|  | // Copyright 2010 The Go Authors.  All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // gcc '-std=c99' cmplxdivide.c && a.out >cmplxdivide1.go | 
|  |  | 
|  | #include <complex.h> | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #define nelem(x) (sizeof(x)/sizeof((x)[0])) | 
|  |  | 
|  | double f[] = { | 
|  | 0, | 
|  | 1, | 
|  | -1, | 
|  | 2, | 
|  | NAN, | 
|  | INFINITY, | 
|  | -INFINITY, | 
|  | }; | 
|  |  | 
|  | char* | 
|  | fmt(double g) | 
|  | { | 
|  | static char buf[10][30]; | 
|  | static int n; | 
|  | char *p; | 
|  |  | 
|  | p = buf[n++]; | 
|  | if(n == 10) | 
|  | n = 0; | 
|  | sprintf(p, "%g", g); | 
|  | if(strcmp(p, "-0") == 0) | 
|  | strcpy(p, "negzero"); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | int | 
|  | iscnan(double complex d) | 
|  | { | 
|  | return !isinf(creal(d)) && !isinf(cimag(d)) && (isnan(creal(d)) || isnan(cimag(d))); | 
|  | } | 
|  |  | 
|  | double complex zero;	// attempt to hide zero division from gcc | 
|  |  | 
|  | int | 
|  | main(void) | 
|  | { | 
|  | int i, j, k, l; | 
|  | double complex n, d, q; | 
|  |  | 
|  | printf("// # generated by cmplxdivide.c\n"); | 
|  | printf("\n"); | 
|  | printf("package main\n"); | 
|  | printf("var tests = []Test{\n"); | 
|  | for(i=0; i<nelem(f); i++) | 
|  | for(j=0; j<nelem(f); j++) | 
|  | for(k=0; k<nelem(f); k++) | 
|  | for(l=0; l<nelem(f); l++) { | 
|  | n = f[i] + f[j]*I; | 
|  | d = f[k] + f[l]*I; | 
|  | q = n/d; | 
|  |  | 
|  | // BUG FIX. | 
|  | // Gcc gets the wrong answer for NaN/0 unless both sides are NaN. | 
|  | // That is, it treats (NaN+NaN*I)/0 = NaN+NaN*I (a complex NaN) | 
|  | // but it then computes (1+NaN*I)/0 = Inf+NaN*I (a complex infinity). | 
|  | // Since both numerators are complex NaNs, it seems that the | 
|  | // results should agree in kind.  Override the gcc computation in this case. | 
|  | if(iscnan(n) && d == 0) | 
|  | q = (NAN+NAN*I) / zero; | 
|  |  | 
|  | printf("\tTest{complex(%s, %s), complex(%s, %s), complex(%s, %s)},\n", | 
|  | fmt(creal(n)), fmt(cimag(n)), | 
|  | fmt(creal(d)), fmt(cimag(d)), | 
|  | fmt(creal(q)), fmt(cimag(q))); | 
|  | } | 
|  | printf("}\n"); | 
|  | return 0; | 
|  | } |