| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // Package regexp implements regular expression search. | 
 | // | 
 | // The syntax of the regular expressions accepted is the same | 
 | // general syntax used by Perl, Python, and other languages. | 
 | // More precisely, it is the syntax accepted by RE2 and described at | 
 | // https://golang.org/s/re2syntax, except for \C. | 
 | // For an overview of the syntax, run | 
 | //   go doc regexp/syntax | 
 | // | 
 | // The regexp implementation provided by this package is | 
 | // guaranteed to run in time linear in the size of the input. | 
 | // (This is a property not guaranteed by most open source | 
 | // implementations of regular expressions.) For more information | 
 | // about this property, see | 
 | //	https://swtch.com/~rsc/regexp/regexp1.html | 
 | // or any book about automata theory. | 
 | // | 
 | // All characters are UTF-8-encoded code points. | 
 | // | 
 | // There are 16 methods of Regexp that match a regular expression and identify | 
 | // the matched text. Their names are matched by this regular expression: | 
 | // | 
 | //	Find(All)?(String)?(Submatch)?(Index)? | 
 | // | 
 | // If 'All' is present, the routine matches successive non-overlapping | 
 | // matches of the entire expression. Empty matches abutting a preceding | 
 | // match are ignored. The return value is a slice containing the successive | 
 | // return values of the corresponding non-'All' routine. These routines take | 
 | // an extra integer argument, n. If n >= 0, the function returns at most n | 
 | // matches/submatches; otherwise, it returns all of them. | 
 | // | 
 | // If 'String' is present, the argument is a string; otherwise it is a slice | 
 | // of bytes; return values are adjusted as appropriate. | 
 | // | 
 | // If 'Submatch' is present, the return value is a slice identifying the | 
 | // successive submatches of the expression. Submatches are matches of | 
 | // parenthesized subexpressions (also known as capturing groups) within the | 
 | // regular expression, numbered from left to right in order of opening | 
 | // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 | 
 | // the match of the first parenthesized subexpression, and so on. | 
 | // | 
 | // If 'Index' is present, matches and submatches are identified by byte index | 
 | // pairs within the input string: result[2*n:2*n+1] identifies the indexes of | 
 | // the nth submatch. The pair for n==0 identifies the match of the entire | 
 | // expression. If 'Index' is not present, the match is identified by the | 
 | // text of the match/submatch. If an index is negative, it means that | 
 | // subexpression did not match any string in the input. | 
 | // | 
 | // There is also a subset of the methods that can be applied to text read | 
 | // from a RuneReader: | 
 | // | 
 | //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex | 
 | // | 
 | // This set may grow. Note that regular expression matches may need to | 
 | // examine text beyond the text returned by a match, so the methods that | 
 | // match text from a RuneReader may read arbitrarily far into the input | 
 | // before returning. | 
 | // | 
 | // (There are a few other methods that do not match this pattern.) | 
 | // | 
 | package regexp | 
 |  | 
 | import ( | 
 | 	"bytes" | 
 | 	"io" | 
 | 	"regexp/syntax" | 
 | 	"strconv" | 
 | 	"strings" | 
 | 	"sync" | 
 | 	"unicode" | 
 | 	"unicode/utf8" | 
 | ) | 
 |  | 
 | // Regexp is the representation of a compiled regular expression. | 
 | // A Regexp is safe for concurrent use by multiple goroutines, | 
 | // except for configuration methods, such as Longest. | 
 | type Regexp struct { | 
 | 	// read-only after Compile | 
 | 	regexpRO | 
 |  | 
 | 	// cache of machines for running regexp | 
 | 	mu      sync.Mutex | 
 | 	machine []*machine | 
 | } | 
 |  | 
 | type regexpRO struct { | 
 | 	expr           string         // as passed to Compile | 
 | 	prog           *syntax.Prog   // compiled program | 
 | 	onepass        *onePassProg   // onepass program or nil | 
 | 	prefix         string         // required prefix in unanchored matches | 
 | 	prefixBytes    []byte         // prefix, as a []byte | 
 | 	prefixComplete bool           // prefix is the entire regexp | 
 | 	prefixRune     rune           // first rune in prefix | 
 | 	prefixEnd      uint32         // pc for last rune in prefix | 
 | 	cond           syntax.EmptyOp // empty-width conditions required at start of match | 
 | 	numSubexp      int | 
 | 	subexpNames    []string | 
 | 	longest        bool | 
 | } | 
 |  | 
 | // String returns the source text used to compile the regular expression. | 
 | func (re *Regexp) String() string { | 
 | 	return re.expr | 
 | } | 
 |  | 
 | // Copy returns a new Regexp object copied from re. | 
 | // | 
 | // When using a Regexp in multiple goroutines, giving each goroutine | 
 | // its own copy helps to avoid lock contention. | 
 | func (re *Regexp) Copy() *Regexp { | 
 | 	// It is not safe to copy Regexp by value | 
 | 	// since it contains a sync.Mutex. | 
 | 	return &Regexp{ | 
 | 		regexpRO: re.regexpRO, | 
 | 	} | 
 | } | 
 |  | 
