| // Copyright 2018 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package math | 
 |  | 
 | import ( | 
 | 	"math/bits" | 
 | ) | 
 |  | 
 | // reduceThreshold is the maximum value of x where the reduction using Pi/4 | 
 | // in 3 float64 parts still gives accurate results. This threshold | 
 | // is set by y*C being representable as a float64 without error | 
 | // where y is given by y = floor(x * (4 / Pi)) and C is the leading partial | 
 | // terms of 4/Pi. Since the leading terms (PI4A and PI4B in sin.go) have 30 | 
 | // and 32 trailing zero bits, y should have less than 30 significant bits. | 
 | //	y < 1<<30  -> floor(x*4/Pi) < 1<<30 -> x < (1<<30 - 1) * Pi/4 | 
 | // So, conservatively we can take x < 1<<29. | 
 | // Above this threshold Payne-Hanek range reduction must be used. | 
 | const reduceThreshold = 1 << 29 | 
 |  | 
 | // trigReduce implements Payne-Hanek range reduction by Pi/4 | 
 | // for x > 0. It returns the integer part mod 8 (j) and | 
 | // the fractional part (z) of x / (Pi/4). | 
 | // The implementation is based on: | 
 | // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit" | 
 | // K. C. Ng et al, March 24, 1992 | 
 | // The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic. | 
 | func trigReduce(x float64) (j uint64, z float64) { | 
 | 	const PI4 = Pi / 4 | 
 | 	if x < PI4 { | 
 | 		return 0, x | 
 | 	} | 
 | 	// Extract out the integer and exponent such that, | 
 | 	// x = ix * 2 ** exp. | 
 | 	ix := Float64bits(x) | 
 | 	exp := int(ix>>shift&mask) - bias - shift | 
 | 	ix &^= mask << shift | 
 | 	ix |= 1 << shift | 
 | 	// Use the exponent to extract the 3 appropriate uint64 digits from mPi4, | 
 | 	// B ~ (z0, z1, z2), such that the product leading digit has the exponent -61. | 
 | 	// Note, exp >= -53 since x >= PI4 and exp < 971 for maximum float64. | 
 | 	digit, bitshift := uint(exp+61)/64, uint(exp+61)%64 | 
 | 	z0 := (mPi4[digit] << bitshift) | (mPi4[digit+1] >> (64 - bitshift)) | 
 | 	z1 := (mPi4[digit+1] << bitshift) | (mPi4[digit+2] >> (64 - bitshift)) | 
 | 	z2 := (mPi4[digit+2] << bitshift) | (mPi4[digit+3] >> (64 - bitshift)) | 
 | 	// Multiply mantissa by the digits and extract the upper two digits (hi, lo). | 
 | 	z2hi, _ := bits.Mul64(z2, ix) | 
 | 	z1hi, z1lo := bits.Mul64(z1, ix) | 
 | 	z0lo := z0 * ix | 
 | 	lo, c := bits.Add64(z1lo, z2hi, 0) | 
 | 	hi, _ := bits.Add64(z0lo, z1hi, c) | 
 | 	// The top 3 bits are j. | 
 | 	j = hi >> 61 | 
 | 	// Extract the fraction and find its magnitude. | 
 | 	hi = hi<<3 | lo>>61 | 
 | 	lz := uint(bits.LeadingZeros64(hi)) | 
 | 	e := uint64(bias - (lz + 1)) | 
 | 	// Clear implicit mantissa bit and shift into place. | 
 | 	hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1))) | 
 | 	hi >>= 64 - shift | 
 | 	// Include the exponent and convert to a float. | 
 | 	hi |= e << shift | 
 | 	z = Float64frombits(hi) | 
 | 	// Map zeros to origin. | 
 | 	if j&1 == 1 { | 
 | 		j++ | 
 | 		j &= 7 | 
 | 		z-- | 
 | 	} | 
 | 	// Multiply the fractional part by pi/4. | 
 | 	return j, z * PI4 | 
 | } | 
 |  | 
 | // mPi4 is the binary digits of 4/pi as a uint64 array, | 
 | // that is, 4/pi = Sum mPi4[i]*2^(-64*i) | 
 | // 19 64-bit digits and the leading one bit give 1217 bits | 
 | // of precision to handle the largest possible float64 exponent. | 
 | var mPi4 = [...]uint64{ | 
 | 	0x0000000000000001, | 
 | 	0x45f306dc9c882a53, | 
 | 	0xf84eafa3ea69bb81, | 
 | 	0xb6c52b3278872083, | 
 | 	0xfca2c757bd778ac3, | 
 | 	0x6e48dc74849ba5c0, | 
 | 	0x0c925dd413a32439, | 
 | 	0xfc3bd63962534e7d, | 
 | 	0xd1046bea5d768909, | 
 | 	0xd338e04d68befc82, | 
 | 	0x7323ac7306a673e9, | 
 | 	0x3908bf177bf25076, | 
 | 	0x3ff12fffbc0b301f, | 
 | 	0xde5e2316b414da3e, | 
 | 	0xda6cfd9e4f96136e, | 
 | 	0x9e8c7ecd3cbfd45a, | 
 | 	0xea4f758fd7cbe2f6, | 
 | 	0x7a0e73ef14a525d4, | 
 | 	0xd7f6bf623f1aba10, | 
 | 	0xac06608df8f6d757, | 
 | } |