| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // Package bytes implements functions for the manipulation of byte slices. | 
 | // It is analogous to the facilities of the strings package. | 
 | package bytes | 
 |  | 
 | import ( | 
 | 	"internal/bytealg" | 
 | 	"unicode" | 
 | 	"unicode/utf8" | 
 | ) | 
 |  | 
 | // Equal reports whether a and b | 
 | // are the same length and contain the same bytes. | 
 | // A nil argument is equivalent to an empty slice. | 
 | func Equal(a, b []byte) bool { | 
 | 	// Neither cmd/compile nor gccgo allocates for these string conversions. | 
 | 	return string(a) == string(b) | 
 | } | 
 |  | 
 | // Compare returns an integer comparing two byte slices lexicographically. | 
 | // The result will be 0 if a==b, -1 if a < b, and +1 if a > b. | 
 | // A nil argument is equivalent to an empty slice. | 
 | func Compare(a, b []byte) int { | 
 | 	return bytealg.Compare(a, b) | 
 | } | 
 |  | 
 | // explode splits s into a slice of UTF-8 sequences, one per Unicode code point (still slices of bytes), | 
 | // up to a maximum of n byte slices. Invalid UTF-8 sequences are chopped into individual bytes. | 
 | func explode(s []byte, n int) [][]byte { | 
 | 	if n <= 0 { | 
 | 		n = len(s) | 
 | 	} | 
 | 	a := make([][]byte, n) | 
 | 	var size int | 
 | 	na := 0 | 
 | 	for len(s) > 0 { | 
 | 		if na+1 >= n { | 
 | 			a[na] = s | 
 | 			na++ | 
 | 			break | 
 | 		} | 
 | 		_, size = utf8.DecodeRune(s) | 
 | 		a[na] = s[0:size:size] | 
 | 		s = s[size:] | 
 | 		na++ | 
 | 	} | 
 | 	return a[0:na] | 
 | } | 
 |  | 
 | // Count counts the number of non-overlapping instances of sep in s. | 
 | // If sep is an empty slice, Count returns 1 + the number of UTF-8-encoded code points in s. | 
 | func Count(s, sep []byte) int { | 
 | 	// special case | 
 | 	if len(sep) == 0 { | 
 | 		return utf8.RuneCount(s) + 1 | 
 | 	} | 
 | 	if len(sep) == 1 { | 
 | 		return bytealg.Count(s, sep[0]) | 
 | 	} | 
 | 	n := 0 | 
 | 	for { | 
 | 		i := Index(s, sep) | 
 | 		if i == -1 { | 
 | 			return n | 
 | 		} | 
 | 		n++ | 
 | 		s = s[i+len(sep):] | 
 | 	} | 
 | } | 
 |  | 
 | // Contains reports whether subslice is within b. | 
 | func Contains(b, subslice []byte) bool { | 
 | 	return Index(b, subslice) != -1 | 
 | } | 
 |  | 
 | // ContainsAny reports whether any of the UTF-8-encoded code points in chars are within b. | 
 | func ContainsAny(b []byte, chars string) bool { | 
 | 	return IndexAny(b, chars) >= 0 | 
 | } | 
 |  | 
 | // ContainsRune reports whether the rune is contained in the UTF-8-encoded byte slice b. | 
 | func ContainsRune(b []byte, r rune) bool { | 
 | 	return IndexRune(b, r) >= 0 | 
 | } | 
 |  | 
 | // IndexByte returns the index of the first instance of c in b, or -1 if c is not present in b. | 
 | func IndexByte(b []byte, c byte) int { | 
 | 	return bytealg.IndexByte(b, c) | 
 | } | 
 |  | 
 | func indexBytePortable(s []byte, c byte) int { | 
 | 	for i, b := range s { | 
 | 		if b == c { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s. | 
 | func LastIndex(s, sep []byte) int { | 
 | 	n := len(sep) | 
 | 	switch { | 
 | 	case n == 0: | 
 | 		return len(s) | 
 | 	case n == 1: | 
 | 		return LastIndexByte(s, sep[0]) | 
 | 	case n == len(s): | 
 | 		if Equal(s, sep) { | 
 | 			return 0 | 
 | 		} | 
 | 		return -1 | 
 | 	case n > len(s): | 
 | 		return -1 | 
 | 	} | 
 | 	// Rabin-Karp search from the end of the string | 
 | 	hashss, pow := bytealg.HashStrRevBytes(sep) | 
 | 	last := len(s) - n | 
 | 	var h uint32 | 
 | 	for i := len(s) - 1; i >= last; i-- { | 
 | 		h = h*bytealg.PrimeRK + uint32(s[i]) | 
 | 	} | 
 | 	if h == hashss && Equal(s[last:], sep) { | 
 | 		return last | 
 | 	} | 
 | 	for i := last - 1; i >= 0; i-- { | 
 | 		h *= bytealg.PrimeRK | 
 | 		h += uint32(s[i]) | 
 | 		h -= pow * uint32(s[i+n]) | 
 | 		if h == hashss && Equal(s[i:i+n], sep) { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s. | 
 | func LastIndexByte(s []byte, c byte) int { | 
 | 	for i := len(s) - 1; i >= 0; i-- { | 
 | 		if s[i] == c { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // IndexRune interprets s as a sequence of UTF-8-encoded code points. | 
 | // It returns the byte index of the first occurrence in s of the given rune. | 
 | // It returns -1 if rune is not present in s. | 
 | // If r is utf8.RuneError, it returns the first instance of any | 
 | // invalid UTF-8 byte sequence. | 
 | func IndexRune(s []byte, r rune) int { | 
 | 	switch { | 
 | 	case 0 <= r && r < utf8.RuneSelf: | 
 | 		return IndexByte(s, byte(r)) | 
