| // Copyright 2010 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package math | 
 |  | 
 | // The original C code, the long comment, and the constants | 
 | // below are from FreeBSD's /usr/src/lib/msun/src/s_expm1.c | 
 | // and came with this notice. The go code is a simplified | 
 | // version of the original C. | 
 | // | 
 | // ==================================================== | 
 | // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 | // | 
 | // Developed at SunPro, a Sun Microsystems, Inc. business. | 
 | // Permission to use, copy, modify, and distribute this | 
 | // software is freely granted, provided that this notice | 
 | // is preserved. | 
 | // ==================================================== | 
 | // | 
 | // expm1(x) | 
 | // Returns exp(x)-1, the exponential of x minus 1. | 
 | // | 
 | // Method | 
 | //   1. Argument reduction: | 
 | //      Given x, find r and integer k such that | 
 | // | 
 | //               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658 | 
 | // | 
 | //      Here a correction term c will be computed to compensate | 
 | //      the error in r when rounded to a floating-point number. | 
 | // | 
 | //   2. Approximating expm1(r) by a special rational function on | 
 | //      the interval [0,0.34658]: | 
 | //      Since | 
 | //          r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 - r**4/360 + ... | 
 | //      we define R1(r*r) by | 
 | //          r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 * R1(r*r) | 
 | //      That is, | 
 | //          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) | 
 | //                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) | 
 | //                   = 1 - r**2/60 + r**4/2520 - r**6/100800 + ... | 
 | //      We use a special Reme algorithm on [0,0.347] to generate | 
 | //      a polynomial of degree 5 in r*r to approximate R1. The | 
 | //      maximum error of this polynomial approximation is bounded | 
 | //      by 2**-61. In other words, | 
 | //          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 | 
 | //      where   Q1  =  -1.6666666666666567384E-2, | 
 | //              Q2  =   3.9682539681370365873E-4, | 
 | //              Q3  =  -9.9206344733435987357E-6, | 
 | //              Q4  =   2.5051361420808517002E-7, | 
 | //              Q5  =  -6.2843505682382617102E-9; | 
 | //      (where z=r*r, and the values of Q1 to Q5 are listed below) | 
 | //      with error bounded by | 
 | //          |                  5           |     -61 | 
 | //          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2 | 
 | //          |                              | | 
 | // | 
 | //      expm1(r) = exp(r)-1 is then computed by the following | 
 | //      specific way which minimize the accumulation rounding error: | 
 | //                             2     3 | 
 | //                            r     r    [ 3 - (R1 + R1*r/2)  ] | 
 | //            expm1(r) = r + --- + --- * [--------------------] | 
 | //                            2     2    [ 6 - r*(3 - R1*r/2) ] | 
 | // | 
 | //      To compensate the error in the argument reduction, we use | 
 | //              expm1(r+c) = expm1(r) + c + expm1(r)*c | 
 | //                         ~ expm1(r) + c + r*c | 
 | //      Thus c+r*c will be added in as the correction terms for | 
 | //      expm1(r+c). Now rearrange the term to avoid optimization | 
 | //      screw up: | 
 | //                      (      2                                    2 ) | 
 | //                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  ) | 
 | //       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) | 
 | //                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  ) | 
 | //                      (                                             ) | 
 | // | 
 | //                 = r - E | 
 | //   3. Scale back to obtain expm1(x): | 
 | //      From step 1, we have | 
 | //         expm1(x) = either 2**k*[expm1(r)+1] - 1 | 
 | //                  = or     2**k*[expm1(r) + (1-2**-k)] | 
 | //   4. Implementation notes: | 
 | //      (A). To save one multiplication, we scale the coefficient Qi | 
 | //           to Qi*2**i, and replace z by (x**2)/2. | 
 | //      (B). To achieve maximum accuracy, we compute expm1(x) by | 
 | //        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf) | 
 | //        (ii)  if k=0, return r-E | 
 | //        (iii) if k=-1, return 0.5*(r-E)-0.5 | 
 | //        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E) | 
 | //                     else          return  1.0+2.0*(r-E); | 
 | //        (v)   if (k<-2||k>56) return 2**k(1-(E-r)) - 1 (or exp(x)-1) | 
