|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // This file implements signed multi-precision integers. | 
|  |  | 
|  | package big | 
|  |  | 
|  | import ( | 
|  | "fmt" | 
|  | "io" | 
|  | "math/rand" | 
|  | "strings" | 
|  | ) | 
|  |  | 
|  | // An Int represents a signed multi-precision integer. | 
|  | // The zero value for an Int represents the value 0. | 
|  | // | 
|  | // Operations always take pointer arguments (*Int) rather | 
|  | // than Int values, and each unique Int value requires | 
|  | // its own unique *Int pointer. To "copy" an Int value, | 
|  | // an existing (or newly allocated) Int must be set to | 
|  | // a new value using the Int.Set method; shallow copies | 
|  | // of Ints are not supported and may lead to errors. | 
|  | type Int struct { | 
|  | neg bool // sign | 
|  | abs nat  // absolute value of the integer | 
|  | } | 
|  |  | 
|  | var intOne = &Int{false, natOne} | 
|  |  | 
|  | // Sign returns: | 
|  | // | 
|  | //	-1 if x <  0 | 
|  | //	 0 if x == 0 | 
|  | //	+1 if x >  0 | 
|  | // | 
|  | func (x *Int) Sign() int { | 
|  | if len(x.abs) == 0 { | 
|  | return 0 | 
|  | } | 
|  | if x.neg { | 
|  | return -1 | 
|  | } | 
|  | return 1 | 
|  | } | 
|  |  | 
|  | // SetInt64 sets z to x and returns z. | 
|  | func (z *Int) SetInt64(x int64) *Int { | 
|  | neg := false | 
|  | if x < 0 { | 
|  | neg = true | 
|  | x = -x | 
|  | } | 
|  | z.abs = z.abs.setUint64(uint64(x)) | 
|  | z.neg = neg | 
|  | return z | 
|  | } | 
|  |  | 
|  | // SetUint64 sets z to x and returns z. | 
|  | func (z *Int) SetUint64(x uint64) *Int { | 
|  | z.abs = z.abs.setUint64(x) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // NewInt allocates and returns a new Int set to x. | 
|  | func NewInt(x int64) *Int { | 
|  | return new(Int).SetInt64(x) | 
|  | } | 
|  |  | 
|  | // Set sets z to x and returns z. | 
|  | func (z *Int) Set(x *Int) *Int { | 
|  | if z != x { | 
|  | z.abs = z.abs.set(x.abs) | 
|  | z.neg = x.neg | 
|  | } | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Bits provides raw (unchecked but fast) access to x by returning its | 
|  | // absolute value as a little-endian Word slice. The result and x share | 
|  | // the same underlying array. | 
|  | // Bits is intended to support implementation of missing low-level Int | 
|  | // functionality outside this package; it should be avoided otherwise. | 
|  | func (x *Int) Bits() []Word { | 
|  | return x.abs | 
|  | } | 
|  |  | 
|  | // SetBits provides raw (unchecked but fast) access to z by setting its | 
|  | // value to abs, interpreted as a little-endian Word slice, and returning | 
|  | // z. The result and abs share the same underlying array. | 
|  | // SetBits is intended to support implementation of missing low-level Int | 
|  | // functionality outside this package; it should be avoided otherwise. | 
|  | func (z *Int) SetBits(abs []Word) *Int { | 
|  | z.abs = nat(abs).norm() | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Abs sets z to |x| (the absolute value of x) and returns z. | 
|  | func (z *Int) Abs(x *Int) *Int { | 
|  | z.Set(x) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Neg sets z to -x and returns z. | 
|  | func (z *Int) Neg(x *Int) *Int { | 
|  | z.Set(x) | 
|  | z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Add sets z to the sum x+y and returns z. | 
|  | func (z *Int) Add(x, y *Int) *Int { | 
|  | neg := x.neg | 
|  | if x.neg == y.neg { | 
|  | // x + y == x + y | 
|  | // (-x) + (-y) == -(x + y) | 
|  | z.abs = z.abs.add(x.abs, y.abs) | 
|  | } else { | 
|  | // x + (-y) == x - y == -(y - x) | 
|  | // (-x) + y == y - x == -(x - y) | 
|  | if x.abs.cmp(y.abs) >= 0 { | 
|  | z.abs = z.abs.sub(x.abs, y.abs) | 
|  | } else { | 
|  | neg = !neg | 
|  | z.abs = z.abs.sub(y.abs, x.abs) | 
|  | } | 
|  | } | 
|  | z.neg = len(z.abs) > 0 && neg // 0 has no sign | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Sub sets z to the difference x-y and returns z. | 
|  | func (z *Int) Sub(x, y *Int) *Int { | 
|  | neg := x.neg | 
|  | if x.neg != y.neg { | 
|  | // x - (-y) == x + y | 
|  | // (-x) - y == -(x + y) | 
|  | z.abs = z.abs.add(x.abs, y.abs) | 
|  | } else { | 
|  | // x - y == x - y == -(y - x) | 
|  | // (-x) - (-y) == y - x == -(x - y) | 
|  | if x.abs.cmp(y.abs) >= 0 { | 
|  | z.abs = z.abs.sub(x.abs, y.abs) | 
|  | } else { | 
|  | neg = !neg | 
|  | z.abs = z.abs.sub(y.abs, x.abs) | 
|  | } | 
|  | } | 
|  | z.neg = len(z.abs) > 0 && neg // 0 has no sign | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Mul sets z to the product x*y and returns z. | 
|  | func (z *Int) Mul(x, y *Int) *Int { | 
|  | // x * y == x * y | 
|  | // x * (-y) == -(x * y) | 
|  | // (-x) * y == -(x * y) | 
|  | // (-x) * (-y) == x * y | 
|  | if x == y { | 
