| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| /* |
| Floating-point sine and cosine. |
| */ |
| |
| // The original C code, the long comment, and the constants |
| // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, |
| // available from http://www.netlib.org/cephes/cmath.tgz. |
| // The go code is a simplified version of the original C. |
| // |
| // sin.c |
| // |
| // Circular sine |
| // |
| // SYNOPSIS: |
| // |
| // double x, y, sin(); |
| // y = sin( x ); |
| // |
| // DESCRIPTION: |
| // |
| // Range reduction is into intervals of pi/4. The reduction error is nearly |
| // eliminated by contriving an extended precision modular arithmetic. |
| // |
| // Two polynomial approximating functions are employed. |
| // Between 0 and pi/4 the sine is approximated by |
| // x + x**3 P(x**2). |
| // Between pi/4 and pi/2 the cosine is represented as |
| // 1 - x**2 Q(x**2). |
| // |
| // ACCURACY: |
| // |
| // Relative error: |
| // arithmetic domain # trials peak rms |
| // DEC 0, 10 150000 3.0e-17 7.8e-18 |
| // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 |
| // |
| // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss |
| // is not gradual, but jumps suddenly to about 1 part in 10e7. Results may |
| // be meaningless for x > 2**49 = 5.6e14. |
| // |
| // cos.c |
| // |
| // Circular cosine |
| // |
| // SYNOPSIS: |
| // |
| // double x, y, cos(); |
| // y = cos( x ); |
| // |
| // DESCRIPTION: |
| // |
| // Range reduction is into intervals of pi/4. The reduction error is nearly |
| // eliminated by contriving an extended precision modular arithmetic. |
| // |
| // Two polynomial approximating functions are employed. |
| // Between 0 and pi/4 the cosine is approximated by |
| // 1 - x**2 Q(x**2). |
| // Between pi/4 and pi/2 the sine is represented as |
| // x + x**3 P(x**2). |
| // |
| // ACCURACY: |
| // |
| // Relative error: |
| // arithmetic domain # trials peak rms |
| // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 |
| // DEC 0,+1.07e9 17000 3.0e-17 7.2e-18 |
| // |
| // Cephes Math Library Release 2.8: June, 2000 |
| // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier |
| // |
| // The readme file at http://netlib.sandia.gov/cephes/ says: |
| // Some software in this archive may be from the book _Methods and |
| // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster |
| // International, 1989) or from the Cephes Mathematical Library, a |
| // commercial product. In either event, it is copyrighted by the author. |
| // What you see here may be used freely but it comes with no support or |
| // guarantee. |
| // |
| // The two known misprints in the book are repaired here in the |
| // source listings for the gamma function and the incomplete beta |
| // integral. |
| // |
| // Stephen L. Moshier |
| // moshier@na-net.ornl.gov |
| |
| // sin coefficients |
| var _sin = [...]float64{ |
| 1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd |
| -2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d |
| 2.75573136213857245213E-6, // 0x3ec71de3567d48a1 |
| -1.98412698295895385996E-4, // 0xbf2a01a019bfdf03 |
| 8.33333333332211858878E-3, // 0x3f8111111110f7d0 |
| -1.66666666666666307295E-1, // 0xbfc5555555555548 |
| } |
| |
| // cos coefficients |
| var _cos = [...]float64{ |
| -1.13585365213876817300E-11, // 0xbda8fa49a0861a9b |
| 2.08757008419747316778E-9, // 0x3e21ee9d7b4e3f05 |
| -2.75573141792967388112E-7, // 0xbe927e4f7eac4bc6 |
| 2.48015872888517045348E-5, // 0x3efa01a019c844f5 |
| -1.38888888888730564116E-3, // 0xbf56c16c16c14f91 |
| 4.16666666666665929218E-2, // 0x3fa555555555554b |
| } |
| |
| // Cos returns the cosine of the radian argument x. |
| // |
| // Special cases are: |
| // Cos(±Inf) = NaN |
| // Cos(NaN) = NaN |
| func Cos(x float64) float64 |
| |
| func cos(x float64) float64 { |
| const ( |
| PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts |
| PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, |
| PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, |
| ) |
| // special cases |
| switch { |
| case IsNaN(x) || IsInf(x, 0): |
| return NaN() |
| } |
| |
| // make argument positive |
| sign := false |
| x = Abs(x) |
| |
| var j uint64 |
| var y, z float64 |
| if x >= reduceThreshold { |
| j, z = trigReduce(x) |
| } else { |
| j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle |
| y = float64(j) // integer part of x/(Pi/4), as float |
| |
| // map zeros to origin |
| if j&1 == 1 { |
| j++ |
| y++ |
| } |
| j &= 7 // octant modulo 2Pi radians (360 degrees) |
| z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic |
| } |
| |
| if j > 3 { |
| j -= 4 |
| sign = !sign |
| } |
| if j > 1 { |
| sign = !sign |
| } |
| |
| zz := z * z |
| if j == 1 || j == 2 { |
| y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) |
| } else { |
| y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) |
| } |
| if sign { |
| y = -y |
| } |
| return y |
| } |
| |
| // Sin returns the sine of the radian argument x. |
| // |
| // Special cases are: |
| // Sin(±0) = ±0 |
| // Sin(±Inf) = NaN |
| // Sin(NaN) = NaN |
| func Sin(x float64) float64 |
| |
| func sin(x float64) float64 { |
| const ( |
| PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts |
| PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, |
| PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, |
| ) |
| // special cases |
| switch { |
| case x == 0 || IsNaN(x): |
| return x // return ±0 || NaN() |
| case IsInf(x, 0): |
| return NaN() |
| } |
| |
| // make argument positive but save the sign |
| sign := false |
| if x < 0 { |
| x = -x |
| sign = true |
| } |
| |
| var j uint64 |
| var y, z float64 |
| if x >= reduceThreshold { |
| j, z = trigReduce(x) |
| } else { |
| j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle |
| y = float64(j) // integer part of x/(Pi/4), as float |
| |
| // map zeros to origin |
| if j&1 == 1 { |
| j++ |
| y++ |
| } |
| j &= 7 // octant modulo 2Pi radians (360 degrees) |
| z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic |
| } |
| // reflect in x axis |
| if j > 3 { |
| sign = !sign |
| j -= 4 |
| } |
| zz := z * z |
| if j == 1 || j == 2 { |
| y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) |
| } else { |
| y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) |
| } |
| if sign { |
| y = -y |
| } |
| return y |
| } |