 | 	case r == utf8.RuneError: | 
 | 		for i := 0; i < len(s); { | 
 | 			r1, n := utf8.DecodeRune(s[i:]) | 
 | 			if r1 == utf8.RuneError { | 
 | 				return i | 
 | 			} | 
 | 			i += n | 
 | 		} | 
 | 		return -1 | 
 | 	case !utf8.ValidRune(r): | 
 | 		return -1 | 
 | 	default: | 
 | 		var b [utf8.UTFMax]byte | 
 | 		n := utf8.EncodeRune(b[:], r) | 
 | 		return Index(s, b[:n]) | 
 | 	} | 
 | } | 
 |  | 
 | // IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points. | 
 | // It returns the byte index of the first occurrence in s of any of the Unicode | 
 | // code points in chars. It returns -1 if chars is empty or if there is no code | 
 | // point in common. | 
 | func IndexAny(s []byte, chars string) int { | 
 | 	if chars == "" { | 
 | 		// Avoid scanning all of s. | 
 | 		return -1 | 
 | 	} | 
 | 	if len(s) == 1 { | 
 | 		r := rune(s[0]) | 
 | 		if r >= utf8.RuneSelf { | 
 | 			// search utf8.RuneError. | 
 | 			for _, r = range chars { | 
 | 				if r == utf8.RuneError { | 
 | 					return 0 | 
 | 				} | 
 | 			} | 
 | 			return -1 | 
 | 		} | 
 | 		if bytealg.IndexByteString(chars, s[0]) >= 0 { | 
 | 			return 0 | 
 | 		} | 
 | 		return -1 | 
 | 	} | 
 | 	if len(chars) == 1 { | 
 | 		r := rune(chars[0]) | 
 | 		if r >= utf8.RuneSelf { | 
 | 			r = utf8.RuneError | 
 | 		} | 
 | 		return IndexRune(s, r) | 
 | 	} | 
 | 	if len(s) > 8 { | 
 | 		if as, isASCII := makeASCIISet(chars); isASCII { | 
 | 			for i, c := range s { | 
 | 				if as.contains(c) { | 
 | 					return i | 
 | 				} | 
 | 			} | 
 | 			return -1 | 
 | 		} | 
 | 	} | 
 | 	var width int | 
 | 	for i := 0; i < len(s); i += width { | 
 | 		r := rune(s[i]) | 
 | 		if r < utf8.RuneSelf { | 
 | 			if bytealg.IndexByteString(chars, s[i]) >= 0 { | 
 | 				return i | 
 | 			} | 
 | 			width = 1 | 
 | 			continue | 
 | 		} | 
 | 		r, width = utf8.DecodeRune(s[i:]) | 
 | 		if r == utf8.RuneError { | 
 | 			for _, r = range chars { | 
 | 				if r == utf8.RuneError { | 
 | 					return i | 
 | 				} | 
 | 			} | 
 | 			continue | 
 | 		} | 
 | 		// r is 2 to 4 bytes. Using strings.Index is more reasonable, but as the bytes | 
 | 		// package should not import the strings package, use bytealg.IndexString | 
 | 		// instead. And this does not seem to lose much performance. | 
 | 		if chars == string(r) || bytealg.IndexString(chars, string(r)) >= 0 { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code | 
 | // points. It returns the byte index of the last occurrence in s of any of | 
 | // the Unicode code points in chars. It returns -1 if chars is empty or if | 
 | // there is no code point in common. | 
 | func LastIndexAny(s []byte, chars string) int { | 
 | 	if chars == "" { | 
 | 		// Avoid scanning all of s. | 
 | 		return -1 | 
 | 	} | 
 | 	if len(s) > 8 { | 
 | 		if as, isASCII := makeASCIISet(chars); isASCII { | 
 | 			for i := len(s) - 1; i >= 0; i-- { | 
 | 				if as.contains(s[i]) { | 
 | 					return i | 
 | 				} | 
 | 			} | 
 | 			return -1 | 
 | 		} | 
 | 	} | 
 | 	if len(s) == 1 { | 
 | 		r := rune(s[0]) | 
 | 		if r >= utf8.RuneSelf { | 
 | 			for _, r = range chars { | 
 | 				if r == utf8.RuneError { | 
 | 					return 0 | 
 | 				} | 
 | 			} | 
 | 			return -1 | 
 | 		} | 
 | 		if bytealg.IndexByteString(chars, s[0]) >= 0 { | 
 | 			return 0 | 
 | 		} | 
 | 		return -1 | 
 | 	} | 
 | 	if len(chars) == 1 { | 
 | 		cr := rune(chars[0]) | 
 | 		if cr >= utf8.RuneSelf { | 
 | 			cr = utf8.RuneError | 
 | 		} | 
 | 		for i := len(s); i > 0; { | 
 | 			r, size := utf8.DecodeLastRune(s[:i]) | 
 | 			i -= size | 
 | 			if r == cr { | 
 | 				return i | 
 | 			} | 
 | 		} | 
 | 		return -1 | 
 | 	} | 
 | 	for i := len(s); i > 0; { | 
 | 		r := rune(s[i-1]) | 
 | 		if r < utf8.RuneSelf { | 
 | 			if bytealg.IndexByteString(chars, s[i-1]) >= 0 { | 
 | 				return i - 1 | 
 | 			} | 
 | 			i-- | 
 | 			continue | 
 | 		} | 
 | 		r, size := utf8.DecodeLastRune(s[:i]) | 
 | 		i -= size | 
 | 		if r == utf8.RuneError { | 
 | 			for _, r = range chars { | 
 | 				if r == utf8.RuneError { | 
 | 					return i | 
 | 				} | 
 | 			} | 
 | 			continue | 
 | 		} | 
 | 		// r is 2 to 4 bytes. Using strings.Index is more reasonable, but as the bytes | 
 | 		// package should not import the strings package, use bytealg.IndexString | 
 | 		// instead. And this does not seem to lose much performance. | 
 | 		if chars == string(r) || bytealg.IndexString(chars, string(r)) >= 0 { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // Generic split: splits after each instance of sep, | 
