blob: ff9b736430cc2fa3930b868d4574bcec8192b7ec [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ppc64 || ppc64le
#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"
#include "asm_ppc64x.h"
#ifdef GOOS_aix
#define cgoCalleeStackSize 48
#else
#define cgoCalleeStackSize 32
#endif
TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0
// R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer
// initialize essential registers
BL runtime·reginit(SB)
SUB $(FIXED_FRAME+16), R1
MOVD R2, 24(R1) // stash the TOC pointer away again now we've created a new frame
MOVW R3, FIXED_FRAME+0(R1) // argc
MOVD R4, FIXED_FRAME+8(R1) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
BL runtime·save_g(SB)
MOVD $(-64*1024), R31
ADD R31, R1, R3
MOVD R3, g_stackguard0(g)
MOVD R3, g_stackguard1(g)
MOVD R3, (g_stack+stack_lo)(g)
MOVD R1, (g_stack+stack_hi)(g)
// If there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R12
CMP R0, R12
BEQ nocgo
#ifdef GO_PPC64X_HAS_FUNCDESC
// Load the real entry address from the first slot of the function descriptor.
MOVD 8(R12), R2
MOVD (R12), R12
#endif
MOVD R12, CTR // r12 = "global function entry point"
MOVD R13, R5 // arg 2: TLS base pointer
MOVD $setg_gcc<>(SB), R4 // arg 1: setg
MOVD g, R3 // arg 0: G
// C functions expect 32 (48 for AIX) bytes of space on caller
// stack frame and a 16-byte aligned R1
MOVD R1, R14 // save current stack
SUB $cgoCalleeStackSize, R1 // reserve the callee area
RLDCR $0, R1, $~15, R1 // 16-byte align
BL (CTR) // may clobber R0, R3-R12
MOVD R14, R1 // restore stack
#ifndef GOOS_aix
MOVD 24(R1), R2
#endif
XOR R0, R0 // fix R0
nocgo:
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R3
ADD $const_stackGuard, R3
MOVD R3, g_stackguard0(g)
MOVD R3, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R3
// save m->g0 = g0
MOVD g, m_g0(R3)
// save m0 to g0->m
MOVD R3, g_m(g)
BL runtime·check(SB)
// args are already prepared
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R3 // entry
MOVDU R3, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
BL runtime·newproc(SB)
ADD $(8+FIXED_FRAME), R1
// start this M
BL runtime·mstart(SB)
// Prevent dead-code elimination of debugCallV2, which is
// intended to be called by debuggers.
#ifdef GOARCH_ppc64le
MOVD $runtime·debugCallV2<ABIInternal>(SB), R31
#endif
MOVD R0, 0(R0)
RET
DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
TW $31, R0, R0
RET
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
RET
// Any changes must be reflected to runtime/cgo/gcc_aix_ppc64.S:.crosscall_ppc64
TEXT _cgo_reginit(SB),NOSPLIT|NOFRAME,$0-0
// crosscall_ppc64 and crosscall2 need to reginit, but can't
// get at the 'runtime.reginit' symbol.
BR runtime·reginit(SB)
TEXT runtime·reginit(SB),NOSPLIT|NOFRAME,$0-0
// set R0 to zero, it's expected by the toolchain
XOR R0, R0
RET
TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
BL runtime·mstart0(SB)
RET // not reached
/*
* go-routine
*/
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8
MOVD buf+0(FP), R5
MOVD gobuf_g(R5), R6
MOVD 0(R6), R4 // make sure g != nil
BR gogo<>(SB)
TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0
MOVD R6, g
BL runtime·save_g(SB)
MOVD gobuf_sp(R5), R1
MOVD gobuf_lr(R5), R31
#ifndef GOOS_aix
MOVD 24(R1), R2 // restore R2
#endif
MOVD R31, LR
MOVD gobuf_ret(R5), R3
MOVD gobuf_ctxt(R5), R11
MOVD R0, gobuf_sp(R5)
MOVD R0, gobuf_ret(R5)
MOVD R0, gobuf_lr(R5)
MOVD R0, gobuf_ctxt(R5)
CMP R0, R0 // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R12
MOVD R12, CTR
BR (CTR)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-8
// Save caller state in g->sched
// R11 should be safe across save_g??
MOVD R3, R11
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD LR, R31
MOVD R31, (g_sched+gobuf_pc)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
CMP g, R3
BNE 2(PC)
BR runtime·badmcall(SB)
MOVD 0(R11), R12 // code pointer
MOVD R12, CTR
MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp
// Don't need to do anything special for regabiargs here
// R3 is g; stack is set anyway
MOVDU R3, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
BL (CTR)
MOVD 24(R1), R2
BR runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
// We have several undefs here so that 16 bytes past
// $runtime·systemstack_switch lies within them whether or not the
// instructions that derive r2 from r12 are there.
UNDEF
UNDEF
UNDEF
BL (LR) // make sure this function is not leaf
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, R11 // context
MOVD g_m(g), R4 // R4 = m
MOVD m_gsignal(R4), R5 // R5 = gsignal
CMP g, R5
BEQ noswitch
MOVD m_g0(R4), R5 // R5 = g0
CMP g, R5
BEQ noswitch
MOVD m_curg(R4), R6
CMP g, R6
BEQ switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVD $runtime·badsystemstack(SB), R12
MOVD R12, CTR
BL (CTR)
BL runtime·abort(SB)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
BL gosave_systemstack_switch<>(SB)
// switch to g0
MOVD R5, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
// call target function
MOVD 0(R11), R12 // code pointer
MOVD R12, CTR
BL (CTR)
// restore TOC pointer. It seems unlikely that we will use systemstack
// to call a function defined in another module, but the results of
// doing so would be so confusing that it's worth doing this.