|  | z.abs = z.abs.sqr(x.abs) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  | z.abs = z.abs.mul(x.abs, y.abs) | 
|  | z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign | 
|  | return z | 
|  | } | 
|  |  | 
|  | // MulRange sets z to the product of all integers | 
|  | // in the range [a, b] inclusively and returns z. | 
|  | // If a > b (empty range), the result is 1. | 
|  | func (z *Int) MulRange(a, b int64) *Int { | 
|  | switch { | 
|  | case a > b: | 
|  | return z.SetInt64(1) // empty range | 
|  | case a <= 0 && b >= 0: | 
|  | return z.SetInt64(0) // range includes 0 | 
|  | } | 
|  | // a <= b && (b < 0 || a > 0) | 
|  |  | 
|  | neg := false | 
|  | if a < 0 { | 
|  | neg = (b-a)&1 == 0 | 
|  | a, b = -b, -a | 
|  | } | 
|  |  | 
|  | z.abs = z.abs.mulRange(uint64(a), uint64(b)) | 
|  | z.neg = neg | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Binomial sets z to the binomial coefficient of (n, k) and returns z. | 
|  | func (z *Int) Binomial(n, k int64) *Int { | 
|  | // reduce the number of multiplications by reducing k | 
|  | if n/2 < k && k <= n { | 
|  | k = n - k // Binomial(n, k) == Binomial(n, n-k) | 
|  | } | 
|  | var a, b Int | 
|  | a.MulRange(n-k+1, n) | 
|  | b.MulRange(1, k) | 
|  | return z.Quo(&a, &b) | 
|  | } | 
|  |  | 
|  | // Quo sets z to the quotient x/y for y != 0 and returns z. | 
|  | // If y == 0, a division-by-zero run-time panic occurs. | 
|  | // Quo implements truncated division (like Go); see QuoRem for more details. | 
|  | func (z *Int) Quo(x, y *Int) *Int { | 
|  | z.abs, _ = z.abs.div(nil, x.abs, y.abs) | 
|  | z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Rem sets z to the remainder x%y for y != 0 and returns z. | 
|  | // If y == 0, a division-by-zero run-time panic occurs. | 
|  | // Rem implements truncated modulus (like Go); see QuoRem for more details. | 
|  | func (z *Int) Rem(x, y *Int) *Int { | 
|  | _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) | 
|  | z.neg = len(z.abs) > 0 && x.neg // 0 has no sign | 
|  | return z | 
|  | } | 
|  |  | 
|  | // QuoRem sets z to the quotient x/y and r to the remainder x%y | 
|  | // and returns the pair (z, r) for y != 0. | 
|  | // If y == 0, a division-by-zero run-time panic occurs. | 
|  | // | 
|  | // QuoRem implements T-division and modulus (like Go): | 
|  | // | 
|  | //	q = x/y      with the result truncated to zero | 
|  | //	r = x - y*q | 
|  | // | 
|  | // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) | 
|  | // See DivMod for Euclidean division and modulus (unlike Go). | 
|  | // | 
|  | func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { | 
|  | z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) | 
|  | z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign | 
|  | return z, r | 
|  | } | 
|  |  | 
|  | // Div sets z to the quotient x/y for y != 0 and returns z. | 
|  | // If y == 0, a division-by-zero run-time panic occurs. | 
|  | // Div implements Euclidean division (unlike Go); see DivMod for more details. | 
|  | func (z *Int) Div(x, y *Int) *Int { | 
|  | y_neg := y.neg // z may be an alias for y | 
|  | var r Int | 
|  | z.QuoRem(x, y, &r) | 
|  | if r.neg { | 
|  | if y_neg { | 
|  | z.Add(z, intOne) | 
|  | } else { | 
|  | z.Sub(z, intOne) | 
|  | } | 
|  | } | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Mod sets z to the modulus x%y for y != 0 and returns z. | 
|  | // If y == 0, a division-by-zero run-time panic occurs. | 
|  | // Mod implements Euclidean modulus (unlike Go); see DivMod for more details. | 
|  | func (z *Int) Mod(x, y *Int) *Int { | 
|  | y0 := y // save y | 
|  | if z == y || alias(z.abs, y.abs) { | 
|  | y0 = new(Int).Set(y) | 
|  | } | 
|  | var q Int | 
|  | q.QuoRem(x, y, z) | 
|  | if z.neg { | 
|  | if y0.neg { | 
|  | z.Sub(z, y0) | 
|  | } else { | 
|  | z.Add(z, y0) | 
|  | } | 
|  | } | 
|  | return z | 
|  | } | 
|  |  | 
|  | // DivMod sets z to the quotient x div y and m to the modulus x mod y | 
|  | // and returns the pair (z, m) for y != 0. | 
|  | // If y == 0, a division-by-zero run-time panic occurs. | 
|  | // | 
|  | // DivMod implements Euclidean division and modulus (unlike Go): | 
|  | // | 
|  | //	q = x div y  such that | 
|  | //	m = x - y*q  with 0 <= m < |y| | 
|  | // | 
|  | // (See Raymond T. Boute, ``The Euclidean definition of the functions | 
|  | // div and mod''. ACM Transactions on Programming Languages and | 
|  | // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. | 
|  | // ACM press.) | 
|  | // See QuoRem for T-division and modulus (like Go). | 
|  | // | 
|  | func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { | 
|  | y0 := y // save y | 
|  | if z == y || alias(z.abs, y.abs) { | 
|  | y0 = new(Int).Set(y) | 
|  | } | 
|  | z.QuoRem(x, y, m) | 
|  | if m.neg { | 
|  | if y0.neg { | 
