| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package jpeg implements a JPEG image decoder and encoder. |
| // |
| // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf. |
| package jpeg |
| |
| import ( |
| "bufio" |
| "image" |
| "image/ycbcr" |
| "io" |
| "os" |
| ) |
| |
| // TODO(nigeltao): fix up the doc comment style so that sentences start with |
| // the name of the type or function that they annotate. |
| |
| // A FormatError reports that the input is not a valid JPEG. |
| type FormatError string |
| |
| func (e FormatError) String() string { return "invalid JPEG format: " + string(e) } |
| |
| // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. |
| type UnsupportedError string |
| |
| func (e UnsupportedError) String() string { return "unsupported JPEG feature: " + string(e) } |
| |
| // Component specification, specified in section B.2.2. |
| type component struct { |
| h int // Horizontal sampling factor. |
| v int // Vertical sampling factor. |
| c uint8 // Component identifier. |
| tq uint8 // Quantization table destination selector. |
| } |
| |
| type block [blockSize]int |
| |
| const ( |
| blockSize = 64 // A DCT block is 8x8. |
| |
| dcTable = 0 |
| acTable = 1 |
| maxTc = 1 |
| maxTh = 3 |
| maxTq = 3 |
| |
| // A grayscale JPEG image has only a Y component. |
| nGrayComponent = 1 |
| // A color JPEG image has Y, Cb and Cr components. |
| nColorComponent = 3 |
| |
| // We only support 4:4:4, 4:2:2 and 4:2:0 downsampling, and therefore the |
| // number of luma samples per chroma sample is at most 2 in the horizontal |
| // and 2 in the vertical direction. |
| maxH = 2 |
| maxV = 2 |
| ) |
| |
| const ( |
| soiMarker = 0xd8 // Start Of Image. |
| eoiMarker = 0xd9 // End Of Image. |
| sof0Marker = 0xc0 // Start Of Frame (Baseline). |
| sof2Marker = 0xc2 // Start Of Frame (Progressive). |
| dhtMarker = 0xc4 // Define Huffman Table. |
| dqtMarker = 0xdb // Define Quantization Table. |
| sosMarker = 0xda // Start Of Scan. |
| driMarker = 0xdd // Define Restart Interval. |
| rst0Marker = 0xd0 // ReSTart (0). |
| rst7Marker = 0xd7 // ReSTart (7). |
| app0Marker = 0xe0 // APPlication specific (0). |
| app15Marker = 0xef // APPlication specific (15). |
| comMarker = 0xfe // COMment. |
| ) |
| |
| // Maps from the zig-zag ordering to the natural ordering. |
| var unzig = [blockSize]int{ |
| 0, 1, 8, 16, 9, 2, 3, 10, |
| 17, 24, 32, 25, 18, 11, 4, 5, |
| 12, 19, 26, 33, 40, 48, 41, 34, |
| 27, 20, 13, 6, 7, 14, 21, 28, |
| 35, 42, 49, 56, 57, 50, 43, 36, |
| 29, 22, 15, 23, 30, 37, 44, 51, |
| 58, 59, 52, 45, 38, 31, 39, 46, |
| 53, 60, 61, 54, 47, 55, 62, 63, |
| } |
| |
| // If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering. |
| type Reader interface { |
| io.Reader |
| ReadByte() (c byte, err os.Error) |
| } |
| |
| type decoder struct { |
| r Reader |
| width, height int |
| img1 *image.Gray |
| img3 *ycbcr.YCbCr |
| ri int // Restart Interval. |
| nComp int |
| comp [nColorComponent]component |
| huff [maxTc + 1][maxTh + 1]huffman |
| quant [maxTq + 1]block |
| b bits |
| tmp [1024]byte |
| } |
| |
| // Reads and ignores the next n bytes. |
| func (d *decoder) ignore(n int) os.Error { |
| for n > 0 { |
| m := len(d.tmp) |
| if m > n { |
| m = n |
| } |
| _, err := io.ReadFull(d.r, d.tmp[0:m]) |
| if err != nil { |
| return err |
| } |
| n -= m |
| } |
| return nil |
| } |
| |
| // Specified in section B.2.2. |