MOVD g_m(g), R3
MOVD m_curg(R3), g
MOVD (g_sched+gobuf_sp)(g), R3
#ifndef GOOS_aix
MOVD 24(R3), R2
#endif
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
MOVD R0, (g_sched+gobuf_sp)(g)
RET
noswitch:
// already on m stack, just call directly
// On other arches we do a tail call here, but it appears to be
// impossible to tail call a function pointer in shared mode on
// ppc64 because the caller is responsible for restoring the TOC.
MOVD 0(R11), R12 // code pointer
MOVD R12, CTR
BL (CTR)
#ifndef GOOS_aix
MOVD 24(R1), R2
#endif
RET
// func switchToCrashStack0(fn func())
TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
MOVD R3, R11 // context register
MOVD g_m(g), R3 // curm
// set g to gcrash
MOVD $runtime·gcrash(SB), g // g = &gcrash
CALL runtime·save_g(SB) // clobbers R31
MOVD R3, g_m(g) // g.m = curm
MOVD g, m_g0(R3) // curm.g0 = g
// switch to crashstack
MOVD (g_stack+stack_hi)(g), R3
SUB $(4*8), R3
MOVD R3, R1
// call target function
MOVD 0(R11), R12 // code pointer
MOVD R12, CTR
BL (CTR)
// should never return
CALL runtime·abort(SB)
UNDEF
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3: framesize, R4: argsize, R5: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
// Called from f.
// Set g->sched to context in f.
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD LR, R8
MOVD R8, (g_sched+gobuf_pc)(g)
MOVD R5, (g_sched+gobuf_lr)(g)
MOVD R11, (g_sched+gobuf_ctxt)(g)
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R7
MOVD m_g0(R7), R8
CMP g, R8
BNE 3(PC)
BL runtime·badmorestackg0(SB)
BL runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVD m_gsignal(R7), R8
CMP g, R8
BNE 3(PC)
BL runtime·badmorestackgsignal(SB)
BL runtime·abort(SB)
// Called from f.
// Set m->morebuf to f's caller.
MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC
MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP
MOVD g, (m_morebuf+gobuf_g)(R7)
// Call newstack on m->g0's stack.
MOVD m_g0(R7), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
MOVDU R0, -(FIXED_FRAME+0)(R1) // create a call frame on g0
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
// Force SPWRITE. This function doesn't actually write SP,
// but it is called with a special calling convention where
// the caller doesn't save LR on stack but passes it as a
// register (R5), and the unwinder currently doesn't understand.
// Make it SPWRITE to stop unwinding. (See issue 54332)
// Use OR R0, R1 instead of MOVD R1, R1 as the MOVD instruction
// has a special affect on Power8,9,10 by lowering the thread
// priority and causing a slowdown in execution time
OR R0, R1
MOVD R0, R11
BR runtime·morestack(SB)
// reflectcall: call a function with the given argument list
// func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R31; \
CMP R3, R31; \
BGT 4(PC); \
MOVD $NAME(SB), R12; \
MOVD R12, CTR; \
BR (CTR)
// Note: can't just "BR NAME(SB)" - bad inlining results.
TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48
MOVWZ frameSize+32(FP), R3
DISPATCH(runtime·call16, 16)
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R12
MOVD R12, CTR
BR (CTR)
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVD stackArgs+16(FP), R3; \
MOVWZ stackArgsSize+24(FP), R4; \
MOVD R1, R5; \
CMP R4, $8; \
BLT tailsetup; \
/* copy 8 at a time if possible */ \
ADD $(FIXED_FRAME-8), R5; \
SUB $8, R3; \
top: \
MOVDU 8(R3), R7; \
MOVDU R7, 8(R5); \
SUB $8, R4; \
CMP R4, $8; \
BGE top; \
/* handle remaining bytes */ \
CMP $0, R4; \
BEQ callfn; \
ADD $7, R3; \
ADD $7, R5; \
BR tail; \
tailsetup: \
CMP $0, R4; \
BEQ callfn; \
ADD $(FIXED_FRAME-1), R5; \
SUB $1, R3; \
tail: \
MOVBU 1(R3), R6; \
MOVBU R6, 1(R5); \
SUB $1, R4; \
CMP $0, R4; \
BGT tail; \
callfn: \
/* call function */ \
MOVD f+8(FP), R11; \
#ifdef GOOS_aix \
/* AIX won't trigger a SIGSEGV if R11 = nil */ \
/* So it manually triggers it */ \
CMP R0, R11 \
BNE 2(PC) \
MOVD R0, 0(R0) \
#endif \
MOVD regArgs+40(FP), R20; \
BL runtime·unspillArgs(SB); \
MOVD (R11), R12; \
MOVD R12, CTR; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (CTR); \
#ifndef GOOS_aix \
MOVD 24(R1), R2; \
#endif \
/* copy return values back */ \
MOVD regArgs+40(FP), R20; \
BL runtime·spillArgs(SB); \
MOVD stackArgsType+0(FP), R7; \
MOVD stackArgs+16(FP), R3; \
MOVWZ stackArgsSize+24(FP), R4; \
MOVWZ stackRetOffset+28(FP), R6; \
ADD $FIXED_FRAME, R1, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
BL callRet<>(SB); \
RET
// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $40-0
NO_LOCAL_POINTERS
MOVD R7, FIXED_FRAME+0(R1)
MOVD R3, FIXED_FRAME+8(R1)
MOVD R5, FIXED_FRAME+16(R1)
MOVD R4, FIXED_FRAME+24(R1)
MOVD R20, FIXED_FRAME+32(R1)
BL runtime·reflectcallmove(SB)
RET
CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)
TEXT runtime·procyield(SB),NOSPLIT|NOFRAME,$0-4
MOVW cycles+0(FP), R7
// POWER does not have a pause/yield instruction equivalent.