|  | z.Add(z, intOne) | 
|  | m.Sub(m, y0) | 
|  | } else { | 
|  | z.Sub(z, intOne) | 
|  | m.Add(m, y0) | 
|  | } | 
|  | } | 
|  | return z, m | 
|  | } | 
|  |  | 
|  | // Cmp compares x and y and returns: | 
|  | // | 
|  | //   -1 if x <  y | 
|  | //    0 if x == y | 
|  | //   +1 if x >  y | 
|  | // | 
|  | func (x *Int) Cmp(y *Int) (r int) { | 
|  | // x cmp y == x cmp y | 
|  | // x cmp (-y) == x | 
|  | // (-x) cmp y == y | 
|  | // (-x) cmp (-y) == -(x cmp y) | 
|  | switch { | 
|  | case x == y: | 
|  | // nothing to do | 
|  | case x.neg == y.neg: | 
|  | r = x.abs.cmp(y.abs) | 
|  | if x.neg { | 
|  | r = -r | 
|  | } | 
|  | case x.neg: | 
|  | r = -1 | 
|  | default: | 
|  | r = 1 | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // CmpAbs compares the absolute values of x and y and returns: | 
|  | // | 
|  | //   -1 if |x| <  |y| | 
|  | //    0 if |x| == |y| | 
|  | //   +1 if |x| >  |y| | 
|  | // | 
|  | func (x *Int) CmpAbs(y *Int) int { | 
|  | return x.abs.cmp(y.abs) | 
|  | } | 
|  |  | 
|  | // low32 returns the least significant 32 bits of x. | 
|  | func low32(x nat) uint32 { | 
|  | if len(x) == 0 { | 
|  | return 0 | 
|  | } | 
|  | return uint32(x[0]) | 
|  | } | 
|  |  | 
|  | // low64 returns the least significant 64 bits of x. | 
|  | func low64(x nat) uint64 { | 
|  | if len(x) == 0 { | 
|  | return 0 | 
|  | } | 
|  | v := uint64(x[0]) | 
|  | if _W == 32 && len(x) > 1 { | 
|  | return uint64(x[1])<<32 | v | 
|  | } | 
|  | return v | 
|  | } | 
|  |  | 
|  | // Int64 returns the int64 representation of x. | 
|  | // If x cannot be represented in an int64, the result is undefined. | 
|  | func (x *Int) Int64() int64 { | 
|  | v := int64(low64(x.abs)) | 
|  | if x.neg { | 
|  | v = -v | 
|  | } | 
|  | return v | 
|  | } | 
|  |  | 
|  | // Uint64 returns the uint64 representation of x. | 
|  | // If x cannot be represented in a uint64, the result is undefined. | 
|  | func (x *Int) Uint64() uint64 { | 
|  | return low64(x.abs) | 
|  | } | 
|  |  | 
|  | // IsInt64 reports whether x can be represented as an int64. | 
|  | func (x *Int) IsInt64() bool { | 
|  | if len(x.abs) <= 64/_W { | 
|  | w := int64(low64(x.abs)) | 
|  | return w >= 0 || x.neg && w == -w | 
|  | } | 
|  | return false | 
|  | } | 
|  |  | 
|  | // IsUint64 reports whether x can be represented as a uint64. | 
|  | func (x *Int) IsUint64() bool { | 
|  | return !x.neg && len(x.abs) <= 64/_W | 
|  | } | 
|  |  | 
|  | // SetString sets z to the value of s, interpreted in the given base, | 
|  | // and returns z and a boolean indicating success. The entire string | 
|  | // (not just a prefix) must be valid for success. If SetString fails, | 
|  | // the value of z is undefined but the returned value is nil. | 
|  | // | 
|  | // The base argument must be 0 or a value between 2 and MaxBase. | 
|  | // For base 0, the number prefix determines the actual base: A prefix of | 
|  | // ``0b'' or ``0B'' selects base 2, ``0'', ``0o'' or ``0O'' selects base 8, | 
|  | // and ``0x'' or ``0X'' selects base 16. Otherwise, the selected base is 10 | 
|  | // and no prefix is accepted. | 
|  | // | 
|  | // For bases <= 36, lower and upper case letters are considered the same: | 
|  | // The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35. | 
|  | // For bases > 36, the upper case letters 'A' to 'Z' represent the digit | 
|  | // values 36 to 61. | 
|  | // | 
|  | // For base 0, an underscore character ``_'' may appear between a base | 
|  | // prefix and an adjacent digit, and between successive digits; such | 
|  | // underscores do not change the value of the number. | 
|  | // Incorrect placement of underscores is reported as an error if there | 
|  | // are no other errors. If base != 0, underscores are not recognized | 
|  | // and act like any other character that is not a valid digit. | 
|  | // | 
|  | func (z *Int) SetString(s string, base int) (*Int, bool) { | 
|  | return z.setFromScanner(strings.NewReader(s), base) | 
|  | } | 
|  |  | 
|  | // setFromScanner implements SetString given an io.BytesScanner. | 
|  | // For documentation see comments of SetString. | 
|  | func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) { | 
|  | if _, _, err := z.scan(r, base); err != nil { | 
|  | return nil, false | 
|  | } | 
|  | // entire content must have been consumed | 
|  | if _, err := r.ReadByte(); err != io.EOF { | 
|  | return nil, false | 
|  | } | 
|  | return z, true // err == io.EOF => scan consumed all content of r | 
|  | } | 
|  |  | 
|  | // SetBytes interprets buf as the bytes of a big-endian unsigned | 
|  | // integer, sets z to that value, and returns z. | 
|  | func (z *Int) SetBytes(buf []byte) *Int { | 
|  | z.abs = z.abs.setBytes(buf) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Bytes returns the absolute value of x as a big-endian byte slice. | 
