) |
| { |
| int32 sizeclass, n, npages, i, column; |
| uintptr size; |
| byte *p; |
| byte *arena_start; |
| MSpan *s; |
| bool allocated, special; |
| |
| s = runtime·mheap->allspans[idx]; |
| if(s->state != MSpanInUse) |
| return; |
| arena_start = runtime·mheap->arena_start; |
| p = (byte*)(s->start << PageShift); |
| sizeclass = s->sizeclass; |
| size = s->elemsize; |
| if(sizeclass == 0) { |
| n = 1; |
| } else { |
| npages = runtime·class_to_allocnpages[sizeclass]; |
| n = (npages << PageShift) / size; |
| } |
| |
| runtime·printf("%p .. %p:\n", p, p+n*size); |
| column = 0; |
| for(; n>0; n--, p+=size) { |
| uintptr off, *bitp, shift, bits; |
| |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| allocated = ((bits & bitAllocated) != 0); |
| special = ((bits & bitSpecial) != 0); |
| |
| for(i=0; i<size; i+=sizeof(void*)) { |
| if(column == 0) { |
| runtime·printf("\t"); |
| } |
| if(i == 0) { |
| runtime·printf(allocated ? "(" : "["); |
| runtime·printf(special ? "@" : ""); |
| runtime·printf("%p: ", p+i); |
| } else { |
| runtime·printf(" "); |
| } |
| |
| runtime·printf("%p", *(void**)(p+i)); |
| |
| if(i+sizeof(void*) >= size) { |
| runtime·printf(allocated ? ") " : "] "); |
| } |
| |
| column++; |
| if(column == 8) { |
| runtime·printf("\n"); |
| column = 0; |
| } |
| } |
| } |
| runtime·printf("\n"); |
| } |
| |
| // A debugging function to dump the contents of memory |
| void |
| runtime·memorydump(void) |
| { |
| uint32 spanidx; |
| |
| for(spanidx=0; spanidx<runtime·mheap->nspan; spanidx++) { |
| dumpspan(spanidx); |
| } |
| } |
| |
| void |
| runtime·gchelper(void) |
| { |
| gchelperstart(); |
| |
| // parallel mark for over gc roots |
| runtime·parfordo(work.markfor); |
| |
| // help other threads scan secondary blocks |
| scanblock(nil, nil, 0, true); |
| |
| if(DebugMark) { |
| // wait while the main thread executes mark(debug_scanblock) |
| while(runtime·atomicload(&work.debugmarkdone) == 0) |
| runtime·usleep(10); |
| } |
| |
| runtime·parfordo(work.sweepfor); |
| bufferList[m->helpgc].busy = 0; |
| if(runtime·xadd(&work.ndone, +1) == work.nproc-1) |
| runtime·notewakeup(&work.alldone); |
| } |
| |
| #define GcpercentUnknown (-2) |
| |
| // Initialized from $GOGC. GOGC=off means no gc. |
| // |
| // Next gc is after we've allocated an extra amount of |
| // memory proportional to the amount already in use. |
| // If gcpercent=100 and we're using 4M, we'll gc again |
| // when we get to 8M. This keeps the gc cost in linear |
| // proportion to the allocation cost. Adjusting gcpercent |
| // just changes the linear constant (and also the amount of |
| // extra memory used). |
| static int32 gcpercent = GcpercentUnknown; |
| |
| static void |
| cachestats(GCStats *stats) |
| { |
| M *mp; |
| MCache *c; |
| P *p, **pp; |
| int32 i; |
| uint64 stacks_inuse; |
| uint64 *src, *dst; |
| |
| if(stats) |
| runtime·memclr((byte*)stats, sizeof(*stats)); |
| stacks_inuse = 0; |
| for(mp=runtime·allm; mp; mp=mp->alllink) { |
| stacks_inuse += mp->stackinuse*FixedStack; |
| if(stats) { |
| src = (uint64*)&mp->gcstats; |
| dst = (uint64*)stats; |
| for(i=0; i<sizeof(*stats)/sizeof(uint64); i++) |
| dst[i] += src[i]; |
| runtime·memclr((byte*)&mp->gcstats, sizeof(mp->gcstats)); |
| } |
| } |
| for(pp=runtime·allp; p=*pp; pp++) { |
| c = p->mcache; |
| if(c==nil) |
| continue; |
| runtime·purgecachedstats(c); |
| for(i=0; i<nelem(c->local_by_size); i++) { |
| mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc; |
| c->local_by_size[i].nmalloc = 0; |
| mstats.by_size[i].nfree += c->local_by_size[i].nfree; |
| c->local_by_size[i].nfree = 0; |
| } |
| } |
| mstats.stacks_inuse = stacks_inuse; |