// Instead, we can lower the program priority by setting the
// Program Priority Register prior to the wait loop and set it
// back to default afterwards. On Linux, the default priority is
// medium-low. For details, see page 837 of the ISA 3.0.
OR R1, R1, R1 // Set PPR priority to low
again:
SUB $1, R7
CMP $0, R7
BNE again
OR R6, R6, R6 // Set PPR priority back to medium-low
RET
// Save state of caller into g->sched,
// but using fake PC from systemstack_switch.
// Must only be called from functions with no locals ($0)
// or else unwinding from systemstack_switch is incorrect.
// Smashes R31.
TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
MOVD $runtime·systemstack_switch(SB), R31
ADD $16, R31 // get past prologue (including r2-setting instructions when they're there)
MOVD R31, (g_sched+gobuf_pc)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD R0, (g_sched+gobuf_ret)(g)
// Assert ctxt is zero. See func save.
MOVD (g_sched+gobuf_ctxt)(g), R31
CMP R0, R31
BEQ 2(PC)
BL runtime·abort(SB)
RET
#ifdef GOOS_aix
#define asmcgocallSaveOffset cgoCalleeStackSize + 8
#else
#define asmcgocallSaveOffset cgoCalleeStackSize
#endif
// func asmcgocall_no_g(fn, arg unsafe.Pointer)
// Call fn(arg) aligned appropriately for the gcc ABI.
// Called on a system stack, and there may be no g yet (during needm).
TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16
MOVD fn+0(FP), R3
MOVD arg+8(FP), R4
MOVD R1, R15
SUB $(asmcgocallSaveOffset+8), R1
RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI
MOVD R15, asmcgocallSaveOffset(R1)
MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?)
// This is a "global call", so put the global entry point in r12
MOVD R3, R12
#ifdef GO_PPC64X_HAS_FUNCDESC
// Load the real entry address from the first slot of the function descriptor.
MOVD 8(R12), R2
MOVD (R12), R12
#endif
MOVD R12, CTR
MOVD R4, R3 // arg in r3
BL (CTR)
// C code can clobber R0, so set it back to 0. F27-F31 are
// callee save, so we don't need to recover those.
XOR R0, R0
MOVD asmcgocallSaveOffset(R1), R1 // Restore stack pointer.
#ifndef GOOS_aix
MOVD 24(R1), R2
#endif
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
MOVD fn+0(FP), R3
MOVD arg+8(FP), R4
MOVD R1, R7 // save original stack pointer
CMP $0, g
BEQ nosave
MOVD g, R5
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already. Or we might already
// be on the m->gsignal stack.
MOVD g_m(g), R8
MOVD m_gsignal(R8), R6
CMP R6, g
BEQ nosave
MOVD m_g0(R8), R6
CMP R6, g
BEQ nosave
BL gosave_systemstack_switch<>(SB)
MOVD R6, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
// Now on a scheduling stack (a pthread-created stack).
#ifdef GOOS_aix
// Create a fake LR to improve backtrace.
MOVD $runtime·asmcgocall(SB), R6
MOVD R6, 16(R1)
// AIX also saves one argument on the stack.
SUB $8, R1
#endif
// Save room for two of our pointers, plus the callee
// save area that lives on the caller stack.
SUB $(asmcgocallSaveOffset+16), R1
RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI
MOVD R5, (asmcgocallSaveOffset+8)(R1) // save old g on stack
MOVD (g_stack+stack_hi)(R5), R5
SUB R7, R5
MOVD R5, asmcgocallSaveOffset(R1) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
#ifdef GOOS_aix
MOVD R7, 0(R1) // Save frame pointer to allow manual backtrace with gdb
#else
MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?)
#endif
// This is a "global call", so put the global entry point in r12
MOVD R3, R12
#ifdef GO_PPC64X_HAS_FUNCDESC
// Load the real entry address from the first slot of the function descriptor.
MOVD 8(R12), R2
MOVD (R12), R12
#endif
MOVD R12, CTR
MOVD R4, R3 // arg in r3
BL (CTR)
// Reinitialise zero value register.
XOR R0, R0
// Restore g, stack pointer, toc pointer.
// R3 is errno, so don't touch it
MOVD (asmcgocallSaveOffset+8)(R1), g
MOVD (g_stack+stack_hi)(g), R5
MOVD asmcgocallSaveOffset(R1), R6
SUB R6, R5
#ifndef GOOS_aix
MOVD 24(R5), R2
#endif
MOVD R5, R1
BL runtime·save_g(SB)
MOVW R3, ret+16(FP)
RET
nosave:
// Running on a system stack, perhaps even without a g.
// Having no g can happen during thread creation or thread teardown.
// This code is like the above sequence but without saving/restoring g
// and without worrying about the stack moving out from under us
// (because we're on a system stack, not a goroutine stack).
// The above code could be used directly if already on a system stack,
// but then the only path through this code would be a rare case.
// Using this code for all "already on system stack" calls exercises it more,
// which should help keep it correct.
SUB $(asmcgocallSaveOffset+8), R1
RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI
MOVD R7, asmcgocallSaveOffset(R1) // Save original stack pointer.
MOVD R3, R12 // fn
#ifdef GO_PPC64X_HAS_FUNCDESC
// Load the real entry address from the first slot of the function descriptor.
MOVD 8(R12), R2
MOVD (R12), R12
#endif
MOVD R12, CTR
MOVD R4, R3 // arg
BL (CTR)
// Reinitialise zero value register.
XOR R0, R0
MOVD asmcgocallSaveOffset(R1), R1 // Restore stack pointer.
#ifndef GOOS_aix
MOVD 24(R1), R2
#endif
MOVW R3, ret+16(FP)
RET
// func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
// See cgocall.go for more details.
TEXT ·cgocallback(SB),NOSPLIT,$24-24
NO_LOCAL_POINTERS
// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
// It is used to dropm while thread is exiting.
