| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package bigmod |
| |
| import ( |
| "errors" |
| "math/big" |
| "math/bits" |
| ) |
| |
| const ( |
| // _W is the number of bits we use for our limbs. |
| _W = bits.UintSize - 1 |
| // _MASK selects _W bits from a full machine word. |
| _MASK = (1 << _W) - 1 |
| ) |
| |
| // choice represents a constant-time boolean. The value of choice is always |
| // either 1 or 0. We use an int instead of bool in order to make decisions in |
| // constant time by turning it into a mask. |
| type choice uint |
| |
| func not(c choice) choice { return 1 ^ c } |
| |
| const yes = choice(1) |
| const no = choice(0) |
| |
| // ctSelect returns x if on == 1, and y if on == 0. The execution time of this |
| // function does not depend on its inputs. If on is any value besides 1 or 0, |
| // the result is undefined. |
| func ctSelect(on choice, x, y uint) uint { |
| // When on == 1, mask is 0b111..., otherwise mask is 0b000... |
| mask := -uint(on) |
| // When mask is all zeros, we just have y, otherwise, y cancels with itself. |
| return y ^ (mask & (y ^ x)) |
| } |
| |
| // ctEq returns 1 if x == y, and 0 otherwise. The execution time of this |
| // function does not depend on its inputs. |
| func ctEq(x, y uint) choice { |
| // If x != y, then either x - y or y - x will generate a carry. |
| _, c1 := bits.Sub(x, y, 0) |
| _, c2 := bits.Sub(y, x, 0) |
| return not(choice(c1 | c2)) |
| } |
| |
| // ctGeq returns 1 if x >= y, and 0 otherwise. The execution time of this |
| // function does not depend on its inputs. |
| func ctGeq(x, y uint) choice { |
| // If x < y, then x - y generates a carry. |
| _, carry := bits.Sub(x, y, 0) |
| return not(choice(carry)) |
| } |
| |
| // Nat represents an arbitrary natural number |
| // |
| // Each Nat has an announced length, which is the number of limbs it has stored. |
| // Operations on this number are allowed to leak this length, but will not leak |
| // any information about the values contained in those limbs. |
| type Nat struct { |
| // limbs is a little-endian representation in base 2^W with |
| // W = bits.UintSize - 1. The top bit is always unset between operations. |
| // |
| // The top bit is left unset to optimize Montgomery multiplication, in the |
| // inner loop of exponentiation. Using fully saturated limbs would leave us |
| // working with 129-bit numbers on 64-bit platforms, wasting a lot of space, |
| // and thus time. |
| limbs []uint |
| } |
| |
| // preallocTarget is the size in bits of the numbers used to implement the most |
| // common and most performant RSA key size. It's also enough to cover some of |
| // the operations of key sizes up to 4096. |
| const preallocTarget = 2048 |
| const preallocLimbs = (preallocTarget + _W - 1) / _W |
| |
| // NewNat returns a new nat with a size of zero, just like new(Nat), but with |
| // the preallocated capacity to hold a number of up to preallocTarget bits. |
| // NewNat inlines, so the allocation can live on the stack. |
| func NewNat() *Nat { |
| limbs := make([]uint, 0, preallocLimbs) |
| return &Nat{limbs} |
| } |
| |
| // expand expands x to n limbs, leaving its value unchanged. |
| func (x *Nat) expand(n int) *Nat { |
| if len(x.limbs) > n { |
| panic("bigmod: internal error: shrinking nat") |
| } |
| if cap(x.limbs) < n { |
| newLimbs := make([]uint, n) |
| copy(newLimbs, x.limbs) |
| x.limbs = newLimbs |
| return x |
| } |
| extraLimbs := x.limbs[len(x.limbs):n] |
| for i := range extraLimbs { |
| extraLimbs[i] = 0 |
| } |
| x.limbs = x.limbs[:n] |
| return x |
| } |
| |
| // reset returns a zero nat of n limbs, reusing x's storage if n <= cap(x.limbs). |