 | // Compile parses a regular expression and returns, if successful, | 
 | // a Regexp object that can be used to match against text. | 
 | // | 
 | // When matching against text, the regexp returns a match that | 
 | // begins as early as possible in the input (leftmost), and among those | 
 | // it chooses the one that a backtracking search would have found first. | 
 | // This so-called leftmost-first matching is the same semantics | 
 | // that Perl, Python, and other implementations use, although this | 
 | // package implements it without the expense of backtracking. | 
 | // For POSIX leftmost-longest matching, see CompilePOSIX. | 
 | func Compile(expr string) (*Regexp, error) { | 
 | 	return compile(expr, syntax.Perl, false) | 
 | } | 
 |  | 
 | // CompilePOSIX is like Compile but restricts the regular expression | 
 | // to POSIX ERE (egrep) syntax and changes the match semantics to | 
 | // leftmost-longest. | 
 | // | 
 | // That is, when matching against text, the regexp returns a match that | 
 | // begins as early as possible in the input (leftmost), and among those | 
 | // it chooses a match that is as long as possible. | 
 | // This so-called leftmost-longest matching is the same semantics | 
 | // that early regular expression implementations used and that POSIX | 
 | // specifies. | 
 | // | 
 | // However, there can be multiple leftmost-longest matches, with different | 
 | // submatch choices, and here this package diverges from POSIX. | 
 | // Among the possible leftmost-longest matches, this package chooses | 
 | // the one that a backtracking search would have found first, while POSIX | 
 | // specifies that the match be chosen to maximize the length of the first | 
 | // subexpression, then the second, and so on from left to right. | 
 | // The POSIX rule is computationally prohibitive and not even well-defined. | 
 | // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details. | 
 | func CompilePOSIX(expr string) (*Regexp, error) { | 
 | 	return compile(expr, syntax.POSIX, true) | 
 | } | 
 |  | 
 | // Longest makes future searches prefer the leftmost-longest match. | 
 | // That is, when matching against text, the regexp returns a match that | 
 | // begins as early as possible in the input (leftmost), and among those | 
 | // it chooses a match that is as long as possible. | 
 | // This method modifies the Regexp and may not be called concurrently | 
 | // with any other methods. | 
 | func (re *Regexp) Longest() { | 
 | 	re.longest = true | 
 | } | 
 |  | 
 | func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) { | 
 | 	re, err := syntax.Parse(expr, mode) | 
 | 	if err != nil { | 
 | 		return nil, err | 
 | 	} | 
 | 	maxCap := re.MaxCap() | 
 | 	capNames := re.CapNames() | 
 |  | 
 | 	re = re.Simplify() | 
 | 	prog, err := syntax.Compile(re) | 
 | 	if err != nil { | 
 | 		return nil, err | 
 | 	} | 
 | 	regexp := &Regexp{ | 
 | 		regexpRO: regexpRO{ | 
 | 			expr:        expr, | 
 | 			prog:        prog, | 
 | 			onepass:     compileOnePass(prog), | 
 | 			numSubexp:   maxCap, | 
 | 			subexpNames: capNames, | 
 | 			cond:        prog.StartCond(), | 
 | 			longest:     longest, | 
 | 		}, | 
 | 	} | 
 | 	if regexp.onepass == notOnePass { | 
 | 		regexp.prefix, regexp.prefixComplete = prog.Prefix() | 
 | 	} else { | 
 | 		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog) | 
 | 	} | 
 | 	if regexp.prefix != "" { | 
 | 		// TODO(rsc): Remove this allocation by adding | 
 | 		// IndexString to package bytes. | 
 | 		regexp.prefixBytes = []byte(regexp.prefix) | 
 | 		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix) | 
 | 	} | 
 | 	return regexp, nil | 
 | } | 
 |  | 
 | // get returns a machine to use for matching re. | 
 | // It uses the re's machine cache if possible, to avoid | 
 | // unnecessary allocation. | 
 | func (re *Regexp) get() *machine { | 
 | 	re.mu.Lock() | 
 | 	if n := len(re.machine); n > 0 { | 
 | 		z := re.machine[n-1] | 
 | 		re.machine = re.machine[:n-1] | 
 | 		re.mu.Unlock() | 
 | 		return z | 
 | 	} | 
 | 	re.mu.Unlock() | 
 | 	z := progMachine(re.prog, re.onepass) | 
 | 	z.re = re | 
 | 	return z | 
 | } | 
 |  | 
 | // put returns a machine to the re's machine cache. | 
 | // There is no attempt to limit the size of the cache, so it will | 
 | // grow to the maximum number of simultaneous matches | 
 | // run using re.  (The cache empties when re gets garbage collected.) | 
 | func (re *Regexp) put(z *machine) { | 
 | 	// Remove references to input data that we no longer need. | 
 | 	z.inputBytes.str = nil | 
 | 	z.inputString.str = "" | 
 | 	z.inputReader.r = nil | 
 |  | 
 | 	re.mu.Lock() | 
 | 	re.machine = append(re.machine, z) | 
 | 	re.mu.Unlock() | 
 | } | 
 |  | 
 | // MustCompile is like Compile but panics if the expression cannot be parsed. | 
 | // It simplifies safe initialization of global variables holding compiled regular | 
 | // expressions. | 
 | func MustCompile(str string) *Regexp { | 
 | 	regexp, err := Compile(str) | 
 | 	if err != nil { | 
 | 		panic(`regexp: Compile(` + quote(str) + `): ` + err.Error()) | 
 | 	} | 
 | 	return regexp | 
 | } | 
 |  | 
 | // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed. | 