MOVD fn+0(FP), R5
CMP R5, $0
BNE loadg
// Restore the g from frame.
MOVD frame+8(FP), g
BR dropm
loadg:
// Load m and g from thread-local storage.
#ifndef GOOS_openbsd
MOVBZ runtime·iscgo(SB), R3
CMP R3, $0
BEQ nocgo
#endif
BL runtime·load_g(SB)
nocgo:
// If g is nil, Go did not create the current thread,
// or if this thread never called into Go on pthread platforms.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CMP g, $0
BEQ needm
MOVD g_m(g), R8
MOVD R8, savedm-8(SP)
BR havem
needm:
MOVD g, savedm-8(SP) // g is zero, so is m.
MOVD $runtime·needAndBindM(SB), R12
MOVD R12, CTR
BL (CTR)
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVD g_m(g), R8
MOVD m_g0(R8), R3
MOVD R1, (g_sched+gobuf_sp)(R3)
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP).
MOVD m_g0(R8), R3
MOVD (g_sched+gobuf_sp)(R3), R4
MOVD R4, savedsp-24(SP) // must match frame size
MOVD R1, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the curg stack and
// open a frame the same size as cgocallback's g0 frame.
// Once we switch to the curg stack, the pushed PC will appear
// to be the return PC of cgocallback, so that the traceback
// will seamlessly trace back into the earlier calls.
MOVD m_curg(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVD (g_sched+gobuf_pc)(g), R5
MOVD R5, -(24+FIXED_FRAME)(R4) // "saved LR"; must match frame size
// Gather our arguments into registers.
MOVD fn+0(FP), R5
MOVD frame+8(FP), R6
MOVD ctxt+16(FP), R7
MOVD $-(24+FIXED_FRAME)(R4), R1 // switch stack; must match frame size
MOVD R5, FIXED_FRAME+0(R1)
MOVD R6, FIXED_FRAME+8(R1)
MOVD R7, FIXED_FRAME+16(R1)
MOVD $runtime·cgocallbackg(SB), R12
MOVD R12, CTR
CALL (CTR) // indirect call to bypass nosplit check. We're on a different stack now.
// Restore g->sched (== m->curg->sched) from saved values.
MOVD 0(R1), R5
MOVD R5, (g_sched+gobuf_pc)(g)
MOVD $(24+FIXED_FRAME)(R1), R4 // must match frame size
MOVD R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
MOVD savedsp-24(SP), R4 // must match frame size
MOVD R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m,
// 1. for the duration of the call on non-pthread platforms,
// 2. or the duration of the C thread alive on pthread platforms.
// If the m on entry wasn't nil,
// 1. the thread might be a Go thread,
// 2. or it wasn't the first call from a C thread on pthread platforms,
// since then we skip dropm to reuse the m in the first call.
MOVD savedm-8(SP), R6
CMP R6, $0
BNE droppedm
// Skip dropm to reuse it in the next call, when a pthread key has been created.
MOVD _cgo_pthread_key_created(SB), R6
// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
CMP R6, $0
BEQ dropm
MOVD (R6), R6
CMP R6, $0
BNE droppedm
dropm:
MOVD $runtime·dropm(SB), R12
MOVD R12, CTR
BL (CTR)
droppedm:
// Done!
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVD gg+0(FP), g
// This only happens if iscgo, so jump straight to save_g
BL runtime·save_g(SB)
RET
#ifdef GO_PPC64X_HAS_FUNCDESC
DEFINE_PPC64X_FUNCDESC(setg_gcc<>, _setg_gcc<>)
TEXT _setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0
#else
TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0
#endif
// The standard prologue clobbers R31, which is callee-save in
// the C ABI, so we have to use $-8-0 and save LR ourselves.
MOVD LR, R4
// Also save g and R31, since they're callee-save in C ABI
MOVD R31, R5
MOVD g, R6
MOVD R3, g
BL runtime·save_g(SB)
MOVD R6, g
MOVD R5, R31
MOVD R4, LR
RET
TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R0
UNDEF
#define TBR 268
// int64 runtime·cputicks(void)
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
MOVD SPR(TBR), R3
MOVD R3, ret+0(FP)
RET
// spillArgs stores return values from registers to a *internal/abi.RegArgs in R20.
TEXT runtime·spillArgs(SB),NOSPLIT,$0-0
MOVD R3, 0(R20)
MOVD R4, 8(R20)
MOVD R5, 16(R20)
MOVD R6, 24(R20)
MOVD R7, 32(R20)
MOVD R8, 40(R20)
MOVD R9, 48(R20)
MOVD R10, 56(R20)
MOVD R14, 64(R20)
MOVD R15, 72(R20)
MOVD R16, 80(R20)
MOVD R17, 88(R20)
FMOVD F1, 96(R20)
FMOVD F2, 104(R20)
FMOVD F3, 112(R20)
FMOVD F4, 120(R20)
FMOVD F5, 128(R20)
FMOVD F6, 136(R20)
FMOVD F7, 144(R20)
FMOVD F8, 152(R20)
FMOVD F9, 160(R20)
FMOVD F10, 168(R20)
FMOVD F11, 176(R20)
FMOVD F12, 184(R20)
RET
// unspillArgs loads args into registers from a *internal/abi.RegArgs in R20.