| } |
| |
| // Structure of arguments passed to function gc(). |
| // This allows the arguments to be passed via reflect·call. |
| struct gc_args |
| { |
| int32 force; |
| }; |
| |
| static void gc(struct gc_args *args); |
| |
| static int32 |
| readgogc(void) |
| { |
| byte *p; |
| |
| p = runtime·getenv("GOGC"); |
| if(p == nil || p[0] == '\0') |
| return 100; |
| if(runtime·strcmp(p, (byte*)"off") == 0) |
| return -1; |
| return runtime·atoi(p); |
| } |
| |
| void |
| runtime·gc(int32 force) |
| { |
| byte *p; |
| struct gc_args a, *ap; |
| FuncVal gcv; |
| |
| // The atomic operations are not atomic if the uint64s |
| // are not aligned on uint64 boundaries. This has been |
| // a problem in the past. |
| if((((uintptr)&work.empty) & 7) != 0) |
| runtime·throw("runtime: gc work buffer is misaligned"); |
| if((((uintptr)&work.full) & 7) != 0) |
| runtime·throw("runtime: gc work buffer is misaligned"); |
| |
| // The gc is turned off (via enablegc) until |
| // the bootstrap has completed. |
| // Also, malloc gets called in the guts |
| // of a number of libraries that might be |
| // holding locks. To avoid priority inversion |
| // problems, don't bother trying to run gc |
| // while holding a lock. The next mallocgc |
| // without a lock will do the gc instead. |
| if(!mstats.enablegc || m->locks > 0 || runtime·panicking) |
| return; |
| |
| if(gcpercent == GcpercentUnknown) { // first time through |
| gcpercent = readgogc(); |
| |
| p = runtime·getenv("GOGCTRACE"); |
| if(p != nil) |
| gctrace = runtime·atoi(p); |
| } |
| if(gcpercent < 0) |
| return; |
| |
| // Run gc on a bigger stack to eliminate |
| // a potentially large number of calls to runtime·morestack. |
| a.force = force; |
| ap = &a; |
| m->moreframesize_minalloc = StackBig; |
| gcv.fn = (void*)gc; |
| reflect·call(&gcv, (byte*)&ap, sizeof(ap)); |
| |
| if(gctrace > 1 && !force) { |
| a.force = 1; |
| gc(&a); |
| } |
| } |
| |
| static FuncVal runfinqv = {runfinq}; |
| |
| static void |
| gc(struct gc_args *args) |
| { |
| int64 t0, t1, t2, t3, t4; |
| uint64 heap0, heap1, obj0, obj1, ninstr; |
| GCStats stats; |
| M *mp; |
| uint32 i; |
| Eface eface; |
| |
| runtime·semacquire(&runtime·worldsema); |
| if(!args->force && mstats.heap_alloc < mstats.next_gc) { |
| runtime·semrelease(&runtime·worldsema); |
| return; |
| } |
| |
| t0 = runtime·nanotime(); |
| |
| m->gcing = 1; |
| runtime·stoptheworld(); |
| |
| if(CollectStats) |
| runtime·memclr((byte*)&gcstats, sizeof(gcstats)); |
| |
| for(mp=runtime·allm; mp; mp=mp->alllink) |
| runtime·settype_flush(mp, false); |
| |
| heap0 = 0; |
| obj0 = 0; |
| if(gctrace) { |
| cachestats(nil); |
| heap0 = mstats.heap_alloc; |
| obj0 = mstats.nmalloc - mstats.nfree; |
| } |
| |
| m->locks++; // disable gc during mallocs in parforalloc |
| if(work.markfor == nil) |
| work.markfor = runtime·parforalloc(MaxGcproc); |
| if(work.sweepfor == nil) |
| work.sweepfor = runtime·parforalloc(MaxGcproc); |
| m->locks--; |
| |
| if(itabtype == nil) { |
| // get C pointer to the Go type "itab" |
| runtime·gc_itab_ptr(&eface); |
| itabtype = ((PtrType*)eface.type)->elem; |
| } |
| |
| work.nwait = 0; |
| work.ndone = 0; |
| work.debugmarkdone = 0; |
| work.nproc = runtime·gcprocs(); |
| addroots(); |
| runtime·parforsetup(work.markfor, work.nproc, work.nroot, nil, false, markroot); |
| runtime·parforsetup(work.sweepfor, work.nproc, runtime·mheap->nspan, nil, true, sweepspan); |
| if(work.nproc > 1) { |
| runtime·noteclear(&work.alldone); |
| runtime·helpgc(work.nproc); |
| } |
| |
| t1 = runtime·nanotime(); |
| |
| gchelperstart(); |
| runtime·parfordo(work.markfor); |
| scanblock(nil, nil, 0, true); |