 | // It simplifies safe initialization of global variables holding compiled regular | 
 | // expressions. | 
 | func MustCompilePOSIX(str string) *Regexp { | 
 | 	regexp, err := CompilePOSIX(str) | 
 | 	if err != nil { | 
 | 		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error()) | 
 | 	} | 
 | 	return regexp | 
 | } | 
 |  | 
 | func quote(s string) string { | 
 | 	if strconv.CanBackquote(s) { | 
 | 		return "`" + s + "`" | 
 | 	} | 
 | 	return strconv.Quote(s) | 
 | } | 
 |  | 
 | // NumSubexp returns the number of parenthesized subexpressions in this Regexp. | 
 | func (re *Regexp) NumSubexp() int { | 
 | 	return re.numSubexp | 
 | } | 
 |  | 
 | // SubexpNames returns the names of the parenthesized subexpressions | 
 | // in this Regexp. The name for the first sub-expression is names[1], | 
 | // so that if m is a match slice, the name for m[i] is SubexpNames()[i]. | 
 | // Since the Regexp as a whole cannot be named, names[0] is always | 
 | // the empty string. The slice should not be modified. | 
 | func (re *Regexp) SubexpNames() []string { | 
 | 	return re.subexpNames | 
 | } | 
 |  | 
 | const endOfText rune = -1 | 
 |  | 
 | // input abstracts different representations of the input text. It provides | 
 | // one-character lookahead. | 
 | type input interface { | 
 | 	step(pos int) (r rune, width int) // advance one rune | 
 | 	canCheckPrefix() bool             // can we look ahead without losing info? | 
 | 	hasPrefix(re *Regexp) bool | 
 | 	index(re *Regexp, pos int) int | 
 | 	context(pos int) syntax.EmptyOp | 
 | } | 
 |  | 
 | // inputString scans a string. | 
 | type inputString struct { | 
 | 	str string | 
 | } | 
 |  | 
 | func (i *inputString) step(pos int) (rune, int) { | 
 | 	if pos < len(i.str) { | 
 | 		c := i.str[pos] | 
 | 		if c < utf8.RuneSelf { | 
 | 			return rune(c), 1 | 
 | 		} | 
 | 		return utf8.DecodeRuneInString(i.str[pos:]) | 
 | 	} | 
 | 	return endOfText, 0 | 
 | } | 
 |  | 
 | func (i *inputString) canCheckPrefix() bool { | 
 | 	return true | 
 | } | 
 |  | 
 | func (i *inputString) hasPrefix(re *Regexp) bool { | 
 | 	return strings.HasPrefix(i.str, re.prefix) | 
 | } | 
 |  | 
 | func (i *inputString) index(re *Regexp, pos int) int { | 
 | 	return strings.Index(i.str[pos:], re.prefix) | 
 | } | 
 |  | 
 | func (i *inputString) context(pos int) syntax.EmptyOp { | 
 | 	r1, r2 := endOfText, endOfText | 
 | 	// 0 < pos && pos <= len(i.str) | 
 | 	if uint(pos-1) < uint(len(i.str)) { | 
 | 		r1 = rune(i.str[pos-1]) | 
 | 		if r1 >= utf8.RuneSelf { | 
 | 			r1, _ = utf8.DecodeLastRuneInString(i.str[:pos]) | 
 | 		} | 
 | 	} | 
 | 	// 0 <= pos && pos < len(i.str) | 
 | 	if uint(pos) < uint(len(i.str)) { | 
 | 		r2 = rune(i.str[pos]) | 
 | 		if r2 >= utf8.RuneSelf { | 
 | 			r2, _ = utf8.DecodeRuneInString(i.str[pos:]) | 
 | 		} | 
 | 	} | 
 | 	return syntax.EmptyOpContext(r1, r2) | 
 | } | 
 |  | 
 | // inputBytes scans a byte slice. | 
 | type inputBytes struct { | 
 | 	str []byte | 
 | } | 
 |  | 
 | func (i *inputBytes) step(pos int) (rune, int) { | 
 | 	if pos < len(i.str) { | 
 | 		c := i.str[pos] | 
 | 		if c < utf8.RuneSelf { | 
 | 			return rune(c), 1 | 
 | 		} | 
 | 		return utf8.DecodeRune(i.str[pos:]) | 
 | 	} | 
 | 	return endOfText, 0 | 
 | } | 
 |  | 
 | func (i *inputBytes) canCheckPrefix() bool { | 
 | 	return true | 
 | } | 
 |  | 
 | func (i *inputBytes) hasPrefix(re *Regexp) bool { | 
 | 	return bytes.HasPrefix(i.str, re.prefixBytes) | 
 | } | 
 |  | 
 | func (i *inputBytes) index(re *Regexp, pos int) int { | 
 | 	return bytes.Index(i.str[pos:], re.prefixBytes) | 
 | } | 
 |  | 
 | func (i *inputBytes) context(pos int) syntax.EmptyOp { | 
 | 	r1, r2 := endOfText, endOfText | 
 | 	// 0 < pos && pos <= len(i.str) | 
 | 	if uint(pos-1) < uint(len(i.str)) { | 
 | 		r1 = rune(i.str[pos-1]) | 
 | 		if r1 >= utf8.RuneSelf { | 
 | 			r1, _ = utf8.DecodeLastRune(i.str[:pos]) | 
 | 		} | 
 | 	} | 
 | 	// 0 <= pos && pos < len(i.str) | 
 | 	if uint(pos) < uint(len(i.str)) { | 
 | 		r2 = rune(i.str[pos]) | 
 | 		if r2 >= utf8.RuneSelf { | 
 | 			r2, _ = utf8.DecodeRune(i.str[pos:]) | 
 | 		} | 
 | 	} | 
 | 	return syntax.EmptyOpContext(r1, r2) | 
 | } | 
 |  | 
 | // inputReader scans a RuneReader. | 
 | type inputReader struct { | 
 | 	r     io.RuneReader | 
 | 	atEOT bool | 
 | 	pos   int | 
 | } | 
 |  | 
 | func (i *inputReader) step(pos int) (rune, int) { | 
 | 	if !i.atEOT && pos != i.pos { | 
 | 		return endOfText, 0 | 
 |  | 
 | 	} | 
 | 	r, w, err := i.r.ReadRune() | 
 | 	if err != nil { | 
 | 		i.atEOT = true | 
 | 		return endOfText, 0 | 
 | 	} | 
 | 	i.pos += w | 
 | 	return r, w | 
 | } | 
 |  | 
 | func (i *inputReader) canCheckPrefix() bool { | 
 | 	return false | 
 | } | 
 |  | 
 | func (i *inputReader) hasPrefix(re *Regexp) bool { | 
 | 	return false | 
 | } | 
 |  | 
 | func (i *inputReader) index(re *Regexp, pos int) int { | 
 | 	return -1 | 
 | } | 
 |  | 
 | func (i *inputReader) context(pos int) syntax.EmptyOp { | 
 | 	return 0 | 
 | } | 
 |  | 
 | // LiteralPrefix returns a literal string that must begin any match | 
 | // of the regular expression re. It returns the boolean true if the | 
 | // literal string comprises the entire regular expression. | 