TEXT runtime·unspillArgs(SB),NOSPLIT,$0-0
MOVD 0(R20), R3
MOVD 8(R20), R4
MOVD 16(R20), R5
MOVD 24(R20), R6
MOVD 32(R20), R7
MOVD 40(R20), R8
MOVD 48(R20), R9
MOVD 56(R20), R10
MOVD 64(R20), R14
MOVD 72(R20), R15
MOVD 80(R20), R16
MOVD 88(R20), R17
FMOVD 96(R20), F1
FMOVD 104(R20), F2
FMOVD 112(R20), F3
FMOVD 120(R20), F4
FMOVD 128(R20), F5
FMOVD 136(R20), F6
FMOVD 144(R20), F7
FMOVD 152(R20), F8
FMOVD 160(R20), F9
FMOVD 168(R20), F10
FMOVD 176(R20), F11
FMOVD 184(R20), F12
RET
// AES hashing not implemented for ppc64
TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-32
JMP runtime·memhashFallback<ABIInternal>(SB)
TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
JMP runtime·strhashFallback<ABIInternal>(SB)
TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
JMP runtime·memhash32Fallback<ABIInternal>(SB)
TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
JMP runtime·memhash64Fallback<ABIInternal>(SB)
TEXT runtime·return0(SB), NOSPLIT, $0
MOVW $0, R3
RET
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
#ifdef GOOS_aix
// On AIX, _cgo_topofstack is defined in runtime/cgo, because it must
// be a longcall in order to prevent trampolines from ld.
TEXT __cgo_topofstack(SB),NOSPLIT|NOFRAME,$0
#else
TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0
#endif
// g (R30) and R31 are callee-save in the C ABI, so save them
MOVD g, R4
MOVD R31, R5
MOVD LR, R6
BL runtime·load_g(SB) // clobbers g (R30), R31
MOVD g_m(g), R3
MOVD m_curg(R3), R3
MOVD (g_stack+stack_hi)(R3), R3
MOVD R4, g
MOVD R5, R31
MOVD R6, LR
RET
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
//
// When dynamically linking Go, it can be returned to from a function
// implemented in a different module and so needs to reload the TOC pointer
// from the stack (although this function declares that it does not set up x-a
// frame, newproc1 does in fact allocate one for goexit and saves the TOC
// pointer in the correct place).
// goexit+_PCQuantum is halfway through the usual global entry point prologue
// that derives r2 from r12 which is a bit silly, but not harmful.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
MOVD 24(R1), R2
BL runtime·goexit1(SB) // does not return
// traceback from goexit1 must hit code range of goexit
MOVD R0, R0 // NOP
// prepGoExitFrame saves the current TOC pointer (i.e. the TOC pointer for the
// module containing runtime) to the frame that goexit will execute in when
// the goroutine exits. It's implemented in assembly mainly because that's the
// easiest way to get access to R2.
TEXT runtime·prepGoExitFrame(SB),NOSPLIT,$0-8
MOVD sp+0(FP), R3
MOVD R2, 24(R3)
RET
TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0
ADD $-8, R1
MOVD R31, 0(R1)
MOVD runtime·lastmoduledatap(SB), R4
MOVD R3, moduledata_next(R4)
MOVD R3, runtime·lastmoduledatap(SB)
MOVD 0(R1), R31
ADD $8, R1
RET
TEXT ·checkASM(SB),NOSPLIT,$0-1
MOVW $1, R3
MOVB R3, ret+0(FP)
RET
// gcWriteBarrier informs the GC about heap pointer writes.
//
// gcWriteBarrier does NOT follow the Go ABI. It accepts the
// number of bytes of buffer needed in R29, and returns a pointer
// to the buffer space in R29.
// It clobbers condition codes.
// It does not clobber R0 through R17 (except special registers),
// but may clobber any other register, *including* R31.
TEXT gcWriteBarrier<>(SB),NOSPLIT,$120
// The standard prologue clobbers R31.
// We use R18, R19, and R31 as scratch registers.
retry:
MOVD g_m(g), R18
MOVD m_p(R18), R18
MOVD (p_wbBuf+wbBuf_next)(R18), R19
MOVD (p_wbBuf+wbBuf_end)(R18), R31
// Increment wbBuf.next position.
ADD R29, R19
// Is the buffer full?
CMPU R31, R19
BLT flush
// Commit to the larger buffer.
MOVD R19, (p_wbBuf+wbBuf_next)(R18)
// Make return value (the original next position)
SUB R29, R19, R29
RET
flush:
// Save registers R0 through R15 since these were not saved by the caller.
// We don't save all registers on ppc64 because it takes too much space.
MOVD R20, (FIXED_FRAME+0)(R1)
MOVD R21, (FIXED_FRAME+8)(R1)
// R0 is always 0, so no need to spill.
// R1 is SP.
// R2 is SB.
MOVD R3, (FIXED_FRAME+16)(R1)
MOVD R4, (FIXED_FRAME+24)(R1)
MOVD R5, (FIXED_FRAME+32)(R1)
MOVD R6, (FIXED_FRAME+40)(R1)
MOVD R7, (FIXED_FRAME+48)(R1)
MOVD R8, (FIXED_FRAME+56)(R1)
MOVD R9, (FIXED_FRAME+64)(R1)
MOVD R10, (FIXED_FRAME+72)(R1)
// R11, R12 may be clobbered by external-linker-inserted trampoline
// R13 is REGTLS
MOVD R14, (FIXED_FRAME+80)(R1)
MOVD R15, (FIXED_FRAME+88)(R1)
MOVD R16, (FIXED_FRAME+96)(R1)
MOVD R17, (FIXED_FRAME+104)(R1)
MOVD R29, (FIXED_FRAME+112)(R1)
CALL runtime·wbBufFlush(SB)
MOVD (FIXED_FRAME+0)(R1), R20
MOVD (FIXED_FRAME+8)(R1), R21
MOVD (FIXED_FRAME+16)(R1), R3
MOVD (FIXED_FRAME+24)(R1), R4
MOVD (FIXED_FRAME+32)(R1), R5
MOVD (FIXED_FRAME+40)(R1), R6
MOVD (FIXED_FRAME+48)(R1), R7
MOVD (FIXED_FRAME+56)(R1), R8
MOVD (FIXED_FRAME+64)(R1), R9
MOVD (FIXED_FRAME+72)(R1), R10
MOVD (FIXED_FRAME+80)(R1), R14
MOVD (FIXED_FRAME+88)(R1), R15
MOVD (FIXED_FRAME+96)(R1), R16
MOVD (FIXED_FRAME+104)(R1), R17
MOVD (FIXED_FRAME+112)(R1), R29
JMP retry
TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT,$0
MOVD $8, R29
JMP gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT,$0
MOVD $16, R29
JMP gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT,$0
MOVD $24, R29
JMP gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT,$0
MOVD $32, R29
JMP gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT,$0
MOVD $40, R29
JMP gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT,$0
MOVD $48, R29
JMP gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT,$0
MOVD $56, R29
JMP gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT,$0
MOVD $64, R29
JMP gcWriteBarrier<>(SB)
DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below
// debugCallV2 is the entry point for debugger-injected function
// calls on running goroutines. It informs the runtime that a
// debug call has been injected and creates a call frame for the
// debugger to fill in.