 | // including sepSave bytes of sep in the subslices. | 
 | func genSplit(s, sep []byte, sepSave, n int) [][]byte { | 
 | 	if n == 0 { | 
 | 		return nil | 
 | 	} | 
 | 	if len(sep) == 0 { | 
 | 		return explode(s, n) | 
 | 	} | 
 | 	if n < 0 { | 
 | 		n = Count(s, sep) + 1 | 
 | 	} | 
 |  | 
 | 	a := make([][]byte, n) | 
 | 	n-- | 
 | 	i := 0 | 
 | 	for i < n { | 
 | 		m := Index(s, sep) | 
 | 		if m < 0 { | 
 | 			break | 
 | 		} | 
 | 		a[i] = s[: m+sepSave : m+sepSave] | 
 | 		s = s[m+len(sep):] | 
 | 		i++ | 
 | 	} | 
 | 	a[i] = s | 
 | 	return a[:i+1] | 
 | } | 
 |  | 
 | // SplitN slices s into subslices separated by sep and returns a slice of | 
 | // the subslices between those separators. | 
 | // If sep is empty, SplitN splits after each UTF-8 sequence. | 
 | // The count determines the number of subslices to return: | 
 | //   n > 0: at most n subslices; the last subslice will be the unsplit remainder. | 
 | //   n == 0: the result is nil (zero subslices) | 
 | //   n < 0: all subslices | 
 | func SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) } | 
 |  | 
 | // SplitAfterN slices s into subslices after each instance of sep and | 
 | // returns a slice of those subslices. | 
 | // If sep is empty, SplitAfterN splits after each UTF-8 sequence. | 
 | // The count determines the number of subslices to return: | 
 | //   n > 0: at most n subslices; the last subslice will be the unsplit remainder. | 
 | //   n == 0: the result is nil (zero subslices) | 
 | //   n < 0: all subslices | 
 | func SplitAfterN(s, sep []byte, n int) [][]byte { | 
 | 	return genSplit(s, sep, len(sep), n) | 
 | } | 
 |  | 
 | // Split slices s into all subslices separated by sep and returns a slice of | 
 | // the subslices between those separators. | 
 | // If sep is empty, Split splits after each UTF-8 sequence. | 
 | // It is equivalent to SplitN with a count of -1. | 
 | func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) } | 
 |  | 
 | // SplitAfter slices s into all subslices after each instance of sep and | 
 | // returns a slice of those subslices. | 
 | // If sep is empty, SplitAfter splits after each UTF-8 sequence. | 
 | // It is equivalent to SplitAfterN with a count of -1. | 
 | func SplitAfter(s, sep []byte) [][]byte { | 
 | 	return genSplit(s, sep, len(sep), -1) | 
 | } | 
 |  | 
 | var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1} | 
 |  | 
 | // Fields interprets s as a sequence of UTF-8-encoded code points. | 
 | // It splits the slice s around each instance of one or more consecutive white space | 
 | // characters, as defined by unicode.IsSpace, returning a slice of subslices of s or an | 
 | // empty slice if s contains only white space. | 
 | func Fields(s []byte) [][]byte { | 
 | 	// First count the fields. | 
 | 	// This is an exact count if s is ASCII, otherwise it is an approximation. | 
 | 	n := 0 | 
 | 	wasSpace := 1 | 
 | 	// setBits is used to track which bits are set in the bytes of s. | 
 | 	setBits := uint8(0) | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		r := s[i] | 
 | 		setBits |= r | 
 | 		isSpace := int(asciiSpace[r]) | 
 | 		n += wasSpace & ^isSpace | 
 | 		wasSpace = isSpace | 
 | 	} | 
 |  | 
 | 	if setBits >= utf8.RuneSelf { | 
 | 		// Some runes in the input slice are not ASCII. | 
 | 		return FieldsFunc(s, unicode.IsSpace) | 
 | 	} | 
 |  | 
 | 	// ASCII fast path | 
 | 	a := make([][]byte, n) | 
 | 	na := 0 | 
 | 	fieldStart := 0 | 
 | 	i := 0 | 
 | 	// Skip spaces in the front of the input. | 
 | 	for i < len(s) && asciiSpace[s[i]] != 0 { | 
 | 		i++ | 
 | 	} | 
 | 	fieldStart = i | 
 | 	for i < len(s) { | 
 | 		if asciiSpace[s[i]] == 0 { | 
 | 			i++ | 
 | 			continue | 
 | 		} | 
 | 		a[na] = s[fieldStart:i:i] | 
 | 		na++ | 
 | 		i++ | 
 | 		// Skip spaces in between fields. | 
 | 		for i < len(s) && asciiSpace[s[i]] != 0 { | 
 | 			i++ | 
 | 		} | 
 | 		fieldStart = i | 
 | 	} | 
 | 	if fieldStart < len(s) { // Last field might end at EOF. | 
 | 		a[na] = s[fieldStart:len(s):len(s)] | 
 | 	} | 
 | 	return a | 
 | } | 
 |  | 
 | // FieldsFunc interprets s as a sequence of UTF-8-encoded code points. | 
 | // It splits the slice s at each run of code points c satisfying f(c) and | 
 | // returns a slice of subslices of s. If all code points in s satisfy f(c), or | 
 | // len(s) == 0, an empty slice is returned. | 
 | // | 
 | // FieldsFunc makes no guarantees about the order in which it calls f(c) | 
 | // and assumes that f always returns the same value for a given c. | 
