| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| import ( |
| "runtime/internal/atomic" |
| "unsafe" |
| ) |
| |
| const ( |
| _ESRCH = 3 |
| _ETIMEDOUT = 60 |
| |
| // From NetBSD's <sys/time.h> |
| _CLOCK_REALTIME = 0 |
| _CLOCK_VIRTUAL = 1 |
| _CLOCK_PROF = 2 |
| _CLOCK_MONOTONIC = 3 |
| ) |
| |
| var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}} |
| |
| // From NetBSD's <sys/sysctl.h> |
| const ( |
| _CTL_HW = 6 |
| _HW_NCPU = 3 |
| ) |
| |
| func getncpu() int32 { |
| mib := [2]uint32{_CTL_HW, _HW_NCPU} |
| out := uint32(0) |
| nout := unsafe.Sizeof(out) |
| ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) |
| if ret >= 0 { |
| return int32(out) |
| } |
| return 1 |
| } |
| |
| //go:nosplit |
| func semacreate(mp *m) { |
| } |
| |
| //go:nosplit |
| func semasleep(ns int64) int32 { |
| _g_ := getg() |
| |
| // Compute sleep deadline. |
| var tsp *timespec |
| if ns >= 0 { |
| var ts timespec |
| var nsec int32 |
| ns += nanotime() |
| ts.set_sec(timediv(ns, 1000000000, &nsec)) |
| ts.set_nsec(nsec) |
| tsp = &ts |
| } |
| |
| for { |
| v := atomic.Load(&_g_.m.waitsemacount) |
| if v > 0 { |
| if atomic.Cas(&_g_.m.waitsemacount, v, v-1) { |
| return 0 // semaphore acquired |
| } |
| continue |
| } |
| |
| // Sleep until unparked by semawakeup or timeout. |
| ret := lwp_park(tsp, 0, unsafe.Pointer(&_g_.m.waitsemacount), nil) |
| if ret == _ETIMEDOUT { |
| return -1 |
| } |
| } |
| } |
| |
| //go:nosplit |
| func semawakeup(mp *m) { |
| atomic.Xadd(&mp.waitsemacount, 1) |
| // From NetBSD's _lwp_unpark(2) manual: |
| // "If the target LWP is not currently waiting, it will return |
| // immediately upon the next call to _lwp_park()." |
| ret := lwp_unpark(int32(mp.procid), unsafe.Pointer(&mp.waitsemacount)) |
| if ret != 0 && ret != _ESRCH { |
| // semawakeup can be called on signal stack. |
| systemstack(func() { |
| print("thrwakeup addr=", &mp.waitsemacount, " sem=", mp.waitsemacount, " ret=", ret, "\n") |
| }) |
| } |
| } |
| |
| // May run with m.p==nil, so write barriers are not allowed. |
| //go:nowritebarrier |
| func newosproc(mp *m, stk unsafe.Pointer) { |
| if false { |
| print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, " ostk=", &mp, "\n") |
| } |
| |
| var uc ucontextt |
| getcontext(unsafe.Pointer(&uc)) |
| |
| uc.uc_flags = _UC_SIGMASK | _UC_CPU |
| uc.uc_link = nil |
| uc.uc_sigmask = sigset_all |
| |
| lwp_mcontext_init(&uc.uc_mcontext, stk, mp, mp.g0, funcPC(netbsdMstart)) |
| |
| ret := lwp_create(unsafe.Pointer(&uc), 0, unsafe.Pointer(&mp.procid)) |
| if ret < 0 { |
| print("runtime: failed to create new OS thread (have ", mcount()-1, " already; errno=", -ret, ")\n") |
| throw("runtime.newosproc") |
| } |
| } |
| |
| // netbsdMStart is the function call that starts executing a newly |
| // created thread. On NetBSD, a new thread inherits the signal stack |
| // of the creating thread. That confuses minit, so we remove that |
| // signal stack here before calling the regular mstart. It's a bit |
| // baroque to remove a signal stack here only to add one in minit, but |
| // it's a simple change that keeps NetBSD working like other OS's. |
| // At this point all signals are blocked, so there is no race. |
| //go:nosplit |
| func netbsdMstart() { |
| signalstack(nil) |
| mstart() |
| } |
| |
| func osinit() { |
| ncpu = getncpu() |
| } |
| |
| var urandom_dev = []byte("/dev/urandom\x00") |
| |
| //go:nosplit |
