| // Copyright 2011 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package regexp | 
 |  | 
 | import ( | 
 | 	"io" | 
 | 	"regexp/syntax" | 
 | ) | 
 |  | 
 | // A queue is a 'sparse array' holding pending threads of execution. | 
 | // See https://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html | 
 | type queue struct { | 
 | 	sparse []uint32 | 
 | 	dense  []entry | 
 | } | 
 |  | 
 | // An entry is an entry on a queue. | 
 | // It holds both the instruction pc and the actual thread. | 
 | // Some queue entries are just place holders so that the machine | 
 | // knows it has considered that pc. Such entries have t == nil. | 
 | type entry struct { | 
 | 	pc uint32 | 
 | 	t  *thread | 
 | } | 
 |  | 
 | // A thread is the state of a single path through the machine: | 
 | // an instruction and a corresponding capture array. | 
 | // See https://swtch.com/~rsc/regexp/regexp2.html | 
 | type thread struct { | 
 | 	inst *syntax.Inst | 
 | 	cap  []int | 
 | } | 
 |  | 
 | // A machine holds all the state during an NFA simulation for p. | 
 | type machine struct { | 
 | 	re             *Regexp      // corresponding Regexp | 
 | 	p              *syntax.Prog // compiled program | 
 | 	op             *onePassProg // compiled onepass program, or notOnePass | 
 | 	maxBitStateLen int          // max length of string to search with bitstate | 
 | 	b              *bitState    // state for backtracker, allocated lazily | 
 | 	q0, q1         queue        // two queues for runq, nextq | 
 | 	pool           []*thread    // pool of available threads | 
 | 	matched        bool         // whether a match was found | 
 | 	matchcap       []int        // capture information for the match | 
 |  | 
 | 	// cached inputs, to avoid allocation | 
 | 	inputBytes  inputBytes | 
 | 	inputString inputString | 
 | 	inputReader inputReader | 
 | } | 
 |  | 
 | func (m *machine) newInputBytes(b []byte) input { | 
 | 	m.inputBytes.str = b | 
 | 	return &m.inputBytes | 
 | } | 
 |  | 
 | func (m *machine) newInputString(s string) input { | 
 | 	m.inputString.str = s | 
 | 	return &m.inputString | 
 | } | 
 |  | 
 | func (m *machine) newInputReader(r io.RuneReader) input { | 
 | 	m.inputReader.r = r | 
 | 	m.inputReader.atEOT = false | 
 | 	m.inputReader.pos = 0 | 
 | 	return &m.inputReader | 
 | } | 
 |  | 
 | // progMachine returns a new machine running the prog p. | 
 | func progMachine(p *syntax.Prog, op *onePassProg) *machine { | 
 | 	m := &machine{p: p, op: op} | 
 | 	n := len(m.p.Inst) | 
 | 	m.q0 = queue{make([]uint32, n), make([]entry, 0, n)} | 
 | 	m.q1 = queue{make([]uint32, n), make([]entry, 0, n)} | 
 | 	ncap := p.NumCap | 
 | 	if ncap < 2 { | 
 | 		ncap = 2 | 
 | 	} | 
 | 	if op == notOnePass { | 
 | 		m.maxBitStateLen = maxBitStateLen(p) | 
 | 	} | 
 | 	m.matchcap = make([]int, ncap) | 
 | 	return m | 
 | } | 
 |  | 
 | func (m *machine) init(ncap int) { | 
 | 	for _, t := range m.pool { | 
 | 		t.cap = t.cap[:ncap] | 
 | 	} | 
 | 	m.matchcap = m.matchcap[:ncap] | 
 | } | 
 |  | 
 | // alloc allocates a new thread with the given instruction. | 
 | // It uses the free pool if possible. | 
 | func (m *machine) alloc(i *syntax.Inst) *thread { | 
 | 	var t *thread | 
 | 	if n := len(m.pool); n > 0 { | 
 | 		t = m.pool[n-1] | 
 | 		m.pool = m.pool[:n-1] | 
 | 	} else { | 
 | 		t = new(thread) | 
 | 		t.cap = make([]int, len(m.matchcap), cap(m.matchcap)) | 
 | 	} | 
 | 	t.inst = i | 
 | 	return t | 
 | } | 
 |  | 