 | func FieldsFunc(s []byte, f func(rune) bool) [][]byte { | 
 | 	// A span is used to record a slice of s of the form s[start:end]. | 
 | 	// The start index is inclusive and the end index is exclusive. | 
 | 	type span struct { | 
 | 		start int | 
 | 		end   int | 
 | 	} | 
 | 	spans := make([]span, 0, 32) | 
 |  | 
 | 	// Find the field start and end indices. | 
 | 	// Doing this in a separate pass (rather than slicing the string s | 
 | 	// and collecting the result substrings right away) is significantly | 
 | 	// more efficient, possibly due to cache effects. | 
 | 	start := -1 // valid span start if >= 0 | 
 | 	for i := 0; i < len(s); { | 
 | 		size := 1 | 
 | 		r := rune(s[i]) | 
 | 		if r >= utf8.RuneSelf { | 
 | 			r, size = utf8.DecodeRune(s[i:]) | 
 | 		} | 
 | 		if f(r) { | 
 | 			if start >= 0 { | 
 | 				spans = append(spans, span{start, i}) | 
 | 				start = -1 | 
 | 			} | 
 | 		} else { | 
 | 			if start < 0 { | 
 | 				start = i | 
 | 			} | 
 | 		} | 
 | 		i += size | 
 | 	} | 
 |  | 
 | 	// Last field might end at EOF. | 
 | 	if start >= 0 { | 
 | 		spans = append(spans, span{start, len(s)}) | 
 | 	} | 
 |  | 
 | 	// Create subslices from recorded field indices. | 
 | 	a := make([][]byte, len(spans)) | 
 | 	for i, span := range spans { | 
 | 		a[i] = s[span.start:span.end:span.end] | 
 | 	} | 
 |  | 
 | 	return a | 
 | } | 
 |  | 
 | // Join concatenates the elements of s to create a new byte slice. The separator | 
 | // sep is placed between elements in the resulting slice. | 
 | func Join(s [][]byte, sep []byte) []byte { | 
 | 	if len(s) == 0 { | 
 | 		return []byte{} | 
 | 	} | 
 | 	if len(s) == 1 { | 
 | 		// Just return a copy. | 
 | 		return append([]byte(nil), s[0]...) | 
 | 	} | 
 | 	n := len(sep) * (len(s) - 1) | 
 | 	for _, v := range s { | 
 | 		n += len(v) | 
 | 	} | 
 |  | 
 | 	b := make([]byte, n) | 
 | 	bp := copy(b, s[0]) | 
 | 	for _, v := range s[1:] { | 
 | 		bp += copy(b[bp:], sep) | 
 | 		bp += copy(b[bp:], v) | 
 | 	} | 
 | 	return b | 
 | } | 
 |  | 
 | // HasPrefix tests whether the byte slice s begins with prefix. | 
 | func HasPrefix(s, prefix []byte) bool { | 
 | 	return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix) | 
 | } | 
 |  | 
 | // HasSuffix tests whether the byte slice s ends with suffix. | 
 | func HasSuffix(s, suffix []byte) bool { | 
 | 	return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix) | 
 | } | 
 |  | 
 | // Map returns a copy of the byte slice s with all its characters modified | 
 | // according to the mapping function. If mapping returns a negative value, the character is | 
 | // dropped from the byte slice with no replacement. The characters in s and the | 
 | // output are interpreted as UTF-8-encoded code points. | 
 | func Map(mapping func(r rune) rune, s []byte) []byte { | 
 | 	// In the worst case, the slice can grow when mapped, making | 
 | 	// things unpleasant. But it's so rare we barge in assuming it's | 
 | 	// fine. It could also shrink but that falls out naturally. | 
 | 	maxbytes := len(s) // length of b | 
 | 	nbytes := 0        // number of bytes encoded in b | 
 | 	b := make([]byte, maxbytes) | 
 | 	for i := 0; i < len(s); { | 
 | 		wid := 1 | 
 | 		r := rune(s[i]) | 
 | 		if r >= utf8.RuneSelf { | 
 | 			r, wid = utf8.DecodeRune(s[i:]) | 
 | 		} | 
 | 		r = mapping(r) | 
 | 		if r >= 0 { | 
 | 			rl := utf8.RuneLen(r) | 
 | 			if rl < 0 { | 
 | 				rl = len(string(utf8.RuneError)) | 
 | 			} | 
 | 			if nbytes+rl > maxbytes { | 
 | 				// Grow the buffer. | 
 | 				maxbytes = maxbytes*2 + utf8.UTFMax | 
 | 				nb := make([]byte, maxbytes) | 
 | 				copy(nb, b[0:nbytes]) | 
 | 				b = nb | 
 | 			} | 
 | 			nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r) | 
 | 		} | 
 | 		i += wid | 
 | 	} | 
 | 	return b[0:nbytes] | 
 | } | 
 |  | 
 | // Repeat returns a new byte slice consisting of count copies of b. | 
 | // | 
 | // It panics if count is negative or if | 
 | // the result of (len(b) * count) overflows. | 
 | func Repeat(b []byte, count int) []byte { | 
 | 	if count == 0 { | 
 | 		return []byte{} | 
 | 	} | 
 | 	// Since we cannot return an error on overflow, | 
 | 	// we should panic if the repeat will generate | 
 | 	// an overflow. | 
 | 	// See Issue golang.org/issue/16237. | 
 | 	if count < 0 { | 
 | 		panic("bytes: negative Repeat count") | 
 | 	} else if len(b)*count/count != len(b) { | 
 | 		panic("bytes: Repeat count causes overflow") | 
 | 	} | 
 |  | 
 | 	nb := make([]byte, len(b)*count) | 