 | func (re *Regexp) LiteralPrefix() (prefix string, complete bool) { | 
 | 	return re.prefix, re.prefixComplete | 
 | } | 
 |  | 
 | // MatchReader reports whether the Regexp matches the text read by the | 
 | // RuneReader. | 
 | func (re *Regexp) MatchReader(r io.RuneReader) bool { | 
 | 	return re.doMatch(r, nil, "") | 
 | } | 
 |  | 
 | // MatchString reports whether the Regexp matches the string s. | 
 | func (re *Regexp) MatchString(s string) bool { | 
 | 	return re.doMatch(nil, nil, s) | 
 | } | 
 |  | 
 | // Match reports whether the Regexp matches the byte slice b. | 
 | func (re *Regexp) Match(b []byte) bool { | 
 | 	return re.doMatch(nil, b, "") | 
 | } | 
 |  | 
 | // MatchReader checks whether a textual regular expression matches the text | 
 | // read by the RuneReader. More complicated queries need to use Compile and | 
 | // the full Regexp interface. | 
 | func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) { | 
 | 	re, err := Compile(pattern) | 
 | 	if err != nil { | 
 | 		return false, err | 
 | 	} | 
 | 	return re.MatchReader(r), nil | 
 | } | 
 |  | 
 | // MatchString checks whether a textual regular expression | 
 | // matches a string. More complicated queries need | 
 | // to use Compile and the full Regexp interface. | 
 | func MatchString(pattern string, s string) (matched bool, err error) { | 
 | 	re, err := Compile(pattern) | 
 | 	if err != nil { | 
 | 		return false, err | 
 | 	} | 
 | 	return re.MatchString(s), nil | 
 | } | 
 |  | 
 | // Match checks whether a textual regular expression | 
 | // matches a byte slice. More complicated queries need | 
 | // to use Compile and the full Regexp interface. | 
 | func Match(pattern string, b []byte) (matched bool, err error) { | 
 | 	re, err := Compile(pattern) | 
 | 	if err != nil { | 
 | 		return false, err | 
 | 	} | 
 | 	return re.Match(b), nil | 
 | } | 
 |  | 
 | // ReplaceAllString returns a copy of src, replacing matches of the Regexp | 
 | // with the replacement string repl. Inside repl, $ signs are interpreted as | 
 | // in Expand, so for instance $1 represents the text of the first submatch. | 
 | func (re *Regexp) ReplaceAllString(src, repl string) string { | 
 | 	n := 2 | 
 | 	if strings.Contains(repl, "$") { | 
 | 		n = 2 * (re.numSubexp + 1) | 
 | 	} | 
 | 	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte { | 
 | 		return re.expand(dst, repl, nil, src, match) | 
 | 	}) | 
 | 	return string(b) | 
 | } | 
 |  | 
 | // ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp | 
 | // with the replacement string repl. The replacement repl is substituted directly, | 
 | // without using Expand. | 
 | func (re *Regexp) ReplaceAllLiteralString(src, repl string) string { | 
 | 	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte { | 
 | 		return append(dst, repl...) | 
 | 	})) | 
 | } | 
 |  | 
 | // ReplaceAllStringFunc returns a copy of src in which all matches of the | 
 | // Regexp have been replaced by the return value of function repl applied | 
 | // to the matched substring. The replacement returned by repl is substituted | 
 | // directly, without using Expand. | 
 | func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string { | 
 | 	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte { | 
 | 		return append(dst, repl(src[match[0]:match[1]])...) | 
 | 	}) | 
 | 	return string(b) | 
 | } | 
 |  | 
 | func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte { | 
 | 	lastMatchEnd := 0 // end position of the most recent match | 
 | 	searchPos := 0    // position where we next look for a match | 
 | 	var buf []byte | 
 | 	var endPos int | 
 | 	if bsrc != nil { | 
 | 		endPos = len(bsrc) | 
 | 	} else { | 
 | 		endPos = len(src) | 
 | 	} | 
 | 	if nmatch > re.prog.NumCap { | 
 | 		nmatch = re.prog.NumCap | 
 | 	} | 
 |  | 
 | 	var dstCap [2]int | 
 | 	for searchPos <= endPos { | 
 | 		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0]) | 
 | 		if len(a) == 0 { | 
 | 			break // no more matches | 
 | 		} | 
 |  | 
 | 		// Copy the unmatched characters before this match. | 
 | 		if bsrc != nil { | 
 | 			buf = append(buf, bsrc[lastMatchEnd:a[0]]...) | 
 | 		} else { | 
 | 			buf = append(buf, src[lastMatchEnd:a[0]]...) | 
 | 		} | 
 |  | 
 | 		// Now insert a copy of the replacement string, but not for a | 
 | 		// match of the empty string immediately after another match. | 
 | 		// (Otherwise, we get double replacement for patterns that | 
 | 		// match both empty and nonempty strings.) | 
 | 		if a[1] > lastMatchEnd || a[0] == 0 { | 
 | 			buf = repl(buf, a) | 
 | 		} | 
 | 		lastMatchEnd = a[1] | 
 |  | 
 | 		// Advance past this match; always advance at least one character. | 
 | 		var width int | 
 | 		if bsrc != nil { | 
 | 			_, width = utf8.DecodeRune(bsrc[searchPos:]) | 
 | 		} else { | 
 | 			_, width = utf8.DecodeRuneInString(src[searchPos:]) | 
 | 		} | 
 | 		if searchPos+width > a[1] { | 
 | 			searchPos += width | 
 | 		} else if searchPos+1 > a[1] { | 
 | 			// This clause is only needed at the end of the input | 
 | 			// string. In that case, DecodeRuneInString returns width=0. | 
 | 			searchPos++ | 
 | 		} else { | 