 | // match runs the machine over the input starting at pos. | 
 | // It reports whether a match was found. | 
 | // If so, m.matchcap holds the submatch information. | 
 | func (m *machine) match(i input, pos int) bool { | 
 | 	startCond := m.re.cond | 
 | 	if startCond == ^syntax.EmptyOp(0) { // impossible | 
 | 		return false | 
 | 	} | 
 | 	m.matched = false | 
 | 	for i := range m.matchcap { | 
 | 		m.matchcap[i] = -1 | 
 | 	} | 
 | 	runq, nextq := &m.q0, &m.q1 | 
 | 	r, r1 := endOfText, endOfText | 
 | 	width, width1 := 0, 0 | 
 | 	r, width = i.step(pos) | 
 | 	if r != endOfText { | 
 | 		r1, width1 = i.step(pos + width) | 
 | 	} | 
 | 	var flag syntax.EmptyOp | 
 | 	if pos == 0 { | 
 | 		flag = syntax.EmptyOpContext(-1, r) | 
 | 	} else { | 
 | 		flag = i.context(pos) | 
 | 	} | 
 | 	for { | 
 | 		if len(runq.dense) == 0 { | 
 | 			if startCond&syntax.EmptyBeginText != 0 && pos != 0 { | 
 | 				// Anchored match, past beginning of text. | 
 | 				break | 
 | 			} | 
 | 			if m.matched { | 
 | 				// Have match; finished exploring alternatives. | 
 | 				break | 
 | 			} | 
 | 			if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() { | 
 | 				// Match requires literal prefix; fast search for it. | 
 | 				advance := i.index(m.re, pos) | 
 | 				if advance < 0 { | 
 | 					break | 
 | 				} | 
 | 				pos += advance | 
 | 				r, width = i.step(pos) | 
 | 				r1, width1 = i.step(pos + width) | 
 | 			} | 
 | 		} | 
 | 		if !m.matched { | 
 | 			if len(m.matchcap) > 0 { | 
 | 				m.matchcap[0] = pos | 
 | 			} | 
 | 			m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil) | 
 | 		} | 
 | 		flag = syntax.EmptyOpContext(r, r1) | 
 | 		m.step(runq, nextq, pos, pos+width, r, flag) | 
 | 		if width == 0 { | 
 | 			break | 
 | 		} | 
 | 		if len(m.matchcap) == 0 && m.matched { | 
 | 			// Found a match and not paying attention | 
 | 			// to where it is, so any match will do. | 
 | 			break | 
 | 		} | 
 | 		pos += width | 
 | 		r, width = r1, width1 | 
 | 		if r != endOfText { | 
 | 			r1, width1 = i.step(pos + width) | 
 | 		} | 
 | 		runq, nextq = nextq, runq | 
 | 	} | 
 | 	m.clear(nextq) | 
 | 	return m.matched | 
 | } | 
 |  | 
 | // clear frees all threads on the thread queue. | 
 | func (m *machine) clear(q *queue) { | 
 | 	for _, d := range q.dense { | 
 | 		if d.t != nil { | 
 | 			m.pool = append(m.pool, d.t) | 
 | 		} | 
 | 	} | 
 | 	q.dense = q.dense[:0] | 
 | } | 
 |  | 
 | // step executes one step of the machine, running each of the threads | 
 | // on runq and appending new threads to nextq. | 
 | // The step processes the rune c (which may be endOfText), | 
 | // which starts at position pos and ends at nextPos. | 
 | // nextCond gives the setting for the empty-width flags after c. | 
 | func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) { | 
 | 	longest := m.re.longest | 
 | 	for j := 0; j < len(runq.dense); j++ { | 
 | 		d := &runq.dense[j] | 
 | 		t := d.t | 
 | 		if t == nil { | 
 | 			continue | 
 | 		} | 
 | 		if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] { | 
 | 			m.pool = append(m.pool, t) | 
 | 			continue | 
 | 		} | 
 | 		i := t.inst | 
 | 		add := false | 
 | 		switch i.Op { | 
 | 		default: | 
 | 			panic("bad inst") | 
 |  | 
 | 		case syntax.InstMatch: | 
 | 			if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) { | 
 | 				t.cap[1] = pos | 
 | 				copy(m.matchcap, t.cap) | 
 | 			} | 
 | 			if !longest { | 
 | 				// First-match mode: cut off all lower-priority threads. | 