|  | // | 
|  | // To use a fixed length slice, or a preallocated one, use FillBytes. | 
|  | func (x *Int) Bytes() []byte { | 
|  | buf := make([]byte, len(x.abs)*_S) | 
|  | return buf[x.abs.bytes(buf):] | 
|  | } | 
|  |  | 
|  | // FillBytes sets buf to the absolute value of x, storing it as a zero-extended | 
|  | // big-endian byte slice, and returns buf. | 
|  | // | 
|  | // If the absolute value of x doesn't fit in buf, FillBytes will panic. | 
|  | func (x *Int) FillBytes(buf []byte) []byte { | 
|  | // Clear whole buffer. (This gets optimized into a memclr.) | 
|  | for i := range buf { | 
|  | buf[i] = 0 | 
|  | } | 
|  | x.abs.bytes(buf) | 
|  | return buf | 
|  | } | 
|  |  | 
|  | // BitLen returns the length of the absolute value of x in bits. | 
|  | // The bit length of 0 is 0. | 
|  | func (x *Int) BitLen() int { | 
|  | return x.abs.bitLen() | 
|  | } | 
|  |  | 
|  | // TrailingZeroBits returns the number of consecutive least significant zero | 
|  | // bits of |x|. | 
|  | func (x *Int) TrailingZeroBits() uint { | 
|  | return x.abs.trailingZeroBits() | 
|  | } | 
|  |  | 
|  | // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. | 
|  | // If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0, | 
|  | // and x and m are not relatively prime, z is unchanged and nil is returned. | 
|  | // | 
|  | // Modular exponentiation of inputs of a particular size is not a | 
|  | // cryptographically constant-time operation. | 
|  | func (z *Int) Exp(x, y, m *Int) *Int { | 
|  | // See Knuth, volume 2, section 4.6.3. | 
|  | xWords := x.abs | 
|  | if y.neg { | 
|  | if m == nil || len(m.abs) == 0 { | 
|  | return z.SetInt64(1) | 
|  | } | 
|  | // for y < 0: x**y mod m == (x**(-1))**|y| mod m | 
|  | inverse := new(Int).ModInverse(x, m) | 
|  | if inverse == nil { | 
|  | return nil | 
|  | } | 
|  | xWords = inverse.abs | 
|  | } | 
|  | yWords := y.abs | 
|  |  | 
|  | var mWords nat | 
|  | if m != nil { | 
|  | mWords = m.abs // m.abs may be nil for m == 0 | 
|  | } | 
|  |  | 
|  | z.abs = z.abs.expNN(xWords, yWords, mWords) | 
|  | z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign | 
|  | if z.neg && len(mWords) > 0 { | 
|  | // make modulus result positive | 
|  | z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m| | 
|  | z.neg = false | 
|  | } | 
|  |  | 
|  | return z | 
|  | } | 
|  |  | 
|  | // GCD sets z to the greatest common divisor of a and b and returns z. | 
|  | // If x or y are not nil, GCD sets their value such that z = a*x + b*y. | 
|  | // | 
|  | // a and b may be positive, zero or negative. (Before Go 1.14 both had | 
|  | // to be > 0.) Regardless of the signs of a and b, z is always >= 0. | 
|  | // | 
|  | // If a == b == 0, GCD sets z = x = y = 0. | 
|  | // | 
|  | // If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1. | 
|  | // | 
|  | // If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0. | 
|  | func (z *Int) GCD(x, y, a, b *Int) *Int { | 
|  | if len(a.abs) == 0 || len(b.abs) == 0 { | 
|  | lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg | 
|  | if lenA == 0 { | 
|  | z.Set(b) | 
|  | } else { | 
|  | z.Set(a) | 
|  | } | 
|  | z.neg = false | 
|  | if x != nil { | 
|  | if lenA == 0 { | 
|  | x.SetUint64(0) | 
|  | } else { | 
|  | x.SetUint64(1) | 
|  | x.neg = negA | 
|  | } | 
|  | } | 
|  | if y != nil { | 
|  | if lenB == 0 { | 
|  | y.SetUint64(0) | 
|  | } else { | 
|  | y.SetUint64(1) | 
|  | y.neg = negB | 
|  | } | 
|  | } | 
|  | return z | 
|  | } | 
|  |  | 
|  | return z.lehmerGCD(x, y, a, b) | 
|  | } | 
|  |  | 
|  | // lehmerSimulate attempts to simulate several Euclidean update steps | 
|  | // using the leading digits of A and B.  It returns u0, u1, v0, v1 | 
|  | // such that A and B can be updated as: | 
|  | //		A = u0*A + v0*B | 
|  | //		B = u1*A + v1*B | 
|  | // Requirements: A >= B and len(B.abs) >= 2 | 
|  | // Since we are calculating with full words to avoid overflow, | 
|  | // we use 'even' to track the sign of the cosequences. | 
|  | // For even iterations: u0, v1 >= 0 && u1, v0 <= 0 | 
|  | // For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0 | 
|  | func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) { | 
|  | // initialize the digits | 
|  | var a1, a2, u2, v2 Word | 
|  |  | 
|  | m := len(B.abs) // m >= 2 | 
|  | n := len(A.abs) // n >= m >= 2 | 
|  |  | 
|  | // extract the top Word of bits from A and B | 
|  | h := nlz(A.abs[n-1]) | 
|  | a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h) | 
|  | // B may have implicit zero words in the high bits if the lengths differ | 
|  | switch { | 
|  | case n == m: | 
|  | a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h) | 
|  | case n == m+1: | 
|  | a2 = B.abs[n-2] >> (_W - h) | 