| func (d *decoder) processSOF(n int) os.Error { |
| switch n { |
| case 6 + 3*nGrayComponent: |
| d.nComp = nGrayComponent |
| case 6 + 3*nColorComponent: |
| d.nComp = nColorComponent |
| default: |
| return UnsupportedError("SOF has wrong length") |
| } |
| _, err := io.ReadFull(d.r, d.tmp[:n]) |
| if err != nil { |
| return err |
| } |
| // We only support 8-bit precision. |
| if d.tmp[0] != 8 { |
| return UnsupportedError("precision") |
| } |
| d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) |
| d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) |
| if int(d.tmp[5]) != d.nComp { |
| return UnsupportedError("SOF has wrong number of image components") |
| } |
| for i := 0; i < d.nComp; i++ { |
| hv := d.tmp[7+3*i] |
| d.comp[i].h = int(hv >> 4) |
| d.comp[i].v = int(hv & 0x0f) |
| d.comp[i].c = d.tmp[6+3*i] |
| d.comp[i].tq = d.tmp[8+3*i] |
| if d.nComp == nGrayComponent { |
| continue |
| } |
| // For color images, we only support 4:4:4, 4:2:2 or 4:2:0 chroma |
| // downsampling ratios. This implies that the (h, v) values for the Y |
| // component are either (1, 1), (2, 1) or (2, 2), and the (h, v) |
| // values for the Cr and Cb components must be (1, 1). |
| if i == 0 { |
| if hv != 0x11 && hv != 0x21 && hv != 0x22 { |
| return UnsupportedError("luma downsample ratio") |
| } |
| } else if hv != 0x11 { |
| return UnsupportedError("chroma downsample ratio") |
| } |
| } |
| return nil |
| } |
| |
| // Specified in section B.2.4.1. |
| func (d *decoder) processDQT(n int) os.Error { |
| const qtLength = 1 + blockSize |
| for ; n >= qtLength; n -= qtLength { |
| _, err := io.ReadFull(d.r, d.tmp[0:qtLength]) |
| if err != nil { |
| return err |
| } |
| pq := d.tmp[0] >> 4 |
| if pq != 0 { |
| return UnsupportedError("bad Pq value") |
| } |
| tq := d.tmp[0] & 0x0f |
| if tq > maxTq { |
| return FormatError("bad Tq value") |
| } |
| for i := range d.quant[tq] { |
| d.quant[tq][i] = int(d.tmp[i+1]) |
| } |
| } |
| if n != 0 { |
| return FormatError("DQT has wrong length") |
| } |
| return nil |
| } |
| |
| // makeImg allocates and initializes the destination image. |
| func (d *decoder) makeImg(h0, v0, mxx, myy int) { |
| if d.nComp == nGrayComponent { |
| m := image.NewGray(8*mxx, 8*myy) |
| d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray) |
| return |
| } |
| var subsampleRatio ycbcr.SubsampleRatio |
| n := h0 * v0 |
| switch n { |
| case 1: |
| subsampleRatio = ycbcr.SubsampleRatio444 |
| case 2: |
| subsampleRatio = ycbcr.SubsampleRatio422 |
| case 4: |
| subsampleRatio = ycbcr.SubsampleRatio420 |
| default: |
| panic("unreachable") |
| } |
| b := make([]byte, mxx*myy*(1*8*8*n+2*8*8)) |
| d.img3 = &ycbcr.YCbCr{ |
| Y: b[mxx*myy*(0*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+0*8*8)], |
| Cb: b[mxx*myy*(1*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+1*8*8)], |
| Cr: b[mxx*myy*(1*8*8*n+1*8*8) : mxx*myy*(1*8*8*n+2*8*8)], |
| SubsampleRatio: subsampleRatio, |
| YStride: mxx * 8 * h0, |
| CStride: mxx * 8, |
| Rect: image.Rect(0, 0, d.width, d.height), |
| } |
| } |
| |
| // Specified in section B.2.3. |
| func (d *decoder) processSOS(n int) os.Error { |
| if d.nComp == 0 { |
| return FormatError("missing SOF marker") |
| } |
| if n != 4+2*d.nComp { |
| return UnsupportedError("SOS has wrong length") |
| } |
| _, err := io.ReadFull(d.r, d.tmp[0:4+2*d.nComp]) |
| if err != nil { |
| return err |
| } |