 | 	bp := copy(nb, b) | 
 | 	for bp < len(nb) { | 
 | 		copy(nb[bp:], nb[:bp]) | 
 | 		bp *= 2 | 
 | 	} | 
 | 	return nb | 
 | } | 
 |  | 
 | // ToUpper returns a copy of the byte slice s with all Unicode letters mapped to | 
 | // their upper case. | 
 | func ToUpper(s []byte) []byte { | 
 | 	isASCII, hasLower := true, false | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		c := s[i] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			isASCII = false | 
 | 			break | 
 | 		} | 
 | 		hasLower = hasLower || ('a' <= c && c <= 'z') | 
 | 	} | 
 |  | 
 | 	if isASCII { // optimize for ASCII-only byte slices. | 
 | 		if !hasLower { | 
 | 			// Just return a copy. | 
 | 			return append([]byte(""), s...) | 
 | 		} | 
 | 		b := make([]byte, len(s)) | 
 | 		for i := 0; i < len(s); i++ { | 
 | 			c := s[i] | 
 | 			if 'a' <= c && c <= 'z' { | 
 | 				c -= 'a' - 'A' | 
 | 			} | 
 | 			b[i] = c | 
 | 		} | 
 | 		return b | 
 | 	} | 
 | 	return Map(unicode.ToUpper, s) | 
 | } | 
 |  | 
 | // ToLower returns a copy of the byte slice s with all Unicode letters mapped to | 
 | // their lower case. | 
 | func ToLower(s []byte) []byte { | 
 | 	isASCII, hasUpper := true, false | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		c := s[i] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			isASCII = false | 
 | 			break | 
 | 		} | 
 | 		hasUpper = hasUpper || ('A' <= c && c <= 'Z') | 
 | 	} | 
 |  | 
 | 	if isASCII { // optimize for ASCII-only byte slices. | 
 | 		if !hasUpper { | 
 | 			return append([]byte(""), s...) | 
 | 		} | 
 | 		b := make([]byte, len(s)) | 
 | 		for i := 0; i < len(s); i++ { | 
 | 			c := s[i] | 
 | 			if 'A' <= c && c <= 'Z' { | 
 | 				c += 'a' - 'A' | 
 | 			} | 
 | 			b[i] = c | 
 | 		} | 
 | 		return b | 
 | 	} | 
 | 	return Map(unicode.ToLower, s) | 
 | } | 
 |  | 
 | // ToTitle treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their title case. | 
 | func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) } | 
 |  | 
 | // ToUpperSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their | 
 | // upper case, giving priority to the special casing rules. | 
 | func ToUpperSpecial(c unicode.SpecialCase, s []byte) []byte { | 
 | 	return Map(c.ToUpper, s) | 
 | } | 
 |  | 
 | // ToLowerSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their | 
 | // lower case, giving priority to the special casing rules. | 
 | func ToLowerSpecial(c unicode.SpecialCase, s []byte) []byte { | 
 | 	return Map(c.ToLower, s) | 
 | } | 
 |  | 
 | // ToTitleSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their | 
 | // title case, giving priority to the special casing rules. | 
 | func ToTitleSpecial(c unicode.SpecialCase, s []byte) []byte { | 
 | 	return Map(c.ToTitle, s) | 
 | } | 
 |  | 
 | // ToValidUTF8 treats s as UTF-8-encoded bytes and returns a copy with each run of bytes | 
 | // representing invalid UTF-8 replaced with the bytes in replacement, which may be empty. | 
 | func ToValidUTF8(s, replacement []byte) []byte { | 
 | 	b := make([]byte, 0, len(s)+len(replacement)) | 
 | 	invalid := false // previous byte was from an invalid UTF-8 sequence | 
 | 	for i := 0; i < len(s); { | 
 | 		c := s[i] | 
 | 		if c < utf8.RuneSelf { | 
 | 			i++ | 
 | 			invalid = false | 
 | 			b = append(b, byte(c)) | 
 | 			continue | 
 | 		} | 
 | 		_, wid := utf8.DecodeRune(s[i:]) | 
 | 		if wid == 1 { | 
 | 			i++ | 
 | 			if !invalid { | 
 | 				invalid = true | 
 | 				b = append(b, replacement...) | 
 | 			} | 
 | 			continue | 
 | 		} | 
 | 		invalid = false | 
 | 		b = append(b, s[i:i+wid]...) | 
 | 		i += wid | 
 | 	} | 
 | 	return b | 
 | } | 
 |  | 
 | // isSeparator reports whether the rune could mark a word boundary. | 
 | // TODO: update when package unicode captures more of the properties. | 
 | func isSeparator(r rune) bool { | 
 | 	// ASCII alphanumerics and underscore are not separators | 
 | 	if r <= 0x7F { | 
 | 		switch { | 
 | 		case '0' <= r && r <= '9': | 
 | 			return false | 
 | 		case 'a' <= r && r <= 'z': | 
 | 			return false | 
 | 		case 'A' <= r && r <= 'Z': | 
 | 			return false | 
 | 		case r == '_': | 
 | 			return false | 
 | 		} | 
 | 		return true | 
 | 	} | 
 | 	// Letters and digits are not separators | 
 | 	if unicode.IsLetter(r) || unicode.IsDigit(r) { | 
 | 		return false | 
 | 	} | 
 | 	// Otherwise, all we can do for now is treat spaces as separators. | 
 | 	return unicode.IsSpace(r) | 
 | } | 
 |  | 
 | // Title treats s as UTF-8-encoded bytes and returns a copy with all Unicode letters that begin | 