 | 			searchPos = a[1] | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Copy the unmatched characters after the last match. | 
 | 	if bsrc != nil { | 
 | 		buf = append(buf, bsrc[lastMatchEnd:]...) | 
 | 	} else { | 
 | 		buf = append(buf, src[lastMatchEnd:]...) | 
 | 	} | 
 |  | 
 | 	return buf | 
 | } | 
 |  | 
 | // ReplaceAll returns a copy of src, replacing matches of the Regexp | 
 | // with the replacement text repl. Inside repl, $ signs are interpreted as | 
 | // in Expand, so for instance $1 represents the text of the first submatch. | 
 | func (re *Regexp) ReplaceAll(src, repl []byte) []byte { | 
 | 	n := 2 | 
 | 	if bytes.IndexByte(repl, '$') >= 0 { | 
 | 		n = 2 * (re.numSubexp + 1) | 
 | 	} | 
 | 	srepl := "" | 
 | 	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte { | 
 | 		if len(srepl) != len(repl) { | 
 | 			srepl = string(repl) | 
 | 		} | 
 | 		return re.expand(dst, srepl, src, "", match) | 
 | 	}) | 
 | 	return b | 
 | } | 
 |  | 
 | // ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp | 
 | // with the replacement bytes repl. The replacement repl is substituted directly, | 
 | // without using Expand. | 
 | func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte { | 
 | 	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte { | 
 | 		return append(dst, repl...) | 
 | 	}) | 
 | } | 
 |  | 
 | // ReplaceAllFunc returns a copy of src in which all matches of the | 
 | // Regexp have been replaced by the return value of function repl applied | 
 | // to the matched byte slice. The replacement returned by repl is substituted | 
 | // directly, without using Expand. | 
 | func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte { | 
 | 	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte { | 
 | 		return append(dst, repl(src[match[0]:match[1]])...) | 
 | 	}) | 
 | } | 
 |  | 
 | // Bitmap used by func special to check whether a character needs to be escaped. | 
 | var specialBytes [16]byte | 
 |  | 
 | // special reports whether byte b needs to be escaped by QuoteMeta. | 
 | func special(b byte) bool { | 
 | 	return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0 | 
 | } | 
 |  | 
 | func init() { | 
 | 	for _, b := range []byte(`\.+*?()|[]{}^$`) { | 
 | 		specialBytes[b%16] |= 1 << (b / 16) | 
 | 	} | 
 | } | 
 |  | 
 | // QuoteMeta returns a string that escapes all regular expression metacharacters | 
 | // inside the argument text; the returned string is a regular expression matching | 
 | // the literal text. | 
 | func QuoteMeta(s string) string { | 
 | 	// A byte loop is correct because all metacharacters are ASCII. | 
 | 	var i int | 
 | 	for i = 0; i < len(s); i++ { | 
 | 		if special(s[i]) { | 
 | 			break | 
 | 		} | 
 | 	} | 
 | 	// No meta characters found, so return original string. | 
 | 	if i >= len(s) { | 
 | 		return s | 
 | 	} | 
 |  | 
 | 	b := make([]byte, 2*len(s)-i) | 
 | 	copy(b, s[:i]) | 
 | 	j := i | 
 | 	for ; i < len(s); i++ { | 
 | 		if special(s[i]) { | 
 | 			b[j] = '\\' | 
 | 			j++ | 
 | 		} | 
 | 		b[j] = s[i] | 
 | 		j++ | 
 | 	} | 
 | 	return string(b[:j]) | 
 | } | 
 |  | 
 | // The number of capture values in the program may correspond | 
 | // to fewer capturing expressions than are in the regexp. | 
 | // For example, "(a){0}" turns into an empty program, so the | 
 | // maximum capture in the program is 0 but we need to return | 
 | // an expression for \1.  Pad appends -1s to the slice a as needed. | 
 | func (re *Regexp) pad(a []int) []int { | 
 | 	if a == nil { | 
 | 		// No match. | 
 | 		return nil | 
 | 	} | 
 | 	n := (1 + re.numSubexp) * 2 | 
 | 	for len(a) < n { | 
 | 		a = append(a, -1) | 
 | 	} | 
 | 	return a | 
 | } | 
 |  | 
 | // Find matches in slice b if b is non-nil, otherwise find matches in string s. | 
 | func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) { | 
 | 	var end int | 
 | 	if b == nil { | 
 | 		end = len(s) | 
 | 	} else { | 
 | 		end = len(b) | 
 | 	} | 
 |  | 
 | 	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { | 
 | 		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil) | 
 | 		if len(matches) == 0 { | 
 | 			break | 
 | 		} | 
 |  | 
 | 		accept := true | 
 | 		if matches[1] == pos { | 
 | 			// We've found an empty match. | 
 | 			if matches[0] == prevMatchEnd { | 
 | 				// We don't allow an empty match right | 
 | 				// after a previous match, so ignore it. | 
 | 				accept = false | 
 | 			} | 
 | 			var width int | 
 | 			// TODO: use step() | 
 | 			if b == nil { | 
 | 				_, width = utf8.DecodeRuneInString(s[pos:end]) | 
 | 			} else { | 
 | 				_, width = utf8.DecodeRune(b[pos:end]) | 
 | 			} | 
 | 			if width > 0 { | 
 | 				pos += width | 
 | 			} else { | 
 | 				pos = end + 1 | 
 | 			} | 
 | 		} else { | 
 | 			pos = matches[1] | 
 | 		} | 
 | 		prevMatchEnd = matches[1] | 
 |  | 
 | 		if accept { | 
 | 			deliver(re.pad(matches)) | 
 | 			i++ | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // Find returns a slice holding the text of the leftmost match in b of the regular expression. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) Find(b []byte) []byte { | 
 | 	var dstCap [2]int | 
 | 	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0]) | 