 | 				for _, d := range runq.dense[j+1:] { | 
 | 					if d.t != nil { | 
 | 						m.pool = append(m.pool, d.t) | 
 | 					} | 
 | 				} | 
 | 				runq.dense = runq.dense[:0] | 
 | 			} | 
 | 			m.matched = true | 
 |  | 
 | 		case syntax.InstRune: | 
 | 			add = i.MatchRune(c) | 
 | 		case syntax.InstRune1: | 
 | 			add = c == i.Rune[0] | 
 | 		case syntax.InstRuneAny: | 
 | 			add = true | 
 | 		case syntax.InstRuneAnyNotNL: | 
 | 			add = c != '\n' | 
 | 		} | 
 | 		if add { | 
 | 			t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t) | 
 | 		} | 
 | 		if t != nil { | 
 | 			m.pool = append(m.pool, t) | 
 | 		} | 
 | 	} | 
 | 	runq.dense = runq.dense[:0] | 
 | } | 
 |  | 
 | // add adds an entry to q for pc, unless the q already has such an entry. | 
 | // It also recursively adds an entry for all instructions reachable from pc by following | 
 | // empty-width conditions satisfied by cond.  pos gives the current position | 
 | // in the input. | 
 | func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread { | 
 | 	if pc == 0 { | 
 | 		return t | 
 | 	} | 
 | 	if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc { | 
 | 		return t | 
 | 	} | 
 |  | 
 | 	j := len(q.dense) | 
 | 	q.dense = q.dense[:j+1] | 
 | 	d := &q.dense[j] | 
 | 	d.t = nil | 
 | 	d.pc = pc | 
 | 	q.sparse[pc] = uint32(j) | 
 |  | 
 | 	i := &m.p.Inst[pc] | 
 | 	switch i.Op { | 
 | 	default: | 
 | 		panic("unhandled") | 
 | 	case syntax.InstFail: | 
 | 		// nothing | 
 | 	case syntax.InstAlt, syntax.InstAltMatch: | 
 | 		t = m.add(q, i.Out, pos, cap, cond, t) | 
 | 		t = m.add(q, i.Arg, pos, cap, cond, t) | 
 | 	case syntax.InstEmptyWidth: | 
 | 		if syntax.EmptyOp(i.Arg)&^cond == 0 { | 
 | 			t = m.add(q, i.Out, pos, cap, cond, t) | 
 | 		} | 
 | 	case syntax.InstNop: | 
 | 		t = m.add(q, i.Out, pos, cap, cond, t) | 
 | 	case syntax.InstCapture: | 
 | 		if int(i.Arg) < len(cap) { | 
 | 			opos := cap[i.Arg] | 
 | 			cap[i.Arg] = pos | 
 | 			m.add(q, i.Out, pos, cap, cond, nil) | 
 | 			cap[i.Arg] = opos | 
 | 		} else { | 
 | 			t = m.add(q, i.Out, pos, cap, cond, t) | 
 | 		} | 
 | 	case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL: | 
 | 		if t == nil { | 
 | 			t = m.alloc(i) | 
 | 		} else { | 
 | 			t.inst = i | 
 | 		} | 
 | 		if len(cap) > 0 && &t.cap[0] != &cap[0] { | 
 | 			copy(t.cap, cap) | 
 | 		} | 
 | 		d.t = t | 
 | 		t = nil | 
 | 	} | 
 | 	return t | 
 | } | 
 |  | 
 | // onepass runs the machine over the input starting at pos. | 
 | // It reports whether a match was found. | 
 | // If so, m.matchcap holds the submatch information. | 
 | // ncap is the number of captures. | 
 | func (m *machine) onepass(i input, pos, ncap int) bool { | 
 | 	startCond := m.re.cond | 
 | 	if startCond == ^syntax.EmptyOp(0) { // impossible | 
 | 		return false | 
 | 	} | 
 | 	m.matched = false | 
 | 	m.matchcap = m.matchcap[:ncap] | 
 | 	for i := range m.matchcap { | 
 | 		m.matchcap[i] = -1 | 
 | 	} | 
 | 	r, r1 := endOfText, endOfText | 
 | 	width, width1 := 0, 0 | 
 | 	r, width = i.step(pos) | 
 | 	if r != endOfText { | 
 | 		r1, width1 = i.step(pos + width) | 
 | 	} | 
 | 	var flag syntax.EmptyOp | 
 | 	if pos == 0 { | 
 | 		flag = syntax.EmptyOpContext(-1, r) | 
 | 	} else { | 
 | 		flag = i.context(pos) | 
 | 	} | 
 | 	pc := m.op.Start | 
 | 	inst := m.op.Inst[pc] | 
 | 	// If there is a simple literal prefix, skip over it. | 
 | 	if pos == 0 && syntax.EmptyOp(inst.Arg)&^flag == 0 && | 
 | 		len(m.re.prefix) > 0 && i.canCheckPrefix() { | 