| if int(d.tmp[0]) != d.nComp { |
| return UnsupportedError("SOS has wrong number of image components") |
| } |
| var scan [nColorComponent]struct { |
| td uint8 // DC table selector. |
| ta uint8 // AC table selector. |
| } |
| for i := 0; i < d.nComp; i++ { |
| cs := d.tmp[1+2*i] // Component selector. |
| if cs != d.comp[i].c { |
| return UnsupportedError("scan components out of order") |
| } |
| scan[i].td = d.tmp[2+2*i] >> 4 |
| scan[i].ta = d.tmp[2+2*i] & 0x0f |
| } |
| // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. |
| h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components. |
| mxx := (d.width + 8*h0 - 1) / (8 * h0) |
| myy := (d.height + 8*v0 - 1) / (8 * v0) |
| if d.img1 == nil && d.img3 == nil { |
| d.makeImg(h0, v0, mxx, myy) |
| } |
| |
| mcu, expectedRST := 0, uint8(rst0Marker) |
| var ( |
| b block |
| dc [nColorComponent]int |
| ) |
| for my := 0; my < myy; my++ { |
| for mx := 0; mx < mxx; mx++ { |
| for i := 0; i < d.nComp; i++ { |
| qt := &d.quant[d.comp[i].tq] |
| for j := 0; j < d.comp[i].h*d.comp[i].v; j++ { |
| // TODO(nigeltao): make this a "var b block" once the compiler's escape |
| // analysis is good enough to allocate it on the stack, not the heap. |
| b = block{} |
| |
| // Decode the DC coefficient, as specified in section F.2.2.1. |
| value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td]) |
| if err != nil { |
| return err |
| } |
| if value > 16 { |
| return UnsupportedError("excessive DC component") |
| } |
| dcDelta, err := d.receiveExtend(value) |
| if err != nil { |
| return err |
| } |
| dc[i] += dcDelta |
| b[0] = dc[i] * qt[0] |
| |
| // Decode the AC coefficients, as specified in section F.2.2.2. |
| for k := 1; k < blockSize; k++ { |
| value, err := d.decodeHuffman(&d.huff[acTable][scan[i].ta]) |
| if err != nil { |
| return err |
| } |
| val0 := value >> 4 |
| val1 := value & 0x0f |
| if val1 != 0 { |
| k += int(val0) |
| if k > blockSize { |
| return FormatError("bad DCT index") |
| } |
| ac, err := d.receiveExtend(val1) |
| if err != nil { |
| return err |
| } |
| b[unzig[k]] = ac * qt[k] |
| } else { |
| if val0 != 0x0f { |
| break |
| } |
| k += 0x0f |
| } |
| } |
| |
| // Perform the inverse DCT and store the MCU component to the image. |
| if d.nComp == nGrayComponent { |
| idct(d.img1.Pix[8*(my*d.img1.Stride+mx):], d.img1.Stride, &b) |
| } else { |
| switch i { |
| case 0: |
| mx0 := h0*mx + (j % 2) |
| my0 := v0*my + (j / 2) |
| idct(d.img3.Y[8*(my0*d.img3.YStride+mx0):], d.img3.YStride, &b) |
| case 1: |
| idct(d.img3.Cb[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b) |
| case 2: |
| idct(d.img3.Cr[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b) |
| } |
| } |
| } // for j |
| } // for i |
| mcu++ |
| if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { |
| // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, |
| // but this one assumes well-formed input, and hence the restart marker follows immediately. |
| _, err := io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return err |
| } |
| if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { |
| return FormatError("bad RST marker") |
| } |
| expectedRST++ |
| if expectedRST == rst7Marker+1 { |
| expectedRST = rst0Marker |
| } |
| // Reset the Huffman decoder. |
| d.b = bits{} |
| // Reset the DC components, as per section F.2.1.3.1. |
| dc = [nColorComponent]int{} |
| } |
| } // for mx |
| } // for my |