 | 	if a == nil { | 
 | 		return nil | 
 | 	} | 
 | 	return b[a[0]:a[1]] | 
 | } | 
 |  | 
 | // FindIndex returns a two-element slice of integers defining the location of | 
 | // the leftmost match in b of the regular expression. The match itself is at | 
 | // b[loc[0]:loc[1]]. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindIndex(b []byte) (loc []int) { | 
 | 	a := re.doExecute(nil, b, "", 0, 2, nil) | 
 | 	if a == nil { | 
 | 		return nil | 
 | 	} | 
 | 	return a[0:2] | 
 | } | 
 |  | 
 | // FindString returns a string holding the text of the leftmost match in s of the regular | 
 | // expression. If there is no match, the return value is an empty string, | 
 | // but it will also be empty if the regular expression successfully matches | 
 | // an empty string. Use FindStringIndex or FindStringSubmatch if it is | 
 | // necessary to distinguish these cases. | 
 | func (re *Regexp) FindString(s string) string { | 
 | 	var dstCap [2]int | 
 | 	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0]) | 
 | 	if a == nil { | 
 | 		return "" | 
 | 	} | 
 | 	return s[a[0]:a[1]] | 
 | } | 
 |  | 
 | // FindStringIndex returns a two-element slice of integers defining the | 
 | // location of the leftmost match in s of the regular expression. The match | 
 | // itself is at s[loc[0]:loc[1]]. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindStringIndex(s string) (loc []int) { | 
 | 	a := re.doExecute(nil, nil, s, 0, 2, nil) | 
 | 	if a == nil { | 
 | 		return nil | 
 | 	} | 
 | 	return a[0:2] | 
 | } | 
 |  | 
 | // FindReaderIndex returns a two-element slice of integers defining the | 
 | // location of the leftmost match of the regular expression in text read from | 
 | // the RuneReader. The match text was found in the input stream at | 
 | // byte offset loc[0] through loc[1]-1. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) { | 
 | 	a := re.doExecute(r, nil, "", 0, 2, nil) | 
 | 	if a == nil { | 
 | 		return nil | 
 | 	} | 
 | 	return a[0:2] | 
 | } | 
 |  | 
 | // FindSubmatch returns a slice of slices holding the text of the leftmost | 
 | // match of the regular expression in b and the matches, if any, of its | 
 | // subexpressions, as defined by the 'Submatch' descriptions in the package | 
 | // comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindSubmatch(b []byte) [][]byte { | 
 | 	var dstCap [4]int | 
 | 	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0]) | 
 | 	if a == nil { | 
 | 		return nil | 
 | 	} | 
 | 	ret := make([][]byte, 1+re.numSubexp) | 
 | 	for i := range ret { | 
 | 		if 2*i < len(a) && a[2*i] >= 0 { | 
 | 			ret[i] = b[a[2*i]:a[2*i+1]] | 
 | 		} | 
 | 	} | 
 | 	return ret | 
 | } | 
 |  | 
 | // Expand appends template to dst and returns the result; during the | 
 | // append, Expand replaces variables in the template with corresponding | 
 | // matches drawn from src. The match slice should have been returned by | 
 | // FindSubmatchIndex. | 
 | // | 
 | // In the template, a variable is denoted by a substring of the form | 
 | // $name or ${name}, where name is a non-empty sequence of letters, | 
 | // digits, and underscores. A purely numeric name like $1 refers to | 
 | // the submatch with the corresponding index; other names refer to | 
 | // capturing parentheses named with the (?P<name>...) syntax. A | 
 | // reference to an out of range or unmatched index or a name that is not | 
 | // present in the regular expression is replaced with an empty slice. | 
 | // | 
 | // In the $name form, name is taken to be as long as possible: $1x is | 
 | // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0. | 
 | // | 
 | // To insert a literal $ in the output, use $$ in the template. | 
 | func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte { | 
 | 	return re.expand(dst, string(template), src, "", match) | 
 | } | 
 |  | 
 | // ExpandString is like Expand but the template and source are strings. | 
 | // It appends to and returns a byte slice in order to give the calling | 
 | // code control over allocation. | 
 | func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte { | 
 | 	return re.expand(dst, template, nil, src, match) | 
 | } | 
 |  | 
 | func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte { | 
 | 	for len(template) > 0 { | 
 | 		i := strings.Index(template, "$") | 
 | 		if i < 0 { | 
 | 			break | 
 | 		} | 
 | 		dst = append(dst, template[:i]...) | 
 | 		template = template[i:] | 
 | 		if len(template) > 1 && template[1] == '$' { | 
 | 			// Treat $$ as $. | 
 | 			dst = append(dst, '$') | 
 | 			template = template[2:] | 
 | 			continue | 
 | 		} | 
 | 		name, num, rest, ok := extract(template) | 
 | 		if !ok { | 
 | 			// Malformed; treat $ as raw text. | 
 | 			dst = append(dst, '$') | 
 | 			template = template[1:] | 
 | 			continue | 
 | 		} | 
 | 		template = rest | 
 | 		if num >= 0 { | 
 | 			if 2*num+1 < len(match) && match[2*num] >= 0 { | 
 | 				if bsrc != nil { | 
 | 					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...) | 
 | 				} else { | 
 | 					dst = append(dst, src[match[2*num]:match[2*num+1]]...) | 
 | 				} | 
 | 			} | 
 | 		} else { | 
 | 			for i, namei := range re.subexpNames { | 