//
// To inject a function call, a debugger should:
// 1. Check that the goroutine is in state _Grunning and that
// there are at least 320 bytes free on the stack.
// 2. Set SP as SP-32.
// 3. Store the current LR in (SP) (using the SP after step 2).
// 4. Store the current PC in the LR register.
// 5. Write the desired argument frame size at SP-32
// 6. Save all machine registers (including flags and floating point registers)
// so they can be restored later by the debugger.
// 7. Set the PC to debugCallV2 and resume execution.
//
// If the goroutine is in state _Grunnable, then it's not generally
// safe to inject a call because it may return out via other runtime
// operations. Instead, the debugger should unwind the stack to find
// the return to non-runtime code, add a temporary breakpoint there,
// and inject the call once that breakpoint is hit.
//
// If the goroutine is in any other state, it's not safe to inject a call.
//
// This function communicates back to the debugger by setting R20 and
// invoking TW to raise a breakpoint signal. Note that the signal PC of
// the signal triggered by the TW instruction is the PC where the signal
// is trapped, not the next PC, so to resume execution, the debugger needs
// to set the signal PC to PC+4. See the comments in the implementation for
// the protocol the debugger is expected to follow. InjectDebugCall in the
// runtime tests demonstrates this protocol.
// The debugger must ensure that any pointers passed to the function
// obey escape analysis requirements. Specifically, it must not pass
// a stack pointer to an escaping argument. debugCallV2 cannot check
// this invariant.
//
// This is ABIInternal because Go code injects its PC directly into new
// goroutine stacks.
#ifdef GOARCH_ppc64le
TEXT runtime·debugCallV2<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-0
// save scratch register R31 first
MOVD R31, -184(R1)
MOVD 0(R1), R31
// save caller LR
MOVD R31, -304(R1)
MOVD -32(R1), R31
// save argument frame size
MOVD R31, -192(R1)
MOVD LR, R31
MOVD R31, -320(R1)
ADD $-320, R1
// save all registers that can contain pointers
// and the CR register
MOVW CR, R31
MOVD R31, 8(R1)
MOVD R2, 24(R1)
MOVD R3, 56(R1)
MOVD R4, 64(R1)
MOVD R5, 72(R1)
MOVD R6, 80(R1)
MOVD R7, 88(R1)
MOVD R8, 96(R1)
MOVD R9, 104(R1)
MOVD R10, 112(R1)
MOVD R11, 120(R1)
MOVD R12, 144(R1)
MOVD R13, 152(R1)
MOVD R14, 160(R1)
MOVD R15, 168(R1)
MOVD R16, 176(R1)
MOVD R17, 184(R1)
MOVD R18, 192(R1)
MOVD R19, 200(R1)
MOVD R20, 208(R1)
MOVD R21, 216(R1)
MOVD R22, 224(R1)
MOVD R23, 232(R1)
MOVD R24, 240(R1)
MOVD R25, 248(R1)
MOVD R26, 256(R1)
MOVD R27, 264(R1)
MOVD R28, 272(R1)
MOVD R29, 280(R1)
MOVD g, 288(R1)
MOVD LR, R31
MOVD R31, 32(R1)
CALL runtime·debugCallCheck(SB)
MOVD 40(R1), R22
XOR R0, R0
CMP R22, R0
BEQ good
MOVD 48(R1), R22
MOVD $8, R20
TW $31, R0, R0
BR restore
good:
#define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R23; \
CMP R26, R23; \
BGT 5(PC); \
MOVD $NAME(SB), R26; \
MOVD R26, 32(R1); \
CALL runtime·debugCallWrap(SB); \
BR restore
// the argument frame size
MOVD 128(R1), R26
DEBUG_CALL_DISPATCH(debugCall32<>, 32)
DEBUG_CALL_DISPATCH(debugCall64<>, 64)
DEBUG_CALL_DISPATCH(debugCall128<>, 128)
DEBUG_CALL_DISPATCH(debugCall256<>, 256)
DEBUG_CALL_DISPATCH(debugCall512<>, 512)
DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
// The frame size is too large. Report the error.