| |
| if(DebugMark) { |
| for(i=0; i<work.nroot; i++) |
| debug_scanblock(work.roots[i].p, work.roots[i].n); |
| runtime·atomicstore(&work.debugmarkdone, 1); |
| } |
| t2 = runtime·nanotime(); |
| |
| runtime·parfordo(work.sweepfor); |
| bufferList[m->helpgc].busy = 0; |
| t3 = runtime·nanotime(); |
| |
| if(work.nproc > 1) |
| runtime·notesleep(&work.alldone); |
| |
| cachestats(&stats); |
| |
| stats.nprocyield += work.sweepfor->nprocyield; |
| stats.nosyield += work.sweepfor->nosyield; |
| stats.nsleep += work.sweepfor->nsleep; |
| |
| mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; |
| m->gcing = 0; |
| |
| if(finq != nil) { |
| m->locks++; // disable gc during the mallocs in newproc |
| // kick off or wake up goroutine to run queued finalizers |
| if(fing == nil) |
| fing = runtime·newproc1(&runfinqv, nil, 0, 0, runtime·gc); |
| else if(fingwait) { |
| fingwait = 0; |
| runtime·ready(fing); |
| } |
| m->locks--; |
| } |
| |
| heap1 = mstats.heap_alloc; |
| obj1 = mstats.nmalloc - mstats.nfree; |
| |
| t4 = runtime·nanotime(); |
| mstats.last_gc = t4; |
| mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0; |
| mstats.pause_total_ns += t4 - t0; |
| mstats.numgc++; |
| if(mstats.debuggc) |
| runtime·printf("pause %D\n", t4-t0); |
| |
| if(gctrace) { |
| runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects," |
| " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", |
| mstats.numgc, work.nproc, (t2-t1)/1000000, (t3-t2)/1000000, (t1-t0+t4-t3)/1000000, |
| heap0>>20, heap1>>20, obj0, obj1, |
| mstats.nmalloc, mstats.nfree, |
| stats.nhandoff, stats.nhandoffcnt, |
| work.sweepfor->nsteal, work.sweepfor->nstealcnt, |
| stats.nprocyield, stats.nosyield, stats.nsleep); |
| if(CollectStats) { |
| runtime·printf("scan: %D bytes, %D objects, %D untyped, %D types from MSpan\n", |
| gcstats.nbytes, gcstats.obj.cnt, gcstats.obj.notype, gcstats.obj.typelookup); |
| if(gcstats.ptr.cnt != 0) |
| runtime·printf("avg ptrbufsize: %D (%D/%D)\n", |
| gcstats.ptr.sum/gcstats.ptr.cnt, gcstats.ptr.sum, gcstats.ptr.cnt); |
| if(gcstats.obj.cnt != 0) |
| runtime·printf("avg nobj: %D (%D/%D)\n", |
| gcstats.obj.sum/gcstats.obj.cnt, gcstats.obj.sum, gcstats.obj.cnt); |
| runtime·printf("rescans: %D, %D bytes\n", gcstats.rescan, gcstats.rescanbytes); |
| |
| runtime·printf("instruction counts:\n"); |
| ninstr = 0; |
| for(i=0; i<nelem(gcstats.instr); i++) { |
| runtime·printf("\t%d:\t%D\n", i, gcstats.instr[i]); |
| ninstr += gcstats.instr[i]; |
| } |
| runtime·printf("\ttotal:\t%D\n", ninstr); |
| |
| runtime·printf("putempty: %D, getfull: %D\n", gcstats.putempty, gcstats.getfull); |
| } |
| } |
| |
| runtime·MProf_GC(); |
| runtime·semrelease(&runtime·worldsema); |
| runtime·starttheworld(); |
| |
| // give the queued finalizers, if any, a chance to run |
| if(finq != nil) |
| runtime·gosched(); |
| } |
| |
| void |
| runtime·ReadMemStats(MStats *stats) |
| { |
| // Have to acquire worldsema to stop the world, |
| // because stoptheworld can only be used by |
| // one goroutine at a time, and there might be |
| // a pending garbage collection already calling it. |
| runtime·semacquire(&runtime·worldsema); |
| m->gcing = 1; |
| runtime·stoptheworld(); |
| cachestats(nil); |
| *stats = mstats; |
| m->gcing = 0; |
| runtime·semrelease(&runtime·worldsema); |
| runtime·starttheworld(); |
| } |
| |
| void |
| runtime∕debug·readGCStats(Slice *pauses) |
| { |
| uint64 *p; |
| uint32 i, n; |
| |
| // Calling code in runtime/debug should make the slice large enough. |
| if(pauses->cap < nelem(mstats.pause_ns)+3) |
| runtime·throw("runtime: short slice passed to readGCStats"); |
| |