 | 				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 { | 
 | 					if bsrc != nil { | 
 | 						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...) | 
 | 					} else { | 
 | 						dst = append(dst, src[match[2*i]:match[2*i+1]]...) | 
 | 					} | 
 | 					break | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	dst = append(dst, template...) | 
 | 	return dst | 
 | } | 
 |  | 
 | // extract returns the name from a leading "$name" or "${name}" in str. | 
 | // If it is a number, extract returns num set to that number; otherwise num = -1. | 
 | func extract(str string) (name string, num int, rest string, ok bool) { | 
 | 	if len(str) < 2 || str[0] != '$' { | 
 | 		return | 
 | 	} | 
 | 	brace := false | 
 | 	if str[1] == '{' { | 
 | 		brace = true | 
 | 		str = str[2:] | 
 | 	} else { | 
 | 		str = str[1:] | 
 | 	} | 
 | 	i := 0 | 
 | 	for i < len(str) { | 
 | 		rune, size := utf8.DecodeRuneInString(str[i:]) | 
 | 		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' { | 
 | 			break | 
 | 		} | 
 | 		i += size | 
 | 	} | 
 | 	if i == 0 { | 
 | 		// empty name is not okay | 
 | 		return | 
 | 	} | 
 | 	name = str[:i] | 
 | 	if brace { | 
 | 		if i >= len(str) || str[i] != '}' { | 
 | 			// missing closing brace | 
 | 			return | 
 | 		} | 
 | 		i++ | 
 | 	} | 
 |  | 
 | 	// Parse number. | 
 | 	num = 0 | 
 | 	for i := 0; i < len(name); i++ { | 
 | 		if name[i] < '0' || '9' < name[i] || num >= 1e8 { | 
 | 			num = -1 | 
 | 			break | 
 | 		} | 
 | 		num = num*10 + int(name[i]) - '0' | 
 | 	} | 
 | 	// Disallow leading zeros. | 
 | 	if name[0] == '0' && len(name) > 1 { | 
 | 		num = -1 | 
 | 	} | 
 |  | 
 | 	rest = str[i:] | 
 | 	ok = true | 
 | 	return | 
 | } | 
 |  | 
 | // FindSubmatchIndex returns a slice holding the index pairs identifying the | 
 | // leftmost match of the regular expression in b and the matches, if any, of | 
 | // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions | 
 | // in the package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindSubmatchIndex(b []byte) []int { | 
 | 	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil)) | 
 | } | 
 |  | 
 | // FindStringSubmatch returns a slice of strings holding the text of the | 
 | // leftmost match of the regular expression in s and the matches, if any, of | 
 | // its subexpressions, as defined by the 'Submatch' description in the | 
 | // package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindStringSubmatch(s string) []string { | 
 | 	var dstCap [4]int | 
 | 	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0]) | 
 | 	if a == nil { | 
 | 		return nil | 
 | 	} | 
 | 	ret := make([]string, 1+re.numSubexp) | 
 | 	for i := range ret { | 
 | 		if 2*i < len(a) && a[2*i] >= 0 { | 
 | 			ret[i] = s[a[2*i]:a[2*i+1]] | 
 | 		} | 
 | 	} | 
 | 	return ret | 
 | } | 
 |  | 
 | // FindStringSubmatchIndex returns a slice holding the index pairs | 
 | // identifying the leftmost match of the regular expression in s and the | 
 | // matches, if any, of its subexpressions, as defined by the 'Submatch' and | 
 | // 'Index' descriptions in the package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindStringSubmatchIndex(s string) []int { | 
 | 	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil)) | 
 | } | 
 |  | 
 | // FindReaderSubmatchIndex returns a slice holding the index pairs | 
 | // identifying the leftmost match of the regular expression of text read by | 
 | // the RuneReader, and the matches, if any, of its subexpressions, as defined | 
 | // by the 'Submatch' and 'Index' descriptions in the package comment. A | 
 | // return value of nil indicates no match. | 
 | func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int { | 
 | 	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil)) | 
 | } | 
 |  | 
 | const startSize = 10 // The size at which to start a slice in the 'All' routines. | 
 |  | 
 | // FindAll is the 'All' version of Find; it returns a slice of all successive | 
 | // matches of the expression, as defined by the 'All' description in the | 
 | // package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindAll(b []byte, n int) [][]byte { | 
 | 	if n < 0 { | 
 | 		n = len(b) + 1 | 
 | 	} | 
 | 	var result [][]byte | 
 | 	re.allMatches("", b, n, func(match []int) { | 
 | 		if result == nil { | 
 | 			result = make([][]byte, 0, startSize) | 
 | 		} | 
 | 		result = append(result, b[match[0]:match[1]]) | 
 | 	}) | 
 | 	return result | 
 | } | 
 |  | 
 | // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all | 
 | // successive matches of the expression, as defined by the 'All' description | 
 | // in the package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindAllIndex(b []byte, n int) [][]int { | 
 | 	if n < 0 { | 
 | 		n = len(b) + 1 | 
 | 	} | 
 | 	var result [][]int | 
 | 	re.allMatches("", b, n, func(match []int) { | 
 | 		if result == nil { | 
 | 			result = make([][]int, 0, startSize) | 
 | 		} | 
 | 		result = append(result, match[0:2]) | 
 | 	}) | 
 | 	return result | 
 | } | 
 |  | 
 | // FindAllString is the 'All' version of FindString; it returns a slice of all | 
 | // successive matches of the expression, as defined by the 'All' description | 