MOVD $debugCallFrameTooLarge<>(SB), R22
MOVD R22, 32(R1)
MOVD $20, R22
// length of debugCallFrameTooLarge string
MOVD R22, 40(R1)
MOVD $8, R20
TW $31, R0, R0
BR restore
restore:
MOVD $16, R20
TW $31, R0, R0
// restore all registers that can contain
// pointers including CR
MOVD 8(R1), R31
MOVW R31, CR
MOVD 24(R1), R2
MOVD 56(R1), R3
MOVD 64(R1), R4
MOVD 72(R1), R5
MOVD 80(R1), R6
MOVD 88(R1), R7
MOVD 96(R1), R8
MOVD 104(R1), R9
MOVD 112(R1), R10
MOVD 120(R1), R11
MOVD 144(R1), R12
MOVD 152(R1), R13
MOVD 160(R1), R14
MOVD 168(R1), R15
MOVD 176(R1), R16
MOVD 184(R1), R17
MOVD 192(R1), R18
MOVD 200(R1), R19
MOVD 208(R1), R20
MOVD 216(R1), R21
MOVD 224(R1), R22
MOVD 232(R1), R23
MOVD 240(R1), R24
MOVD 248(R1), R25
MOVD 256(R1), R26
MOVD 264(R1), R27
MOVD 272(R1), R28
MOVD 280(R1), R29
MOVD 288(R1), g
MOVD 16(R1), R31
// restore old LR
MOVD R31, LR
// restore caller PC
MOVD 0(R1), CTR
MOVD 136(R1), R31
// Add 32 bytes more to compensate for SP change in saveSigContext
ADD $352, R1
JMP (CTR)
#endif
#define DEBUG_CALL_FN(NAME,MAXSIZE) \
TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \
NO_LOCAL_POINTERS; \
MOVD $0, R20; \
TW $31, R0, R0 \
MOVD $1, R20; \
TW $31, R0, R0 \
RET
DEBUG_CALL_FN(debugCall32<>, 32)
DEBUG_CALL_FN(debugCall64<>, 64)
DEBUG_CALL_FN(debugCall128<>, 128)
DEBUG_CALL_FN(debugCall256<>, 256)
DEBUG_CALL_FN(debugCall512<>, 512)
DEBUG_CALL_FN(debugCall1024<>, 1024)
DEBUG_CALL_FN(debugCall2048<>, 2048)
DEBUG_CALL_FN(debugCall4096<>, 4096)
DEBUG_CALL_FN(debugCall8192<>, 8192)
DEBUG_CALL_FN(debugCall16384<>, 16384)
DEBUG_CALL_FN(debugCall32768<>, 32768)
DEBUG_CALL_FN(debugCall65536<>, 65536)
#ifdef GOARCH_ppc64le
// func debugCallPanicked(val interface{})
TEXT runtime·debugCallPanicked(SB),NOSPLIT,$32-16
// Copy the panic value to the top of stack at SP+32.
MOVD val_type+0(FP), R31
MOVD R31, 32(R1)
MOVD val_data+8(FP), R31
MOVD R31, 40(R1)
MOVD $2, R20
TW $31, R0, R0
RET
#endif
// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers, but the space for those arguments are allocated
// in the caller's stack frame. These stubs write the args into that stack space and
// then tail call to the corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicIndex<ABIInternal>(SB)
TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicIndexU<ABIInternal>(SB)
TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R4, R3
MOVD R5, R4
JMP runtime·goPanicSliceAlen<ABIInternal>(SB)
TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R4, R3
MOVD R5, R4
JMP runtime·goPanicSliceAlenU<ABIInternal>(SB)
TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R4, R3
MOVD R5, R4
JMP runtime·goPanicSliceAcap<ABIInternal>(SB)
TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R4, R3
MOVD R5, R4
JMP runtime·goPanicSliceAcapU<ABIInternal>(SB)
TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicSliceB<ABIInternal>(SB)
TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicSliceBU<ABIInternal>(SB)
TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R5, R3
MOVD R6, R4
JMP runtime·goPanicSlice3Alen<ABIInternal>(SB)
TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R5, R3
MOVD R6, R4
JMP runtime·goPanicSlice3AlenU<ABIInternal>(SB)
TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R5, R3
MOVD R6, R4
JMP runtime·goPanicSlice3Acap<ABIInternal>(SB)
TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R5, R3
MOVD R6, R4
JMP runtime·goPanicSlice3AcapU<ABIInternal>(SB)
TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R4, R3
MOVD R5, R4
JMP runtime·goPanicSlice3B<ABIInternal>(SB)
TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R4, R3
MOVD R5, R4
JMP runtime·goPanicSlice3BU<ABIInternal>(SB)
TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicSlice3C<ABIInternal>(SB)
TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicSlice3CU<ABIInternal>(SB)
TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R5, R3
MOVD R6, R4
JMP runtime·goPanicSliceConvert<ABIInternal>(SB)
// These functions are used when internal linking cgo with external
// objects compiled with the -Os on gcc. They reduce prologue/epilogue
// size by deferring preservation of callee-save registers to a shared
// function. These are defined in PPC64 ELFv2 2.3.3 (but also present
// in ELFv1)
//
// These appear unused, but the linker will redirect calls to functions
// like _savegpr0_14 or _restgpr1_14 to runtime.elf_savegpr0 or
// runtime.elf_restgpr1 with an appropriate offset based on the number
// register operations required when linking external objects which
// make these calls. For GPR/FPR saves, the minimum register value is
// 14, for VR it is 20.
//
// These are only used when linking such cgo code internally. Note, R12
// and R0 may be used in different ways than regular ELF compliant
// functions.
TEXT runtime·elf_savegpr0(SB),NOSPLIT|NOFRAME,$0
// R0 holds the LR of the caller's caller, R1 holds save location
MOVD R14, -144(R1)
MOVD R15, -136(R1)
MOVD R16, -128(R1)
MOVD R17, -120(R1)
MOVD R18, -112(R1)
MOVD R19, -104(R1)
MOVD R20, -96(R1)
MOVD R21, -88(R1)
MOVD R22, -80(R1)
MOVD R23, -72(R1)
MOVD R24, -64(R1)
MOVD R25, -56(R1)
MOVD R26, -48(R1)
MOVD R27, -40(R1)
MOVD R28, -32(R1)
MOVD R29, -24(R1)
MOVD g, -16(R1)
MOVD R31, -8(R1)
MOVD R0, 16(R1)
RET
TEXT runtime·elf_restgpr0(SB),NOSPLIT|NOFRAME,$0
// R1 holds save location. This returns to the LR saved on stack (bypassing the caller)
MOVD -144(R1), R14
MOVD -136(R1), R15
MOVD -128(R1), R16
MOVD -120(R1), R17
MOVD -112(R1), R18
MOVD -104(R1), R19
MOVD -96(R1), R20
MOVD -88(R1), R21
MOVD -80(R1), R22
MOVD -72(R1), R23
MOVD -64(R1), R24
MOVD -56(R1), R25
MOVD -48(R1), R26
MOVD -40(R1), R27
MOVD -32(R1), R28
MOVD -24(R1), R29
MOVD -16(R1), g
MOVD -8(R1), R31
MOVD 16(R1), R0 // Load and return to saved LR
MOVD R0, LR
RET
TEXT runtime·elf_savegpr1(SB),NOSPLIT|NOFRAME,$0
// R12 holds the save location
MOVD R14, -144(R12)
MOVD R15, -136(R12)
MOVD R16, -128(R12)
MOVD R17, -120(R12)
MOVD R18, -112(R12)
MOVD R19, -104(R12)
MOVD R20, -96(R12)
MOVD R21, -88(R12)
MOVD R22, -80(R12)
MOVD R23, -72(R12)
MOVD R24, -64(R12)
MOVD R25, -56(R12)
MOVD R26, -48(R12)
MOVD R27, -40(R12)
MOVD R28, -32(R12)
MOVD R29, -24(R12)
MOVD g, -16(R12)
MOVD R31, -8(R12)
RET
TEXT runtime·elf_restgpr1(SB),NOSPLIT|NOFRAME,$0
// R12 holds the save location
MOVD -144(R12), R14
MOVD -136(R12), R15
MOVD -128(R12), R16
MOVD -120(R12), R17
MOVD -112(R12), R18
MOVD -104(R12), R19
MOVD -96(R12), R20
MOVD -88(R12), R21
MOVD -80(R12), R22
MOVD -72(R12), R23
MOVD -64(R12), R24
MOVD -56(R12), R25
MOVD -48(R12), R26
MOVD -40(R12), R27
MOVD -32(R12), R28
MOVD -24(R12), R29
MOVD -16(R12), g
MOVD -8(R12), R31
RET
TEXT runtime·elf_savefpr(SB),NOSPLIT|NOFRAME,$0
// R0 holds the LR of the caller's caller, R1 holds save location
FMOVD F14, -144(R1)
FMOVD F15, -136(R1)
FMOVD F16, -128(R1)
FMOVD F17, -120(R1)
FMOVD F18, -112(R1)
FMOVD F19, -104(R1)
FMOVD F20, -96(R1)
FMOVD F21, -88(R1)
FMOVD F22, -80(R1)
FMOVD F23, -72(R1)
FMOVD F24, -64(R1)
FMOVD F25, -56(R1)
FMOVD F26, -48(R1)
FMOVD F27, -40(R1)
FMOVD F28, -32(R1)
FMOVD F29, -24(R1)
FMOVD F30, -16(R1)
FMOVD F31, -8(R1)
MOVD R0, 16(R1)
RET
TEXT runtime·elf_restfpr(SB),NOSPLIT|NOFRAME,$0
// R1 holds save location. This returns to the LR saved on stack (bypassing the caller)
FMOVD -144(R1), F14
FMOVD -136(R1), F15
FMOVD -128(R1), F16
FMOVD -120(R1), F17
FMOVD -112(R1), F18
FMOVD -104(R1), F19
FMOVD -96(R1), F20
FMOVD -88(R1), F21
FMOVD -80(R1), F22
FMOVD -72(R1), F23
FMOVD -64(R1), F24
FMOVD -56(R1), F25
FMOVD -48(R1), F26
FMOVD -40(R1), F27
FMOVD -32(R1), F28
FMOVD -24(R1), F29
FMOVD -16(R1), F30
FMOVD -8(R1), F31
MOVD 16(R1), R0 // Load and return to saved LR
MOVD R0, LR
RET
TEXT runtime·elf_savevr(SB),NOSPLIT|NOFRAME,$0
// R0 holds the save location, R12 is clobbered
MOVD $-192, R12
STVX V20, (R0+R12)
MOVD $-176, R12
STVX V21, (R0+R12)
MOVD $-160, R12
STVX V22, (R0+R12)
MOVD $-144, R12
STVX V23, (R0+R12)
MOVD $-128, R12
STVX V24, (R0+R12)
MOVD $-112, R12
STVX V25, (R0+R12)
MOVD $-96, R12
STVX V26, (R0+R12)
MOVD $-80, R12
STVX V27, (R0+R12)
MOVD $-64, R12
STVX V28, (R0+R12)
MOVD $-48, R12
STVX V29, (R0+R12)
MOVD $-32, R12
STVX V30, (R0+R12)
MOVD $-16, R12
STVX V31, (R0+R12)
RET
TEXT runtime·elf_restvr(SB),NOSPLIT|NOFRAME,$0
// R0 holds the save location, R12 is clobbered
MOVD $-192, R12
LVX (R0+R12), V20
MOVD $-176, R12
LVX (R0+R12), V21
MOVD $-160, R12
LVX (R0+R12), V22
MOVD $-144, R12
LVX (R0+R12), V23
MOVD $-128, R12
LVX (R0+R12), V24
MOVD $-112, R12
LVX (R0+R12), V25
MOVD $-96, R12
LVX (R0+R12), V26
MOVD $-80, R12
LVX (R0+R12), V27
MOVD $-64, R12
LVX (R0+R12), V28
MOVD $-48, R12
LVX (R0+R12), V29
MOVD $-32, R12
LVX (R0+R12), V30
MOVD $-16, R12
LVX (R0+R12), V31
RET