| func getRandomData(r []byte) { |
| fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) |
| n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) |
| closefd(fd) |
| extendRandom(r, int(n)) |
| } |
| |
| func goenvs() { |
| goenvs_unix() |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the parent thread (main thread in case of bootstrap), can allocate memory. |
| func mpreinit(mp *m) { |
| mp.gsignal = malg(32 * 1024) |
| mp.gsignal.m = mp |
| } |
| |
| //go:nosplit |
| func msigsave(mp *m) { |
| sigprocmask(_SIG_SETMASK, nil, &mp.sigmask) |
| } |
| |
| //go:nosplit |
| func msigrestore(sigmask sigset) { |
| sigprocmask(_SIG_SETMASK, &sigmask, nil) |
| } |
| |
| //go:nosplit |
| func sigblock() { |
| sigprocmask(_SIG_SETMASK, &sigset_all, nil) |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the new thread, cannot allocate memory. |
| func minit() { |
| _g_ := getg() |
| _g_.m.procid = uint64(lwp_self()) |
| |
| // Initialize signal handling. |
| |
| // On NetBSD a thread created by pthread_create inherits the |
| // signal stack of the creating thread. We always create a |
| // new signal stack here, to avoid having two Go threads using |
| // the same signal stack. This breaks the case of a thread |
| // created in C that calls sigaltstack and then calls a Go |
| // function, because we will lose track of the C code's |
| // sigaltstack, but it's the best we can do. |
| signalstack(&_g_.m.gsignal.stack) |
| _g_.m.newSigstack = true |
| |
| // restore signal mask from m.sigmask and unblock essential signals |
| nmask := _g_.m.sigmask |
| for i := range sigtable { |
| if sigtable[i].flags&_SigUnblock != 0 { |
| nmask.__bits[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31) |
| } |
| } |
| sigprocmask(_SIG_SETMASK, &nmask, nil) |
| } |
| |
| // Called from dropm to undo the effect of an minit. |
| //go:nosplit |
| func unminit() { |
| if getg().m.newSigstack { |
| signalstack(nil) |
| } |
| } |
| |
| func memlimit() uintptr { |
| return 0 |
| } |
| |
| func sigtramp() |
| |
| type sigactiont struct { |
| sa_sigaction uintptr |
| sa_mask sigset |
| sa_flags int32 |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func setsig(i int32, fn uintptr, restart bool) { |
| var sa sigactiont |
| sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK |
| if restart { |
| sa.sa_flags |= _SA_RESTART |
| } |
| sa.sa_mask = sigset_all |
| if fn == funcPC(sighandler) { |
| fn = funcPC(sigtramp) |
| } |
| sa.sa_sigaction = fn |
| sigaction(i, &sa, nil) |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func setsigstack(i int32) { |
| throw("setsigstack") |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func getsig(i int32) uintptr { |
| var sa sigactiont |
| sigaction(i, nil, &sa) |
| if sa.sa_sigaction == funcPC(sigtramp) { |
| return funcPC(sighandler) |
| } |
| return sa.sa_sigaction |
| } |
| |
| //go:nosplit |
| func signalstack(s *stack) { |
| var st sigaltstackt |
| if s == nil { |
| st.ss_flags = _SS_DISABLE |
| } else { |
| st.ss_sp = s.lo |
| st.ss_size = s.hi - s.lo |
| st.ss_flags = 0 |
| } |
| sigaltstack(&st, nil) |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func updatesigmask(m sigmask) { |
| var mask sigset |
| copy(mask.__bits[:], m[:]) |
| sigprocmask(_SIG_SETMASK, &mask, nil) |
| } |
| |
| func unblocksig(sig int32) { |
| var mask sigset |
| mask.__bits[(sig-1)/32] |= 1 << ((uint32(sig) - 1) & 31) |
| sigprocmask(_SIG_UNBLOCK, &mask, nil) |
| } |