| // Pass back: pauses, last gc (absolute time), number of gc, total pause ns. |
| p = (uint64*)pauses->array; |
| runtime·lock(runtime·mheap); |
| n = mstats.numgc; |
| if(n > nelem(mstats.pause_ns)) |
| n = nelem(mstats.pause_ns); |
| |
| // The pause buffer is circular. The most recent pause is at |
| // pause_ns[(numgc-1)%nelem(pause_ns)], and then backward |
| // from there to go back farther in time. We deliver the times |
| // most recent first (in p[0]). |
| for(i=0; i<n; i++) |
| p[i] = mstats.pause_ns[(mstats.numgc-1-i)%nelem(mstats.pause_ns)]; |
| |
| p[n] = mstats.last_gc; |
| p[n+1] = mstats.numgc; |
| p[n+2] = mstats.pause_total_ns; |
| runtime·unlock(runtime·mheap); |
| pauses->len = n+3; |
| } |
| |
| void |
| runtime∕debug·setGCPercent(intgo in, intgo out) |
| { |
| runtime·lock(runtime·mheap); |
| if(gcpercent == GcpercentUnknown) |
| gcpercent = readgogc(); |
| out = gcpercent; |
| if(in < 0) |
| in = -1; |
| gcpercent = in; |
| runtime·unlock(runtime·mheap); |
| FLUSH(&out); |
| } |
| |
| static void |
| gchelperstart(void) |
| { |
| if(m->helpgc < 0 || m->helpgc >= MaxGcproc) |
| runtime·throw("gchelperstart: bad m->helpgc"); |
| if(runtime·xchg(&bufferList[m->helpgc].busy, 1)) |
| runtime·throw("gchelperstart: already busy"); |
| } |
| |
| static void |
| runfinq(void) |
| { |
| Finalizer *f; |
| FinBlock *fb, *next; |
| byte *frame; |
| uint32 framesz, framecap, i; |
| |
| frame = nil; |
| framecap = 0; |
| for(;;) { |
| // There's no need for a lock in this section |
| // because it only conflicts with the garbage |
| // collector, and the garbage collector only |
| // runs when everyone else is stopped, and |
| // runfinq only stops at the gosched() or |
| // during the calls in the for loop. |
| fb = finq; |
| finq = nil; |
| if(fb == nil) { |
| fingwait = 1; |
| runtime·park(nil, nil, "finalizer wait"); |
| continue; |
| } |
| if(raceenabled) |
| runtime·racefingo(); |
| for(; fb; fb=next) { |
| next = fb->next; |
| for(i=0; i<fb->cnt; i++) { |
| f = &fb->fin[i]; |
| framesz = sizeof(uintptr) + f->nret; |
| if(framecap < framesz) { |
| runtime·free(frame); |
| frame = runtime·mal(framesz); |
| framecap = framesz; |
| } |
| *(void**)frame = f->arg; |
| reflect·call(f->fn, frame, sizeof(uintptr) + f->nret); |
| f->fn = nil; |
| f->arg = nil; |
| } |
| fb->cnt = 0; |
| fb->next = finc; |
| finc = fb; |
| } |
| runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible |
| } |
| } |
| |
| // mark the block at v of size n as allocated. |
| // If noptr is true, mark it as having no pointers. |
| void |
| runtime·markallocated(void *v, uintptr n, bool noptr) |
| { |
| uintptr *b, obits, bits, off, shift; |
| |
| if(0) |
| runtime·printf("markallocated %p+%p\n", v, n); |
| |
| if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) |
| runtime·throw("markallocated: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset |
| b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift); |
| if(noptr) |
| bits |= bitNoPointers<<shift; |
| if(runtime·singleproc) { |
| *b = bits; |
| break; |
| } else { |
| // more than one goroutine is potentially running: use atomic op |
| if(runtime·casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| // mark the block at v of size n as freed. |
| void |
| runtime·markfreed(void *v, uintptr n) |
| { |
| uintptr *b, obits, bits, off, shift; |
| |
| if(0) |
| runtime·printf("markallocated %p+%p\n", v, n); |
| |
| if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) |
| runtime·throw("markallocated: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset |
| b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| bits = (obits & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| if(runtime·singleproc) { |