 | // in the package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindAllString(s string, n int) []string { | 
 | 	if n < 0 { | 
 | 		n = len(s) + 1 | 
 | 	} | 
 | 	var result []string | 
 | 	re.allMatches(s, nil, n, func(match []int) { | 
 | 		if result == nil { | 
 | 			result = make([]string, 0, startSize) | 
 | 		} | 
 | 		result = append(result, s[match[0]:match[1]]) | 
 | 	}) | 
 | 	return result | 
 | } | 
 |  | 
 | // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a | 
 | // slice of all successive matches of the expression, as defined by the 'All' | 
 | // description in the package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindAllStringIndex(s string, n int) [][]int { | 
 | 	if n < 0 { | 
 | 		n = len(s) + 1 | 
 | 	} | 
 | 	var result [][]int | 
 | 	re.allMatches(s, nil, n, func(match []int) { | 
 | 		if result == nil { | 
 | 			result = make([][]int, 0, startSize) | 
 | 		} | 
 | 		result = append(result, match[0:2]) | 
 | 	}) | 
 | 	return result | 
 | } | 
 |  | 
 | // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice | 
 | // of all successive matches of the expression, as defined by the 'All' | 
 | // description in the package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte { | 
 | 	if n < 0 { | 
 | 		n = len(b) + 1 | 
 | 	} | 
 | 	var result [][][]byte | 
 | 	re.allMatches("", b, n, func(match []int) { | 
 | 		if result == nil { | 
 | 			result = make([][][]byte, 0, startSize) | 
 | 		} | 
 | 		slice := make([][]byte, len(match)/2) | 
 | 		for j := range slice { | 
 | 			if match[2*j] >= 0 { | 
 | 				slice[j] = b[match[2*j]:match[2*j+1]] | 
 | 			} | 
 | 		} | 
 | 		result = append(result, slice) | 
 | 	}) | 
 | 	return result | 
 | } | 
 |  | 
 | // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns | 
 | // a slice of all successive matches of the expression, as defined by the | 
 | // 'All' description in the package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int { | 
 | 	if n < 0 { | 
 | 		n = len(b) + 1 | 
 | 	} | 
 | 	var result [][]int | 
 | 	re.allMatches("", b, n, func(match []int) { | 
 | 		if result == nil { | 
 | 			result = make([][]int, 0, startSize) | 
 | 		} | 
 | 		result = append(result, match) | 
 | 	}) | 
 | 	return result | 
 | } | 
 |  | 
 | // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it | 
 | // returns a slice of all successive matches of the expression, as defined by | 
 | // the 'All' description in the package comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string { | 
 | 	if n < 0 { | 
 | 		n = len(s) + 1 | 
 | 	} | 
 | 	var result [][]string | 
 | 	re.allMatches(s, nil, n, func(match []int) { | 
 | 		if result == nil { | 
 | 			result = make([][]string, 0, startSize) | 
 | 		} | 
 | 		slice := make([]string, len(match)/2) | 
 | 		for j := range slice { | 
 | 			if match[2*j] >= 0 { | 
 | 				slice[j] = s[match[2*j]:match[2*j+1]] | 
 | 			} | 
 | 		} | 
 | 		result = append(result, slice) | 
 | 	}) | 
 | 	return result | 
 | } | 
 |  | 
 | // FindAllStringSubmatchIndex is the 'All' version of | 
 | // FindStringSubmatchIndex; it returns a slice of all successive matches of | 
 | // the expression, as defined by the 'All' description in the package | 
 | // comment. | 
 | // A return value of nil indicates no match. | 
 | func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int { | 
 | 	if n < 0 { | 
 | 		n = len(s) + 1 | 
 | 	} | 
 | 	var result [][]int | 
 | 	re.allMatches(s, nil, n, func(match []int) { | 
 | 		if result == nil { | 
 | 			result = make([][]int, 0, startSize) | 
 | 		} | 
 | 		result = append(result, match) | 
 | 	}) | 
 | 	return result | 
 | } | 
 |  | 
 | // Split slices s into substrings separated by the expression and returns a slice of | 
 | // the substrings between those expression matches. | 
 | // | 
 | // The slice returned by this method consists of all the substrings of s | 
 | // not contained in the slice returned by FindAllString. When called on an expression | 
 | // that contains no metacharacters, it is equivalent to strings.SplitN. | 
 | // | 
 | // Example: | 
 | //   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5) | 
 | //   // s: ["", "b", "b", "c", "cadaaae"] | 
 | // | 
 | // The count determines the number of substrings to return: | 
 | //   n > 0: at most n substrings; the last substring will be the unsplit remainder. | 
 | //   n == 0: the result is nil (zero substrings) | 
 | //   n < 0: all substrings | 
 | func (re *Regexp) Split(s string, n int) []string { | 
 |  | 
 | 	if n == 0 { | 
 | 		return nil | 
 | 	} | 
 |  | 
 | 	if len(re.expr) > 0 && len(s) == 0 { | 
 | 		return []string{""} | 
 | 	} | 
 |  | 
 | 	matches := re.FindAllStringIndex(s, n) | 
 | 	strings := make([]string, 0, len(matches)) | 
 |  | 
 | 	beg := 0 | 
 | 	end := 0 | 
 | 	for _, match := range matches { | 
 | 		if n > 0 && len(strings) >= n-1 { | 
 | 			break | 
 | 		} | 
 |  | 
 | 		end = match[0] | 
 | 		if match[1] != 0 { | 
 | 			strings = append(strings, s[beg:end]) | 
 | 		} | 
 | 		beg = match[1] | 
 | 	} | 
 |  | 
 | 	if end != len(s) { | 
 | 		strings = append(strings, s[beg:]) | 
 | 	} | 
 |  | 
 | 	return strings | 
 | } |