 | // words mapped to their title case. | 
 | // | 
 | // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly. | 
 | func Title(s []byte) []byte { | 
 | 	// Use a closure here to remember state. | 
 | 	// Hackish but effective. Depends on Map scanning in order and calling | 
 | 	// the closure once per rune. | 
 | 	prev := ' ' | 
 | 	return Map( | 
 | 		func(r rune) rune { | 
 | 			if isSeparator(prev) { | 
 | 				prev = r | 
 | 				return unicode.ToTitle(r) | 
 | 			} | 
 | 			prev = r | 
 | 			return r | 
 | 		}, | 
 | 		s) | 
 | } | 
 |  | 
 | // TrimLeftFunc treats s as UTF-8-encoded bytes and returns a subslice of s by slicing off | 
 | // all leading UTF-8-encoded code points c that satisfy f(c). | 
 | func TrimLeftFunc(s []byte, f func(r rune) bool) []byte { | 
 | 	i := indexFunc(s, f, false) | 
 | 	if i == -1 { | 
 | 		return nil | 
 | 	} | 
 | 	return s[i:] | 
 | } | 
 |  | 
 | // TrimRightFunc returns a subslice of s by slicing off all trailing | 
 | // UTF-8-encoded code points c that satisfy f(c). | 
 | func TrimRightFunc(s []byte, f func(r rune) bool) []byte { | 
 | 	i := lastIndexFunc(s, f, false) | 
 | 	if i >= 0 && s[i] >= utf8.RuneSelf { | 
 | 		_, wid := utf8.DecodeRune(s[i:]) | 
 | 		i += wid | 
 | 	} else { | 
 | 		i++ | 
 | 	} | 
 | 	return s[0:i] | 
 | } | 
 |  | 
 | // TrimFunc returns a subslice of s by slicing off all leading and trailing | 
 | // UTF-8-encoded code points c that satisfy f(c). | 
 | func TrimFunc(s []byte, f func(r rune) bool) []byte { | 
 | 	return TrimRightFunc(TrimLeftFunc(s, f), f) | 
 | } | 
 |  | 
 | // TrimPrefix returns s without the provided leading prefix string. | 
 | // If s doesn't start with prefix, s is returned unchanged. | 
 | func TrimPrefix(s, prefix []byte) []byte { | 
 | 	if HasPrefix(s, prefix) { | 
 | 		return s[len(prefix):] | 
 | 	} | 
 | 	return s | 
 | } | 
 |  | 
 | // TrimSuffix returns s without the provided trailing suffix string. | 
 | // If s doesn't end with suffix, s is returned unchanged. | 
 | func TrimSuffix(s, suffix []byte) []byte { | 
 | 	if HasSuffix(s, suffix) { | 
 | 		return s[:len(s)-len(suffix)] | 
 | 	} | 
 | 	return s | 
 | } | 
 |  | 
 | // IndexFunc interprets s as a sequence of UTF-8-encoded code points. | 
 | // It returns the byte index in s of the first Unicode | 
 | // code point satisfying f(c), or -1 if none do. | 
 | func IndexFunc(s []byte, f func(r rune) bool) int { | 
 | 	return indexFunc(s, f, true) | 
 | } | 
 |  | 
 | // LastIndexFunc interprets s as a sequence of UTF-8-encoded code points. | 
 | // It returns the byte index in s of the last Unicode | 
 | // code point satisfying f(c), or -1 if none do. | 
 | func LastIndexFunc(s []byte, f func(r rune) bool) int { | 
 | 	return lastIndexFunc(s, f, true) | 
 | } | 
 |  | 
 | // indexFunc is the same as IndexFunc except that if | 
 | // truth==false, the sense of the predicate function is | 
 | // inverted. | 
 | func indexFunc(s []byte, f func(r rune) bool, truth bool) int { | 
 | 	start := 0 | 
 | 	for start < len(s) { | 
 | 		wid := 1 | 
 | 		r := rune(s[start]) | 
 | 		if r >= utf8.RuneSelf { | 
 | 			r, wid = utf8.DecodeRune(s[start:]) | 
 | 		} | 
 | 		if f(r) == truth { | 
 | 			return start | 
 | 		} | 
 | 		start += wid | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // lastIndexFunc is the same as LastIndexFunc except that if | 
 | // truth==false, the sense of the predicate function is | 
 | // inverted. | 
 | func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int { | 
 | 	for i := len(s); i > 0; { | 
 | 		r, size := rune(s[i-1]), 1 | 
 | 		if r >= utf8.RuneSelf { | 
 | 			r, size = utf8.DecodeLastRune(s[0:i]) | 
 | 		} | 
 | 		i -= size | 
 | 		if f(r) == truth { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // asciiSet is a 32-byte value, where each bit represents the presence of a | 
 | // given ASCII character in the set. The 128-bits of the lower 16 bytes, | 
 | // starting with the least-significant bit of the lowest word to the | 
 | // most-significant bit of the highest word, map to the full range of all | 
 | // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed, | 
 | // ensuring that any non-ASCII character will be reported as not in the set. | 
 | type asciiSet [8]uint32 | 
 |  | 
 | // makeASCIISet creates a set of ASCII characters and reports whether all | 
 | // characters in chars are ASCII. | 
 | func makeASCIISet(chars string) (as asciiSet, ok bool) { | 
 | 	for i := 0; i < len(chars); i++ { | 