 | 		// Match requires literal prefix; fast search for it. | 
 | 		if !i.hasPrefix(m.re) { | 
 | 			return m.matched | 
 | 		} | 
 | 		pos += len(m.re.prefix) | 
 | 		r, width = i.step(pos) | 
 | 		r1, width1 = i.step(pos + width) | 
 | 		flag = i.context(pos) | 
 | 		pc = int(m.re.prefixEnd) | 
 | 	} | 
 | 	for { | 
 | 		inst = m.op.Inst[pc] | 
 | 		pc = int(inst.Out) | 
 | 		switch inst.Op { | 
 | 		default: | 
 | 			panic("bad inst") | 
 | 		case syntax.InstMatch: | 
 | 			m.matched = true | 
 | 			if len(m.matchcap) > 0 { | 
 | 				m.matchcap[0] = 0 | 
 | 				m.matchcap[1] = pos | 
 | 			} | 
 | 			return m.matched | 
 | 		case syntax.InstRune: | 
 | 			if !inst.MatchRune(r) { | 
 | 				return m.matched | 
 | 			} | 
 | 		case syntax.InstRune1: | 
 | 			if r != inst.Rune[0] { | 
 | 				return m.matched | 
 | 			} | 
 | 		case syntax.InstRuneAny: | 
 | 			// Nothing | 
 | 		case syntax.InstRuneAnyNotNL: | 
 | 			if r == '\n' { | 
 | 				return m.matched | 
 | 			} | 
 | 		// peek at the input rune to see which branch of the Alt to take | 
 | 		case syntax.InstAlt, syntax.InstAltMatch: | 
 | 			pc = int(onePassNext(&inst, r)) | 
 | 			continue | 
 | 		case syntax.InstFail: | 
 | 			return m.matched | 
 | 		case syntax.InstNop: | 
 | 			continue | 
 | 		case syntax.InstEmptyWidth: | 
 | 			if syntax.EmptyOp(inst.Arg)&^flag != 0 { | 
 | 				return m.matched | 
 | 			} | 
 | 			continue | 
 | 		case syntax.InstCapture: | 
 | 			if int(inst.Arg) < len(m.matchcap) { | 
 | 				m.matchcap[inst.Arg] = pos | 
 | 			} | 
 | 			continue | 
 | 		} | 
 | 		if width == 0 { | 
 | 			break | 
 | 		} | 
 | 		flag = syntax.EmptyOpContext(r, r1) | 
 | 		pos += width | 
 | 		r, width = r1, width1 | 
 | 		if r != endOfText { | 
 | 			r1, width1 = i.step(pos + width) | 
 | 		} | 
 | 	} | 
 | 	return m.matched | 
 | } | 
 |  | 
 | // doMatch reports whether either r, b or s match the regexp. | 
 | func (re *Regexp) doMatch(r io.RuneReader, b []byte, s string) bool { | 
 | 	return re.doExecute(r, b, s, 0, 0, nil) != nil | 
 | } | 
 |  | 
 | // doExecute finds the leftmost match in the input, appends the position | 
 | // of its subexpressions to dstCap and returns dstCap. | 
 | // | 
 | // nil is returned if no matches are found and non-nil if matches are found. | 
 | func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int, dstCap []int) []int { | 
 | 	m := re.get() | 
 | 	var i input | 
 | 	var size int | 
 | 	if r != nil { | 
 | 		i = m.newInputReader(r) | 
 | 	} else if b != nil { | 
 | 		i = m.newInputBytes(b) | 
 | 		size = len(b) | 
 | 	} else { | 
 | 		i = m.newInputString(s) | 
 | 		size = len(s) | 
 | 	} | 
 | 	if m.op != notOnePass { | 
 | 		if !m.onepass(i, pos, ncap) { | 
 | 			re.put(m) | 
 | 			return nil | 
 | 		} | 
 | 	} else if size < m.maxBitStateLen && r == nil { | 
 | 		if m.b == nil { | 
 | 			m.b = newBitState(m.p) | 
 | 		} | 
 | 		if !m.backtrack(i, pos, size, ncap) { | 
 | 			re.put(m) | 
 | 			return nil | 
 | 		} | 
 | 	} else { | 
 | 		m.init(ncap) | 
 | 		if !m.match(i, pos) { | 
 | 			re.put(m) | 
 | 			return nil | 
 | 		} | 
 | 	} | 
 | 	dstCap = append(dstCap, m.matchcap...) | 
 | 	if dstCap == nil { | 
 | 		// Keep the promise of returning non-nil value on match. | 
 | 		dstCap = arrayNoInts[:0] | 
 | 	} | 
 | 	re.put(m) | 
 | 	return dstCap | 
 | } | 
 |  | 
 | // arrayNoInts is returned by doExecute match if nil dstCap is passed | 
 | // to it with ncap=0. | 
 | var arrayNoInts [0]int |