 | //        (vi)  if k <= 20, return 2**k((1-2**-k)-(E-r)), else | 
 | //        (vii) return 2**k(1-((E+2**-k)-r)) | 
 | // | 
 | // Special cases: | 
 | //      expm1(INF) is INF, expm1(NaN) is NaN; | 
 | //      expm1(-INF) is -1, and | 
 | //      for finite argument, only expm1(0)=0 is exact. | 
 | // | 
 | // Accuracy: | 
 | //      according to an error analysis, the error is always less than | 
 | //      1 ulp (unit in the last place). | 
 | // | 
 | // Misc. info. | 
 | //      For IEEE double | 
 | //          if x >  7.09782712893383973096e+02 then expm1(x) overflow | 
 | // | 
 | // Constants: | 
 | // The hexadecimal values are the intended ones for the following | 
 | // constants. The decimal values may be used, provided that the | 
 | // compiler will convert from decimal to binary accurately enough | 
 | // to produce the hexadecimal values shown. | 
 | // | 
 |  | 
 | // Expm1 returns e**x - 1, the base-e exponential of x minus 1. | 
 | // It is more accurate than Exp(x) - 1 when x is near zero. | 
 | // | 
 | // Special cases are: | 
 | //	Expm1(+Inf) = +Inf | 
 | //	Expm1(-Inf) = -1 | 
 | //	Expm1(NaN) = NaN | 
 | // Very large values overflow to -1 or +Inf. | 
 | func Expm1(x float64) float64 | 
 |  | 
 | func expm1(x float64) float64 { | 
 | 	const ( | 
 | 		Othreshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF | 
 | 		Ln2X56     = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1 | 
 | 		Ln2HalfX3  = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73 | 
 | 		Ln2Half    = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef | 
 | 		Ln2Hi      = 6.93147180369123816490e-01 // 0x3fe62e42fee00000 | 
 | 		Ln2Lo      = 1.90821492927058770002e-10 // 0x3dea39ef35793c76 | 
 | 		InvLn2     = 1.44269504088896338700e+00 // 0x3ff71547652b82fe | 
 | 		Tiny       = 1.0 / (1 << 54)            // 2**-54 = 0x3c90000000000000 | 
 | 		// scaled coefficients related to expm1 | 
 | 		Q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4 | 
 | 		Q2 = 1.58730158725481460165e-03  // 0x3F5A01A019FE5585 | 
 | 		Q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7 | 
 | 		Q4 = 4.00821782732936239552e-06  // 0x3ED0CFCA86E65239 | 
 | 		Q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D | 
 | 	) | 
 |  | 
 | 	// special cases | 
 | 	switch { | 
 | 	case IsInf(x, 1) || IsNaN(x): | 
 | 		return x | 
 | 	case IsInf(x, -1): | 
 | 		return -1 | 
 | 	} | 
 |  | 
 | 	absx := x | 
 | 	sign := false | 
 | 	if x < 0 { | 
 | 		absx = -absx | 
 | 		sign = true | 
 | 	} | 
 |  | 
 | 	// filter out huge argument | 
 | 	if absx >= Ln2X56 { // if |x| >= 56 * ln2 | 
 | 		if sign { | 
 | 			return -1 // x < -56*ln2, return -1 | 
 | 		} | 
 | 		if absx >= Othreshold { // if |x| >= 709.78... | 
 | 			return Inf(1) | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// argument reduction | 
 | 	var c float64 | 
 | 	var k int | 
 | 	if absx > Ln2Half { // if  |x| > 0.5 * ln2 | 
 | 		var hi, lo float64 | 
 | 		if absx < Ln2HalfX3 { // and |x| < 1.5 * ln2 | 
 | 			if !sign { | 
 | 				hi = x - Ln2Hi | 
 | 				lo = Ln2Lo | 
 | 				k = 1 | 
 | 			} else { | 
 | 				hi = x + Ln2Hi | 
 | 				lo = -Ln2Lo | 
 | 				k = -1 | 
 | 			} | 
 | 		} else { | 
 | 			if !sign { | 
 | 				k = int(InvLn2*x + 0.5) | 
 | 			} else { | 
 | 				k = int(InvLn2*x - 0.5) | 
 | 			} | 
 | 			t := float64(k) | 
 | 			hi = x - t*Ln2Hi // t * Ln2Hi is exact here | 
 | 			lo = t * Ln2Lo | 
 | 		} | 
 | 		x = hi - lo | 
 | 		c = (hi - x) - lo | 
 | 	} else if absx < Tiny { // when |x| < 2**-54, return x | 
 | 		return x | 
 | 	} else { | 
 | 		k = 0 | 
 | 	} | 
 |  | 
 | 	// x is now in primary range | 
 | 	hfx := 0.5 * x | 
 | 	hxs := x * hfx | 
 | 	r1 := 1 + hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))) | 
 | 	t := 3 - r1*hfx | 
 | 	e := hxs * ((r1 - t) / (6.0 - x*t)) | 
 | 	if k == 0 { | 
 | 		return x - (x*e - hxs) // c is 0 | 
 | 	} | 
 | 	e = (x*(e-c) - c) | 
 | 	e -= hxs | 
 | 	switch { | 
 | 	case k == -1: | 
 | 		return 0.5*(x-e) - 0.5 | 
 | 	case k == 1: | 
 | 		if x < -0.25 { | 
 | 			return -2 * (e - (x + 0.5)) | 
 | 		} | 
 | 		return 1 + 2*(x-e) | 
 | 	case k <= -2 || k > 56: // suffice to return exp(x)-1 | 
 | 		y := 1 - (e - x) | 
 | 		y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent | 
 | 		return y - 1 | 
 | 	} | 
 | 	if k < 20 { | 
 | 		t := Float64frombits(0x3ff0000000000000 - (0x20000000000000 >> uint(k))) // t=1-2**-k | 
 | 		y := t - (e - x) | 
 | 		y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent | 
 | 		return y | 
 | 	} | 
 | 	t = Float64frombits(uint64(0x3ff-k) << 52) // 2**-k | 
 | 	y := x - (e + t) | 
 | 	y++ | 
 | 	y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent | 
 | 	return y | 
 | } |