 | 		c := chars[i] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			return as, false | 
 | 		} | 
 | 		as[c>>5] |= 1 << uint(c&31) | 
 | 	} | 
 | 	return as, true | 
 | } | 
 |  | 
 | // contains reports whether c is inside the set. | 
 | func (as *asciiSet) contains(c byte) bool { | 
 | 	return (as[c>>5] & (1 << uint(c&31))) != 0 | 
 | } | 
 |  | 
 | func makeCutsetFunc(cutset string) func(r rune) bool { | 
 | 	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { | 
 | 		return func(r rune) bool { | 
 | 			return r == rune(cutset[0]) | 
 | 		} | 
 | 	} | 
 | 	if as, isASCII := makeASCIISet(cutset); isASCII { | 
 | 		return func(r rune) bool { | 
 | 			return r < utf8.RuneSelf && as.contains(byte(r)) | 
 | 		} | 
 | 	} | 
 | 	return func(r rune) bool { | 
 | 		for _, c := range cutset { | 
 | 			if c == r { | 
 | 				return true | 
 | 			} | 
 | 		} | 
 | 		return false | 
 | 	} | 
 | } | 
 |  | 
 | // Trim returns a subslice of s by slicing off all leading and | 
 | // trailing UTF-8-encoded code points contained in cutset. | 
 | func Trim(s []byte, cutset string) []byte { | 
 | 	return TrimFunc(s, makeCutsetFunc(cutset)) | 
 | } | 
 |  | 
 | // TrimLeft returns a subslice of s by slicing off all leading | 
 | // UTF-8-encoded code points contained in cutset. | 
 | func TrimLeft(s []byte, cutset string) []byte { | 
 | 	return TrimLeftFunc(s, makeCutsetFunc(cutset)) | 
 | } | 
 |  | 
 | // TrimRight returns a subslice of s by slicing off all trailing | 
 | // UTF-8-encoded code points that are contained in cutset. | 
 | func TrimRight(s []byte, cutset string) []byte { | 
 | 	return TrimRightFunc(s, makeCutsetFunc(cutset)) | 
 | } | 
 |  | 
 | // TrimSpace returns a subslice of s by slicing off all leading and | 
 | // trailing white space, as defined by Unicode. | 
 | func TrimSpace(s []byte) []byte { | 
 | 	// Fast path for ASCII: look for the first ASCII non-space byte | 
 | 	start := 0 | 
 | 	for ; start < len(s); start++ { | 
 | 		c := s[start] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			// If we run into a non-ASCII byte, fall back to the | 
 | 			// slower unicode-aware method on the remaining bytes | 
 | 			return TrimFunc(s[start:], unicode.IsSpace) | 
 | 		} | 
 | 		if asciiSpace[c] == 0 { | 
 | 			break | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Now look for the first ASCII non-space byte from the end | 
 | 	stop := len(s) | 
 | 	for ; stop > start; stop-- { | 
 | 		c := s[stop-1] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			return TrimFunc(s[start:stop], unicode.IsSpace) | 
 | 		} | 
 | 		if asciiSpace[c] == 0 { | 
 | 			break | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// At this point s[start:stop] starts and ends with an ASCII | 
 | 	// non-space bytes, so we're done. Non-ASCII cases have already | 
 | 	// been handled above. | 
 | 	if start == stop { | 
 | 		// Special case to preserve previous TrimLeftFunc behavior, | 
 | 		// returning nil instead of empty slice if all spaces. | 
 | 		return nil | 
 | 	} | 
 | 	return s[start:stop] | 
 | } | 
 |  | 
 | // Runes interprets s as a sequence of UTF-8-encoded code points. | 
 | // It returns a slice of runes (Unicode code points) equivalent to s. | 
 | func Runes(s []byte) []rune { | 
 | 	t := make([]rune, utf8.RuneCount(s)) | 
 | 	i := 0 | 
 | 	for len(s) > 0 { | 
 | 		r, l := utf8.DecodeRune(s) | 
 | 		t[i] = r | 
 | 		i++ | 
 | 		s = s[l:] | 
 | 	} | 
 | 	return t | 
 | } | 
 |  | 
 | // Replace returns a copy of the slice s with the first n | 
 | // non-overlapping instances of old replaced by new. | 
 | // If old is empty, it matches at the beginning of the slice | 
 | // and after each UTF-8 sequence, yielding up to k+1 replacements | 
 | // for a k-rune slice. | 
 | // If n < 0, there is no limit on the number of replacements. | 
 | func Replace(s, old, new []byte, n int) []byte { | 
 | 	m := 0 | 
 | 	if n != 0 { | 
 | 		// Compute number of replacements. | 
 | 		m = Count(s, old) | 
 | 	} | 
 | 	if m == 0 { | 
 | 		// Just return a copy. | 
 | 		return append([]byte(nil), s...) | 
 | 	} | 
 | 	if n < 0 || m < n { | 
 | 		n = m | 
 | 	} | 
 |  | 
 | 	// Apply replacements to buffer. | 
 | 	t := make([]byte, len(s)+n*(len(new)-len(old))) | 
 | 	w := 0 | 
 | 	start := 0 | 
 | 	for i := 0; i < n; i++ { | 
 | 		j := start | 
 | 		if len(old) == 0 { | 
 | 			if i > 0 { | 
 | 				_, wid := utf8.DecodeRune(s[start:]) | 
 | 				j += wid | 
 | 			} | 
 | 		} else { | 
 | 			j += Index(s[start:], old) | 
 | 		} | 
 | 		w += copy(t[w:], s[start:j]) | 