| *b = bits; |
| break; |
| } else { |
| // more than one goroutine is potentially running: use atomic op |
| if(runtime·casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| // check that the block at v of size n is marked freed. |
| void |
| runtime·checkfreed(void *v, uintptr n) |
| { |
| uintptr *b, bits, off, shift; |
| |
| if(!runtime·checking) |
| return; |
| |
| if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) |
| return; // not allocated, so okay |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset |
| b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| bits = *b>>shift; |
| if((bits & bitAllocated) != 0) { |
| runtime·printf("checkfreed %p+%p: off=%p have=%p\n", |
| v, n, off, bits & bitMask); |
| runtime·throw("checkfreed: not freed"); |
| } |
| } |
| |
| // mark the span of memory at v as having n blocks of the given size. |
| // if leftover is true, there is left over space at the end of the span. |
| void |
| runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) |
| { |
| uintptr *b, off, shift; |
| byte *p; |
| |
| if((byte*)v+size*n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) |
| runtime·throw("markspan: bad pointer"); |
| |
| p = v; |
| if(leftover) // mark a boundary just past end of last block too |
| n++; |
| for(; n-- > 0; p += size) { |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| off = (uintptr*)p - (uintptr*)runtime·mheap->arena_start; // word offset |
| b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| } |
| } |
| |
| // unmark the span of memory at v of length n bytes. |
| void |
| runtime·unmarkspan(void *v, uintptr n) |
| { |
| uintptr *p, *b, off; |
| |
| if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) |
| runtime·throw("markspan: bad pointer"); |
| |
| p = v; |
| off = p - (uintptr*)runtime·mheap->arena_start; // word offset |
| if(off % wordsPerBitmapWord != 0) |
| runtime·throw("markspan: unaligned pointer"); |
| b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| n /= PtrSize; |
| if(n%wordsPerBitmapWord != 0) |
| runtime·throw("unmarkspan: unaligned length"); |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| n /= wordsPerBitmapWord; |
| while(n-- > 0) |
| *b-- = 0; |
| } |
| |
| bool |
| runtime·blockspecial(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| if(DebugMark) |
| return true; |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; |
| b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| return (*b & (bitSpecial<<shift)) != 0; |
| } |
| |
| void |
| runtime·setblockspecial(void *v, bool s) |
| { |
| uintptr *b, off, shift, bits, obits; |
| |
| if(DebugMark) |
| return; |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; |
| b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| if(s) |
| bits = obits | (bitSpecial<<shift); |
| else |
| bits = obits & ~(bitSpecial<<shift); |
| if(runtime·singleproc) { |
| *b = bits; |
| break; |
| } else { |
| // more than one goroutine is potentially running: use atomic op |
| if(runtime·casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| void |
| runtime·MHeap_MapBits(MHeap *h) |
| { |
| // Caller has added extra mappings to the arena. |
| // Add extra mappings of bitmap words as needed. |
| // We allocate extra bitmap pieces in chunks of bitmapChunk. |
| enum { |
| bitmapChunk = 8192 |
| }; |
| uintptr n; |
| |
| n = (h->arena_used - h->arena_start) / wordsPerBitmapWord; |
| n = (n+bitmapChunk-1) & ~(bitmapChunk-1); |
| if(h->bitmap_mapped >= n) |
| return; |
| |
| runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped); |
| h->bitmap_mapped = n; |
| } |