|  | default: | 
|  | a2 = 0 | 
|  | } | 
|  |  | 
|  | // Since we are calculating with full words to avoid overflow, | 
|  | // we use 'even' to track the sign of the cosequences. | 
|  | // For even iterations: u0, v1 >= 0 && u1, v0 <= 0 | 
|  | // For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0 | 
|  | // The first iteration starts with k=1 (odd). | 
|  | even = false | 
|  | // variables to track the cosequences | 
|  | u0, u1, u2 = 0, 1, 0 | 
|  | v0, v1, v2 = 0, 0, 1 | 
|  |  | 
|  | // Calculate the quotient and cosequences using Collins' stopping condition. | 
|  | // Note that overflow of a Word is not possible when computing the remainder | 
|  | // sequence and cosequences since the cosequence size is bounded by the input size. | 
|  | // See section 4.2 of Jebelean for details. | 
|  | for a2 >= v2 && a1-a2 >= v1+v2 { | 
|  | q, r := a1/a2, a1%a2 | 
|  | a1, a2 = a2, r | 
|  | u0, u1, u2 = u1, u2, u1+q*u2 | 
|  | v0, v1, v2 = v1, v2, v1+q*v2 | 
|  | even = !even | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // lehmerUpdate updates the inputs A and B such that: | 
|  | //		A = u0*A + v0*B | 
|  | //		B = u1*A + v1*B | 
|  | // where the signs of u0, u1, v0, v1 are given by even | 
|  | // For even == true: u0, v1 >= 0 && u1, v0 <= 0 | 
|  | // For even == false: u0, v1 <= 0 && u1, v0 >= 0 | 
|  | // q, r, s, t are temporary variables to avoid allocations in the multiplication | 
|  | func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) { | 
|  |  | 
|  | t.abs = t.abs.setWord(u0) | 
|  | s.abs = s.abs.setWord(v0) | 
|  | t.neg = !even | 
|  | s.neg = even | 
|  |  | 
|  | t.Mul(A, t) | 
|  | s.Mul(B, s) | 
|  |  | 
|  | r.abs = r.abs.setWord(u1) | 
|  | q.abs = q.abs.setWord(v1) | 
|  | r.neg = even | 
|  | q.neg = !even | 
|  |  | 
|  | r.Mul(A, r) | 
|  | q.Mul(B, q) | 
|  |  | 
|  | A.Add(t, s) | 
|  | B.Add(r, q) | 
|  | } | 
|  |  | 
|  | // euclidUpdate performs a single step of the Euclidean GCD algorithm | 
|  | // if extended is true, it also updates the cosequence Ua, Ub | 
|  | func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) { | 
|  | q, r = q.QuoRem(A, B, r) | 
|  |  | 
|  | *A, *B, *r = *B, *r, *A | 
|  |  | 
|  | if extended { | 
|  | // Ua, Ub = Ub, Ua - q*Ub | 
|  | t.Set(Ub) | 
|  | s.Mul(Ub, q) | 
|  | Ub.Sub(Ua, s) | 
|  | Ua.Set(t) | 
|  | } | 
|  | } | 
|  |  | 
|  | // lehmerGCD sets z to the greatest common divisor of a and b, | 
|  | // which both must be != 0, and returns z. | 
|  | // If x or y are not nil, their values are set such that z = a*x + b*y. | 
|  | // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L. | 
|  | // This implementation uses the improved condition by Collins requiring only one | 
|  | // quotient and avoiding the possibility of single Word overflow. | 
|  | // See Jebelean, "Improving the multiprecision Euclidean algorithm", | 
|  | // Design and Implementation of Symbolic Computation Systems, pp 45-58. | 
|  | // The cosequences are updated according to Algorithm 10.45 from | 
|  | // Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192. | 
|  | func (z *Int) lehmerGCD(x, y, a, b *Int) *Int { | 
|  | var A, B, Ua, Ub *Int | 
|  |  | 
|  | A = new(Int).Abs(a) | 
|  | B = new(Int).Abs(b) | 
|  |  | 
|  | extended := x != nil || y != nil | 
|  |  | 
|  | if extended { | 
|  | // Ua (Ub) tracks how many times input a has been accumulated into A (B). | 
|  | Ua = new(Int).SetInt64(1) | 
|  | Ub = new(Int) | 
|  | } | 
|  |  | 
|  | // temp variables for multiprecision update | 
|  | q := new(Int) | 
|  | r := new(Int) | 
|  | s := new(Int) | 
|  | t := new(Int) | 
|  |  | 
|  | // ensure A >= B | 
|  | if A.abs.cmp(B.abs) < 0 { | 
|  | A, B = B, A | 
|  | Ub, Ua = Ua, Ub | 
|  | } | 
|  |  | 
|  | // loop invariant A >= B | 
|  | for len(B.abs) > 1 { | 
|  | // Attempt to calculate in single-precision using leading words of A and B. | 
|  | u0, u1, v0, v1, even := lehmerSimulate(A, B) | 
|  |  | 
|  | // multiprecision Step | 
|  | if v0 != 0 { | 
|  | // Simulate the effect of the single-precision steps using the cosequences. | 
|  | // A = u0*A + v0*B | 
|  | // B = u1*A + v1*B | 
|  | lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even) | 
|  |  | 
|  | if extended { | 
|  | // Ua = u0*Ua + v0*Ub | 
|  | // Ub = u1*Ua + v1*Ub | 
|  | lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even) | 
|  | } | 
|  |  | 
|  | } else { | 
|  | // Single-digit calculations failed to simulate any quotients. | 
|  | // Do a standard Euclidean step. | 
|  | euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended) | 
|  | } | 
|  | } | 
|  |  | 
|  | if len(B.abs) > 0 { | 
|  | // extended Euclidean algorithm base case if B is a single Word | 
|  | if len(A.abs) > 1 { | 
|  | // A is longer than a single Word, so one update is needed. | 