 | 		w += copy(t[w:], new) | 
 | 		start = j + len(old) | 
 | 	} | 
 | 	w += copy(t[w:], s[start:]) | 
 | 	return t[0:w] | 
 | } | 
 |  | 
 | // ReplaceAll returns a copy of the slice s with all | 
 | // non-overlapping instances of old replaced by new. | 
 | // If old is empty, it matches at the beginning of the slice | 
 | // and after each UTF-8 sequence, yielding up to k+1 replacements | 
 | // for a k-rune slice. | 
 | func ReplaceAll(s, old, new []byte) []byte { | 
 | 	return Replace(s, old, new, -1) | 
 | } | 
 |  | 
 | // EqualFold reports whether s and t, interpreted as UTF-8 strings, | 
 | // are equal under Unicode case-folding, which is a more general | 
 | // form of case-insensitivity. | 
 | func EqualFold(s, t []byte) bool { | 
 | 	for len(s) != 0 && len(t) != 0 { | 
 | 		// Extract first rune from each. | 
 | 		var sr, tr rune | 
 | 		if s[0] < utf8.RuneSelf { | 
 | 			sr, s = rune(s[0]), s[1:] | 
 | 		} else { | 
 | 			r, size := utf8.DecodeRune(s) | 
 | 			sr, s = r, s[size:] | 
 | 		} | 
 | 		if t[0] < utf8.RuneSelf { | 
 | 			tr, t = rune(t[0]), t[1:] | 
 | 		} else { | 
 | 			r, size := utf8.DecodeRune(t) | 
 | 			tr, t = r, t[size:] | 
 | 		} | 
 |  | 
 | 		// If they match, keep going; if not, return false. | 
 |  | 
 | 		// Easy case. | 
 | 		if tr == sr { | 
 | 			continue | 
 | 		} | 
 |  | 
 | 		// Make sr < tr to simplify what follows. | 
 | 		if tr < sr { | 
 | 			tr, sr = sr, tr | 
 | 		} | 
 | 		// Fast check for ASCII. | 
 | 		if tr < utf8.RuneSelf { | 
 | 			// ASCII only, sr/tr must be upper/lower case | 
 | 			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { | 
 | 				continue | 
 | 			} | 
 | 			return false | 
 | 		} | 
 |  | 
 | 		// General case. SimpleFold(x) returns the next equivalent rune > x | 
 | 		// or wraps around to smaller values. | 
 | 		r := unicode.SimpleFold(sr) | 
 | 		for r != sr && r < tr { | 
 | 			r = unicode.SimpleFold(r) | 
 | 		} | 
 | 		if r == tr { | 
 | 			continue | 
 | 		} | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	// One string is empty. Are both? | 
 | 	return len(s) == len(t) | 
 | } | 
 |  | 
 | // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. | 
 | func Index(s, sep []byte) int { | 
 | 	n := len(sep) | 
 | 	switch { | 
 | 	case n == 0: | 
 | 		return 0 | 
 | 	case n == 1: | 
 | 		return IndexByte(s, sep[0]) | 
 | 	case n == len(s): | 
 | 		if Equal(sep, s) { | 
 | 			return 0 | 
 | 		} | 
 | 		return -1 | 
 | 	case n > len(s): | 
 | 		return -1 | 
 | 	case n <= bytealg.MaxLen: | 
 | 		// Use brute force when s and sep both are small | 
 | 		if len(s) <= bytealg.MaxBruteForce { | 
 | 			return bytealg.Index(s, sep) | 
 | 		} | 
 | 		c0 := sep[0] | 
 | 		c1 := sep[1] | 
 | 		i := 0 | 
 | 		t := len(s) - n + 1 | 
 | 		fails := 0 | 
 | 		for i < t { | 
 | 			if s[i] != c0 { | 
 | 				// IndexByte is faster than bytealg.Index, so use it as long as | 
 | 				// we're not getting lots of false positives. | 
 | 				o := IndexByte(s[i+1:t], c0) | 
 | 				if o < 0 { | 
 | 					return -1 | 
 | 				} | 
 | 				i += o + 1 | 
 | 			} | 
 | 			if s[i+1] == c1 && Equal(s[i:i+n], sep) { | 
 | 				return i | 
 | 			} | 
 | 			fails++ | 
 | 			i++ | 
 | 			// Switch to bytealg.Index when IndexByte produces too many false positives. | 
 | 			if fails > bytealg.Cutover(i) { | 
 | 				r := bytealg.Index(s[i:], sep) | 
 | 				if r >= 0 { | 
 | 					return r + i | 
 | 				} | 
 | 				return -1 | 
 | 			} | 
 | 		} | 
 | 		return -1 | 
 | 	} | 
 | 	c0 := sep[0] | 
 | 	c1 := sep[1] | 
 | 	i := 0 | 
 | 	fails := 0 | 
 | 	t := len(s) - n + 1 | 
 | 	for i < t { | 
 | 		if s[i] != c0 { | 
 | 			o := IndexByte(s[i+1:t], c0) | 
 | 			if o < 0 { | 
 | 				break | 
 | 			} | 
 | 			i += o + 1 | 
 | 		} | 
 | 		if s[i+1] == c1 && Equal(s[i:i+n], sep) { | 
 | 			return i | 
 | 		} | 
 | 		i++ | 
 | 		fails++ | 
 | 		if fails >= 4+i>>4 && i < t { | 
 | 			// Give up on IndexByte, it isn't skipping ahead | 
 | 			// far enough to be better than Rabin-Karp. | 
 | 			// Experiments (using IndexPeriodic) suggest | 
 | 			// the cutover is about 16 byte skips. | 
 | 			// TODO: if large prefixes of sep are matching | 
 | 			// we should cutover at even larger average skips, | 
 | 			// because Equal becomes that much more expensive. | 
 | 			// This code does not take that effect into account. | 
 | 			j := bytealg.IndexRabinKarpBytes(s[i:], sep) | 
 | 			if j < 0 { | 
 | 				return -1 | 
 | 			} | 
 | 			return i + j | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } |