| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file provides Go implementations of elementary multi-precision |
| // arithmetic operations on word vectors. These have the suffix _g. |
| // These are needed for platforms without assembly implementations of these routines. |
| // This file also contains elementary operations that can be implemented |
| // sufficiently efficiently in Go. |
| |
| package big |
| |
| import "math/bits" |
| |
| // A Word represents a single digit of a multi-precision unsigned integer. |
| type Word uint |
| |
| const ( |
| _S = _W / 8 // word size in bytes |
| |
| _W = bits.UintSize // word size in bits |
| _B = 1 << _W // digit base |
| _M = _B - 1 // digit mask |
| ) |
| |
| // Many of the loops in this file are of the form |
| // for i := 0; i < len(z) && i < len(x) && i < len(y); i++ |
| // i < len(z) is the real condition. |
| // However, checking i < len(x) && i < len(y) as well is faster than |
| // having the compiler do a bounds check in the body of the loop; |
| // remarkably it is even faster than hoisting the bounds check |
| // out of the loop, by doing something like |
| // _, _ = x[len(z)-1], y[len(z)-1] |
| // There are other ways to hoist the bounds check out of the loop, |
| // but the compiler's BCE isn't powerful enough for them (yet?). |
| // See the discussion in CL 164966. |
| |
| // ---------------------------------------------------------------------------- |
| // Elementary operations on words |
| // |
| // These operations are used by the vector operations below. |
| |
| // z1<<_W + z0 = x*y |
| func mulWW_g(x, y Word) (z1, z0 Word) { |
| hi, lo := bits.Mul(uint(x), uint(y)) |
| return Word(hi), Word(lo) |
| } |
| |
| // z1<<_W + z0 = x*y + c |
| func mulAddWWW_g(x, y, c Word) (z1, z0 Word) { |
| hi, lo := bits.Mul(uint(x), uint(y)) |
| var cc uint |
| lo, cc = bits.Add(lo, uint(c), 0) |
| return Word(hi + cc), Word(lo) |
| } |
| |
| // nlz returns the number of leading zeros in x. |
| // Wraps bits.LeadingZeros call for convenience. |
| func nlz(x Word) uint { |
| return uint(bits.LeadingZeros(uint(x))) |
| } |
| |
| // The resulting carry c is either 0 or 1. |
| func addVV_g(z, x, y []Word) (c Word) { |
| // The comment near the top of this file discusses this for loop condition. |
| for i := 0; i < len(z) && i < len(x) && i < len(y); i++ { |
| zi, cc := bits.Add(uint(x[i]), uint(y[i]), uint(c)) |
| z[i] = Word(zi) |
| c = Word(cc) |
| } |
| return |
| } |
| |
| // The resulting carry c is either 0 or 1. |
| func subVV_g(z, x, y []Word) (c Word) { |
| // The comment near the top of this file discusses this for loop condition. |
| for i := 0; i < len(z) && i < len(x) && i < len(y); i++ { |
| zi, cc := bits.Sub(uint(x[i]), uint(y[i]), uint(c)) |
| z[i] = Word(zi) |
| c = Word(cc) |
| } |
| return |
| } |
| |
| // The resulting carry c is either 0 or 1. |
| func addVW_g(z, x []Word, y Word) (c Word) { |
| c = y |
| // The comment near the top of this file discusses this for loop condition. |
| for i := 0; i < len(z) && i < len(x); i++ { |
| zi, cc := bits.Add(uint(x[i]), uint(c), 0) |
| z[i] = Word(zi) |
| c = Word(cc) |
| } |
| return |
| } |
| |
| // addVWlarge is addVW, but intended for large z. |
| // The only difference is that we check on every iteration |
| // whether we are done with carries, |
| // and if so, switch to a much faster copy instead. |
| // This is only a good idea for large z, |
| // because the overhead of the check and the function call |
| // outweigh the benefits when z is small. |
| func addVWlarge(z, x []Word, y Word) (c Word) { |
| c = y |
| // The comment near the top of this file discusses this for loop condition. |
| for i := 0; i < len(z) && i < len(x); i++ { |
| if c == 0 { |
| copy(z[i:], x[i:]) |
| return |
| } |
| zi, cc := bits.Add(uint(x[i]), uint(c), 0) |
| z[i] = Word(zi) |
| c = Word(cc) |
| } |
| return |
| } |
| |
| func subVW_g(z, x []Word, y Word) (c Word) { |
| c = y |
| // The comment near the top of this file discusses this for loop condition. |
| for i := 0; i < len(z) && i < len(x); i++ { |
| zi, cc := bits.Sub(uint(x[i]), uint(c), 0) |
| z[i] = Word(zi) |
| c = Word(cc) |
| } |
| return |
| } |
| |
| // subVWlarge is to subVW as addVWlarge is to addVW. |
| func subVWlarge(z, x []Word, y Word) (c Word) { |
| c = y |
| // The comment near the top of this file discusses this for loop condition. |
| for i := 0; i < len(z) && i < len(x); i++ { |
| if c == 0 { |
| copy(z[i:], x[i:]) |
| return |
| } |
| zi, cc := bits.Sub(uint(x[i]), uint(c), 0) |
| z[i] = Word(zi) |
| c = Word(cc) |
| } |
| return |
| } |
| |
| func shlVU_g(z, x []Word, s uint) (c Word) { |
| if s == 0 { |
| copy(z, x) |
| return |
| } |
| if len(z) == 0 { |
| return |
| } |
| s &= _W - 1 // hint to the compiler that shifts by s don't need guard code |
| ŝ := _W - s |
| ŝ &= _W - 1 // ditto |
| c = x[len(z)-1] >> ŝ |
| for i := len(z) - 1; i > 0; i-- { |
| z[i] = x[i]<<s | x[i-1]>>ŝ |
| } |
| z[0] = x[0] << s |
| return |
| } |
| |
| func shrVU_g(z, x []Word, s uint) (c Word) { |
| if s == 0 { |
| copy(z, x) |
| return |
| } |
| if len(z) == 0 { |
| return |
| } |
| if len(x) != len(z) { |
| // This is an invariant guaranteed by the caller. |
| panic("len(x) != len(z)") |
| } |
| s &= _W - 1 // hint to the compiler that shifts by s don't need guard code |
| ŝ := _W - s |
| ŝ &= _W - 1 // ditto |
| c = x[0] << ŝ |
| for i := 1; i < len(z); i++ { |
| z[i-1] = x[i-1]>>s | x[i]<<ŝ |
| } |
| z[len(z)-1] = x[len(z)-1] >> s |
| return |
| } |
| |
| func mulAddVWW_g(z, x []Word, y, r Word) (c Word) { |
| c = r |
| // The comment near the top of this file discusses this for loop condition. |
| for i := 0; i < len(z) && i < len(x); i++ { |
| c, z[i] = mulAddWWW_g(x[i], y, c) |
| } |
| return |
| } |
| |
| func addMulVVW_g(z, x []Word, y Word) (c Word) { |
| // The comment near the top of this file discusses this for loop condition. |
| for i := 0; i < len(z) && i < len(x); i++ { |
| z1, z0 := mulAddWWW_g(x[i], y, z[i]) |
| lo, cc := bits.Add(uint(z0), uint(c), 0) |
| c, z[i] = Word(cc), Word(lo) |
| c += z1 |
| } |
| return |
| } |
| |
| // q = ( x1 << _W + x0 - r)/y. m = floor(( _B^2 - 1 ) / d - _B). Requiring x1<y. |
| // An approximate reciprocal with a reference to "Improved Division by Invariant Integers |
| // (IEEE Transactions on Computers, 11 Jun. 2010)" |
| func divWW(x1, x0, y, m Word) (q, r Word) { |
| s := nlz(y) |
| if s != 0 { |
| x1 = x1<<s | x0>>(_W-s) |
| x0 <<= s |
| y <<= s |
| } |
| d := uint(y) |
| // We know that |
| // m = ⎣(B^2-1)/d⎦-B |
| // ⎣(B^2-1)/d⎦ = m+B |
| // (B^2-1)/d = m+B+delta1 0 <= delta1 <= (d-1)/d |
| // B^2/d = m+B+delta2 0 <= delta2 <= 1 |
| // The quotient we're trying to compute is |
| // quotient = ⎣(x1*B+x0)/d⎦ |
| // = ⎣(x1*B*(B^2/d)+x0*(B^2/d))/B^2⎦ |
| // = ⎣(x1*B*(m+B+delta2)+x0*(m+B+delta2))/B^2⎦ |
| // = ⎣(x1*m+x1*B+x0)/B + x0*m/B^2 + delta2*(x1*B+x0)/B^2⎦ |
| // The latter two terms of this three-term sum are between 0 and 1. |
| // So we can compute just the first term, and we will be low by at most 2. |
| t1, t0 := bits.Mul(uint(m), uint(x1)) |
| _, c := bits.Add(t0, uint(x0), 0) |
| t1, _ = bits.Add(t1, uint(x1), c) |
| // The quotient is either t1, t1+1, or t1+2. |
| // We'll try t1 and adjust if needed. |
| qq := t1 |
| // compute remainder r=x-d*q. |
| dq1, dq0 := bits.Mul(d, qq) |
| r0, b := bits.Sub(uint(x0), dq0, 0) |
| r1, _ := bits.Sub(uint(x1), dq1, b) |
| // The remainder we just computed is bounded above by B+d: |
| // r = x1*B + x0 - d*q. |
| // = x1*B + x0 - d*⎣(x1*m+x1*B+x0)/B⎦ |
| // = x1*B + x0 - d*((x1*m+x1*B+x0)/B-alpha) 0 <= alpha < 1 |
| // = x1*B + x0 - x1*d/B*m - x1*d - x0*d/B + d*alpha |
| // = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha |
| // = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha |
| // = x1*B + x0 - x1*d/B*((B^2-1)/d-B-beta) - x1*d - x0*d/B + d*alpha 0 <= beta < 1 |
| // = x1*B + x0 - x1*B + x1/B + x1*d + x1*d/B*beta - x1*d - x0*d/B + d*alpha |
| // = x0 + x1/B + x1*d/B*beta - x0*d/B + d*alpha |
| // = x0*(1-d/B) + x1*(1+d*beta)/B + d*alpha |
| // < B*(1-d/B) + d*B/B + d because x0<B (and 1-d/B>0), x1<d, 1+d*beta<=B, alpha<1 |
| // = B - d + d + d |
| // = B+d |
| // So r1 can only be 0 or 1. If r1 is 1, then we know q was too small. |
| // Add 1 to q and subtract d from r. That guarantees that r is <B, so |
| // we no longer need to keep track of r1. |
| if r1 != 0 { |
| qq++ |
| r0 -= d |
| } |
| // If the remainder is still too large, increment q one more time. |
| if r0 >= d { |
| qq++ |
| r0 -= d |
| } |
| return Word(qq), Word(r0 >> s) |
| } |
| |
| // reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1). |
| func reciprocalWord(d1 Word) Word { |
| u := uint(d1 << nlz(d1)) |
| x1 := ^u |
| x0 := uint(_M) |
| rec, _ := bits.Div(x1, x0, u) // (_B^2-1)/U-_B = (_B*(_M-C)+_M)/U |
| return Word(rec) |
| } |