| |
| return nil |
| } |
| |
| // Specified in section B.2.4.4. |
| func (d *decoder) processDRI(n int) os.Error { |
| if n != 2 { |
| return FormatError("DRI has wrong length") |
| } |
| _, err := io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return err |
| } |
| d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) |
| return nil |
| } |
| |
| // decode reads a JPEG image from r and returns it as an image.Image. |
| func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, os.Error) { |
| if rr, ok := r.(Reader); ok { |
| d.r = rr |
| } else { |
| d.r = bufio.NewReader(r) |
| } |
| |
| // Check for the Start Of Image marker. |
| _, err := io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return nil, err |
| } |
| if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { |
| return nil, FormatError("missing SOI marker") |
| } |
| |
| // Process the remaining segments until the End Of Image marker. |
| for { |
| _, err := io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return nil, err |
| } |
| if d.tmp[0] != 0xff { |
| return nil, FormatError("missing 0xff marker start") |
| } |
| marker := d.tmp[1] |
| if marker == eoiMarker { // End Of Image. |
| break |
| } |
| |
| // Read the 16-bit length of the segment. The value includes the 2 bytes for the |
| // length itself, so we subtract 2 to get the number of remaining bytes. |
| _, err = io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return nil, err |
| } |
| n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 |
| if n < 0 { |
| return nil, FormatError("short segment length") |
| } |
| |
| switch { |
| case marker == sof0Marker: // Start Of Frame (Baseline). |
| err = d.processSOF(n) |
| if configOnly { |
| return nil, err |
| } |
| case marker == sof2Marker: // Start Of Frame (Progressive). |
| err = UnsupportedError("progressive mode") |
| case marker == dhtMarker: // Define Huffman Table. |
| err = d.processDHT(n) |
| case marker == dqtMarker: // Define Quantization Table. |
| err = d.processDQT(n) |
| case marker == sosMarker: // Start Of Scan. |
| err = d.processSOS(n) |
| case marker == driMarker: // Define Restart Interval. |
| err = d.processDRI(n) |
| case marker >= app0Marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment. |
| err = d.ignore(n) |
| default: |
| err = UnsupportedError("unknown marker") |
| } |
| if err != nil { |
| return nil, err |
| } |
| } |
| if d.img1 != nil { |
| return d.img1, nil |
| } |
| if d.img3 != nil { |
| return d.img3, nil |
| } |
| return nil, FormatError("missing SOS marker") |
| } |
| |
| // Decode reads a JPEG image from r and returns it as an image.Image. |
| func Decode(r io.Reader) (image.Image, os.Error) { |
| var d decoder |
| return d.decode(r, false) |
| } |
| |
| // DecodeConfig returns the color model and dimensions of a JPEG image without |
| // decoding the entire image. |
| func DecodeConfig(r io.Reader) (image.Config, os.Error) { |
| var d decoder |
| if _, err := d.decode(r, true); err != nil { |
| return image.Config{}, err |
| } |
| switch d.nComp { |
| case nGrayComponent: |
| return image.Config{image.GrayColorModel, d.width, d.height}, nil |
| case nColorComponent: |
| return image.Config{ycbcr.YCbCrColorModel, d.width, d.height}, nil |
| } |
| return image.Config{}, FormatError("missing SOF marker") |
| } |
| |
| func init() { |
| image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) |
| } |