|  | euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended) | 
|  | } | 
|  | if len(B.abs) > 0 { | 
|  | // A and B are both a single Word. | 
|  | aWord, bWord := A.abs[0], B.abs[0] | 
|  | if extended { | 
|  | var ua, ub, va, vb Word | 
|  | ua, ub = 1, 0 | 
|  | va, vb = 0, 1 | 
|  | even := true | 
|  | for bWord != 0 { | 
|  | q, r := aWord/bWord, aWord%bWord | 
|  | aWord, bWord = bWord, r | 
|  | ua, ub = ub, ua+q*ub | 
|  | va, vb = vb, va+q*vb | 
|  | even = !even | 
|  | } | 
|  |  | 
|  | t.abs = t.abs.setWord(ua) | 
|  | s.abs = s.abs.setWord(va) | 
|  | t.neg = !even | 
|  | s.neg = even | 
|  |  | 
|  | t.Mul(Ua, t) | 
|  | s.Mul(Ub, s) | 
|  |  | 
|  | Ua.Add(t, s) | 
|  | } else { | 
|  | for bWord != 0 { | 
|  | aWord, bWord = bWord, aWord%bWord | 
|  | } | 
|  | } | 
|  | A.abs[0] = aWord | 
|  | } | 
|  | } | 
|  | negA := a.neg | 
|  | if y != nil { | 
|  | // avoid aliasing b needed in the division below | 
|  | if y == b { | 
|  | B.Set(b) | 
|  | } else { | 
|  | B = b | 
|  | } | 
|  | // y = (z - a*x)/b | 
|  | y.Mul(a, Ua) // y can safely alias a | 
|  | if negA { | 
|  | y.neg = !y.neg | 
|  | } | 
|  | y.Sub(A, y) | 
|  | y.Div(y, B) | 
|  | } | 
|  |  | 
|  | if x != nil { | 
|  | *x = *Ua | 
|  | if negA { | 
|  | x.neg = !x.neg | 
|  | } | 
|  | } | 
|  |  | 
|  | *z = *A | 
|  |  | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Rand sets z to a pseudo-random number in [0, n) and returns z. | 
|  | // | 
|  | // As this uses the math/rand package, it must not be used for | 
|  | // security-sensitive work. Use crypto/rand.Int instead. | 
|  | func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { | 
|  | z.neg = false | 
|  | if n.neg || len(n.abs) == 0 { | 
|  | z.abs = nil | 
|  | return z | 
|  | } | 
|  | z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) | 
|  | return z | 
|  | } | 
|  |  | 
|  | // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ | 
|  | // and returns z. If g and n are not relatively prime, g has no multiplicative | 
|  | // inverse in the ring ℤ/nℤ.  In this case, z is unchanged and the return value | 
|  | // is nil. | 
|  | func (z *Int) ModInverse(g, n *Int) *Int { | 
|  | // GCD expects parameters a and b to be > 0. | 
|  | if n.neg { | 
|  | var n2 Int | 
|  | n = n2.Neg(n) | 
|  | } | 
|  | if g.neg { | 
|  | var g2 Int | 
|  | g = g2.Mod(g, n) | 
|  | } | 
|  | var d, x Int | 
|  | d.GCD(&x, nil, g, n) | 
|  |  | 
|  | // if and only if d==1, g and n are relatively prime | 
|  | if d.Cmp(intOne) != 0 { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // x and y are such that g*x + n*y = 1, therefore x is the inverse element, | 
|  | // but it may be negative, so convert to the range 0 <= z < |n| | 
|  | if x.neg { | 
|  | z.Add(&x, n) | 
|  | } else { | 
|  | z.Set(&x) | 
|  | } | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0. | 
|  | // The y argument must be an odd integer. | 
|  | func Jacobi(x, y *Int) int { | 
|  | if len(y.abs) == 0 || y.abs[0]&1 == 0 { | 
|  | panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y)) | 
|  | } | 
|  |  | 
|  | // We use the formulation described in chapter 2, section 2.4, | 
|  | // "The Yacas Book of Algorithms": | 
|  | // http://yacas.sourceforge.net/Algo.book.pdf | 
|  |  | 
|  | var a, b, c Int | 
|  | a.Set(x) | 
|  | b.Set(y) | 
|  | j := 1 | 
|  |  | 
|  | if b.neg { | 
|  | if a.neg { | 
|  | j = -1 | 
|  | } | 
|  | b.neg = false | 
|  | } | 
|  |  | 
|  | for { | 
|  | if b.Cmp(intOne) == 0 { | 
|  | return j | 
|  | } | 
|  | if len(a.abs) == 0 { | 
|  | return 0 | 
|  | } | 
|  | a.Mod(&a, &b) | 
|  | if len(a.abs) == 0 { | 
|  | return 0 | 
|  | } | 
|  | // a > 0 | 
|  |  | 
|  | // handle factors of 2 in 'a' | 
|  | s := a.abs.trailingZeroBits() | 
|  | if s&1 != 0 { | 
|  | bmod8 := b.abs[0] & 7 | 
|  | if bmod8 == 3 || bmod8 == 5 { | 
|  | j = -j | 
|  | } | 
|  | } | 
|  | c.Rsh(&a, s) // a = 2^s*c | 
|  |  | 
|  | // swap numerator and denominator | 
|  | if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 { | 
|  | j = -j | 
|  | } | 
|  | a.Set(&b) | 
|  | b.Set(&c) | 
|  | } | 
|  | } | 
|  |  | 
|  | // modSqrt3Mod4 uses the identity | 
|  | //      (a^((p+1)/4))^2  mod p | 
|  | //   == u^(p+1)          mod p | 
|  | //   == u^2              mod p | 
|  | // to calculate the square root of any quadratic residue mod p quickly for 3 | 
|  | // mod 4 primes. | 
|  | func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int { | 
|  | e := new(Int).Add(p, intOne) // e = p + 1 | 
|  | e.Rsh(e, 2)                  // e = (p + 1) / 4 | 
|  | z.Exp(x, e, p)               // z = x^e mod p | 
|  | return z | 
|  | } | 
|  |  | 
|  | // modSqrt5Mod8 uses Atkin's observation that 2 is not a square mod p | 
|  | //   alpha ==  (2*a)^((p-5)/8)    mod p | 
|  | //   beta  ==  2*a*alpha^2        mod p  is a square root of -1 | 
|  | //   b     ==  a*alpha*(beta-1)   mod p  is a square root of a | 
|  | // to calculate the square root of any quadratic residue mod p quickly for 5 | 
|  | // mod 8 primes. | 
|  | func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int { | 
|  | // p == 5 mod 8 implies p = e*8 + 5 | 
|  | // e is the quotient and 5 the remainder on division by 8 | 
|  | e := new(Int).Rsh(p, 3)  // e = (p - 5) / 8 | 
|  | tx := new(Int).Lsh(x, 1) // tx = 2*x | 
|  | alpha := new(Int).Exp(tx, e, p) | 
|  | beta := new(Int).Mul(alpha, alpha) | 
|  | beta.Mod(beta, p) | 
|  | beta.Mul(beta, tx) | 
|  | beta.Mod(beta, p) | 
|  | beta.Sub(beta, intOne) | 
|  | beta.Mul(beta, x) | 
|  | beta.Mod(beta, p) | 
|  | beta.Mul(beta, alpha) | 
|  | z.Mod(beta, p) | 
|  | return z | 
|  | } | 
|  |  | 
|  | // modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square | 
|  | // root of a quadratic residue modulo any prime. | 
|  | func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int { | 
|  | // Break p-1 into s*2^e such that s is odd. | 
|  | var s Int | 
|  | s.Sub(p, intOne) | 
|  | e := s.abs.trailingZeroBits() | 
|  | s.Rsh(&s, e) | 
|  |  | 
|  | // find some non-square n | 
|  | var n Int | 
|  | n.SetInt64(2) | 
|  | for Jacobi(&n, p) != -1 { | 
|  | n.Add(&n, intOne) | 
|  | } | 
|  |  | 
|  | // Core of the Tonelli-Shanks algorithm. Follows the description in | 
|  | // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra | 
|  | // Brown: | 
|  | // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf | 
|  | var y, b, g, t Int | 
|  | y.Add(&s, intOne) | 
|  | y.Rsh(&y, 1) | 
|  | y.Exp(x, &y, p)  // y = x^((s+1)/2) | 
|  | b.Exp(x, &s, p)  // b = x^s | 
|  | g.Exp(&n, &s, p) // g = n^s | 
|  | r := e | 
|  | for { | 
|  | // find the least m such that ord_p(b) = 2^m | 
|  | var m uint | 
|  | t.Set(&b) | 
|  | for t.Cmp(intOne) != 0 { | 
|  | t.Mul(&t, &t).Mod(&t, p) | 
|  | m++ | 
|  | } | 
|  |  | 
|  | if m == 0 { | 
|  | return z.Set(&y) | 
|  | } | 
|  |  | 
|  | t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p) | 
|  | // t = g^(2^(r-m-1)) mod p | 
|  | g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p | 
|  | y.Mul(&y, &t).Mod(&y, p) | 
|  | b.Mul(&b, &g).Mod(&b, p) | 
|  | r = m | 
|  | } | 
|  | } | 
|  |  | 
|  | // ModSqrt sets z to a square root of x mod p if such a square root exists, and | 
|  | // returns z. The modulus p must be an odd prime. If x is not a square mod p, | 
|  | // ModSqrt leaves z unchanged and returns nil. This function panics if p is | 
|  | // not an odd integer. | 
|  | func (z *Int) ModSqrt(x, p *Int) *Int { | 
|  | switch Jacobi(x, p) { | 
|  | case -1: | 
|  | return nil // x is not a square mod p | 
|  | case 0: | 
|  | return z.SetInt64(0) // sqrt(0) mod p = 0 | 
|  | case 1: | 
|  | break | 
|  | } | 
|  | if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p | 
|  | x = new(Int).Mod(x, p) | 
|  | } | 
|  |  | 
|  | switch { | 
|  | case p.abs[0]%4 == 3: | 
|  | // Check whether p is 3 mod 4, and if so, use the faster algorithm. | 
|  | return z.modSqrt3Mod4Prime(x, p) | 
|  | case p.abs[0]%8 == 5: | 
|  | // Check whether p is 5 mod 8, use Atkin's algorithm. | 
|  | return z.modSqrt5Mod8Prime(x, p) | 
|  | default: | 
|  | // Otherwise, use Tonelli-Shanks. | 
|  | return z.modSqrtTonelliShanks(x, p) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lsh sets z = x << n and returns z. | 
|  | func (z *Int) Lsh(x *Int, n uint) *Int { | 
|  | z.abs = z.abs.shl(x.abs, n) | 
|  | z.neg = x.neg | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Rsh sets z = x >> n and returns z. | 
|  | func (z *Int) Rsh(x *Int, n uint) *Int { | 
|  | if x.neg { | 
|  | // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) | 
|  | t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 | 
|  | t = t.shr(t, n) | 
|  | z.abs = t.add(t, natOne) | 
|  | z.neg = true // z cannot be zero if x is negative | 
|  | return z | 
|  | } | 
|  |  | 
|  | z.abs = z.abs.shr(x.abs, n) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Bit returns the value of the i'th bit of x. That is, it | 
|  | // returns (x>>i)&1. The bit index i must be >= 0. | 
|  | func (x *Int) Bit(i int) uint { | 
|  | if i == 0 { | 
|  | // optimization for common case: odd/even test of x | 
|  | if len(x.abs) > 0 { | 
|  | return uint(x.abs[0] & 1) // bit 0 is same for -x | 
|  | } | 
|  | return 0 | 
|  | } | 
|  | if i < 0 { | 
|  | panic("negative bit index") | 
|  | } | 
|  | if x.neg { | 
|  | t := nat(nil).sub(x.abs, natOne) | 
|  | return t.bit(uint(i)) ^ 1 | 
|  | } | 
|  |  | 
|  | return x.abs.bit(uint(i)) | 
|  | } | 
|  |  | 
|  | // SetBit sets z to x, with x's i'th bit set to b (0 or 1). | 
|  | // That is, if b is 1 SetBit sets z = x | (1 << i); | 
|  | // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, | 
|  | // SetBit will panic. | 
|  | func (z *Int) SetBit(x *Int, i int, b uint) *Int { | 
|  | if i < 0 { | 
|  | panic("negative bit index") | 
|  | } | 
|  | if x.neg { | 
|  | t := z.abs.sub(x.abs, natOne) | 
|  | t = t.setBit(t, uint(i), b^1) | 
|  | z.abs = t.add(t, natOne) | 
|  | z.neg = len(z.abs) > 0 | 
|  | return z | 
|  | } | 
|  | z.abs = z.abs.setBit(x.abs, uint(i), b) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // And sets z = x & y and returns z. | 
|  | func (z *Int) And(x, y *Int) *Int { | 
|  | if x.neg == y.neg { | 
|  | if x.neg { | 
|  | // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) | 
|  | x1 := nat(nil).sub(x.abs, natOne) | 
|  | y1 := nat(nil).sub(y.abs, natOne) | 
|  | z.abs = z.abs.add(z.abs.or(x1, y1), natOne) | 
|  | z.neg = true // z cannot be zero if x and y are negative | 
|  | return z | 
|  | } | 
|  |  | 
|  | // x & y == x & y | 
|  | z.abs = z.abs.and(x.abs, y.abs) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // x.neg != y.neg | 
|  | if x.neg { | 
|  | x, y = y, x // & is symmetric | 
|  | } | 
|  |  | 
|  | // x & (-y) == x & ^(y-1) == x &^ (y-1) | 
|  | y1 := nat(nil).sub(y.abs, natOne) | 
|  | z.abs = z.abs.andNot(x.abs, y1) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // AndNot sets z = x &^ y and returns z. | 
|  | func (z *Int) AndNot(x, y *Int) *Int { | 
|  | if x.neg == y.neg { | 
|  | if x.neg { | 
|  | // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) | 
|  | x1 := nat(nil).sub(x.abs, natOne) | 
|  | y1 := nat(nil).sub(y.abs, natOne) | 
|  | z.abs = z.abs.andNot(y1, x1) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // x &^ y == x &^ y | 
|  | z.abs = z.abs.andNot(x.abs, y.abs) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | if x.neg { | 
|  | // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) | 
|  | x1 := nat(nil).sub(x.abs, natOne) | 
|  | z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) | 
|  | z.neg = true // z cannot be zero if x is negative and y is positive | 
|  | return z | 
|  | } | 
|  |  | 
|  | // x &^ (-y) == x &^ ^(y-1) == x & (y-1) | 
|  | y1 := nat(nil).sub(y.abs, natOne) | 
|  | z.abs = z.abs.and(x.abs, y1) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Or sets z = x | y and returns z. | 
|  | func (z *Int) Or(x, y *Int) *Int { | 
|  | if x.neg == y.neg { | 
|  | if x.neg { | 
|  | // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) | 
|  | x1 := nat(nil).sub(x.abs, natOne) | 
|  | y1 := nat(nil).sub(y.abs, natOne) | 
|  | z.abs = z.abs.add(z.abs.and(x1, y1), natOne) | 
|  | z.neg = true // z cannot be zero if x and y are negative | 
|  | return z | 
|  | } | 
|  |  | 
|  | // x | y == x | y | 
|  | z.abs = z.abs.or(x.abs, y.abs) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // x.neg != y.neg | 
|  | if x.neg { | 
|  | x, y = y, x // | is symmetric | 
|  | } | 
|  |  | 
|  | // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) | 
|  | y1 := nat(nil).sub(y.abs, natOne) | 
|  | z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) | 
|  | z.neg = true // z cannot be zero if one of x or y is negative | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Xor sets z = x ^ y and returns z. | 
|  | func (z *Int) Xor(x, y *Int) *Int { | 
|  | if x.neg == y.neg { | 
|  | if x.neg { | 
|  | // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) | 
|  | x1 := nat(nil).sub(x.abs, natOne) | 
|  | y1 := nat(nil).sub(y.abs, natOne) | 
|  | z.abs = z.abs.xor(x1, y1) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // x ^ y == x ^ y | 
|  | z.abs = z.abs.xor(x.abs, y.abs) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // x.neg != y.neg | 
|  | if x.neg { | 
|  | x, y = y, x // ^ is symmetric | 
|  | } | 
|  |  | 
|  | // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) | 
|  | y1 := nat(nil).sub(y.abs, natOne) | 
|  | z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) | 
|  | z.neg = true // z cannot be zero if only one of x or y is negative | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Not sets z = ^x and returns z. | 
|  | func (z *Int) Not(x *Int) *Int { | 
|  | if x.neg { | 
|  | // ^(-x) == ^(^(x-1)) == x-1 | 
|  | z.abs = z.abs.sub(x.abs, natOne) | 
|  | z.neg = false | 
|  | return z | 
|  | } | 
|  |  | 
|  | // ^x == -x-1 == -(x+1) | 
|  | z.abs = z.abs.add(x.abs, natOne) | 
|  | z.neg = true // z cannot be zero if x is positive | 
|  | return z | 
|  | } | 
|  |  | 
|  | // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z. | 
|  | // It panics if x is negative. | 
|  | func (z *Int) Sqrt(x *Int) *Int { | 
|  | if x.neg { | 
|  | panic("square root of negative number") | 
|  | } | 
|  | z.neg = false | 
|  | z.abs = z.abs.sqrt(x.abs) | 
|  | return z | 
|  | } |