| func (x *Nat) reset(n int) *Nat { |
| if cap(x.limbs) < n { |
| x.limbs = make([]uint, n) |
| return x |
| } |
| for i := range x.limbs { |
| x.limbs[i] = 0 |
| } |
| x.limbs = x.limbs[:n] |
| return x |
| } |
| |
| // set assigns x = y, optionally resizing x to the appropriate size. |
| func (x *Nat) set(y *Nat) *Nat { |
| x.reset(len(y.limbs)) |
| copy(x.limbs, y.limbs) |
| return x |
| } |
| |
| // setBig assigns x = n, optionally resizing n to the appropriate size. |
| // |
| // The announced length of x is set based on the actual bit size of the input, |
| // ignoring leading zeroes. |
| func (x *Nat) setBig(n *big.Int) *Nat { |
| requiredLimbs := (n.BitLen() + _W - 1) / _W |
| x.reset(requiredLimbs) |
| |
| outI := 0 |
| shift := 0 |
| limbs := n.Bits() |
| for i := range limbs { |
| xi := uint(limbs[i]) |
| x.limbs[outI] |= (xi << shift) & _MASK |
| outI++ |
| if outI == requiredLimbs { |
| return x |
| } |
| x.limbs[outI] = xi >> (_W - shift) |
| shift++ // this assumes bits.UintSize - _W = 1 |
| if shift == _W { |
| shift = 0 |
| outI++ |
| } |
| } |
| return x |
| } |
| |
| // Bytes returns x as a zero-extended big-endian byte slice. The size of the |
| // slice will match the size of m. |
| // |
| // x must have the same size as m and it must be reduced modulo m. |
| func (x *Nat) Bytes(m *Modulus) []byte { |
| bytes := make([]byte, m.Size()) |
| shift := 0 |
| outI := len(bytes) - 1 |
| for _, limb := range x.limbs { |
| remainingBits := _W |
| for remainingBits >= 8 { |
| bytes[outI] |= byte(limb) << shift |
| consumed := 8 - shift |
| limb >>= consumed |
| remainingBits -= consumed |
| shift = 0 |
| outI-- |
| if outI < 0 { |
| return bytes |
| } |
| } |
| bytes[outI] = byte(limb) |
| shift = remainingBits |
| } |
| return bytes |
| } |
| |
| // SetBytes assigns x = b, where b is a slice of big-endian bytes. |
| // SetBytes returns an error if b >= m. |
| // |
| // The output will be resized to the size of m and overwritten. |
| func (x *Nat) SetBytes(b []byte, m *Modulus) (*Nat, error) { |
| if err := x.setBytes(b, m); err != nil { |
| return nil, err |
| } |
| if x.cmpGeq(m.nat) == yes { |
| return nil, errors.New("input overflows the modulus") |
| } |
| return x, nil |
| } |
| |
| // SetOverflowingBytes assigns x = b, where b is a slice of big-endian bytes. SetOverflowingBytes |
| // returns an error if b has a longer bit length than m, but reduces overflowing |
| // values up to 2^⌈log2(m)⌉ - 1. |
| // |
| // The output will be resized to the size of m and overwritten. |
| func (x *Nat) SetOverflowingBytes(b []byte, m *Modulus) (*Nat, error) { |
| if err := x.setBytes(b, m); err != nil { |
| return nil, err |
| } |
| leading := _W - bitLen(x.limbs[len(x.limbs)-1]) |
| if leading < m.leading { |
| return nil, errors.New("input overflows the modulus") |
| } |
| x.sub(x.cmpGeq(m.nat), m.nat) |
| return x, nil |
| } |
| |
| func (x *Nat) setBytes(b []byte, m *Modulus) error { |
| outI := 0 |
| shift := 0 |
| x.resetFor(m) |
| for i := len(b) - 1; i >= 0; i-- { |
| bi := b[i] |
| x.limbs[outI] |= uint(bi) << shift |
| shift += 8 |
| if shift >= _W { |
| shift -= _W |
| x.limbs[outI] &= _MASK |
| overflow := bi >> (8 - shift) |
| outI++ |
| if outI >= len(x.limbs) { |
| if overflow > 0 || i > 0 { |
| return errors.New("input overflows the modulus") |
| } |
| break |
| } |
| x.limbs[outI] = uint(overflow) |
| } |
| } |
| return nil |
| } |
| |
| // Equal returns 1 if x == y, and 0 otherwise. |
| // |
| // Both operands must have the same announced length. |
| func (x *Nat) Equal(y *Nat) choice { |
| // Eliminate bounds checks in the loop. |
| size := len(x.limbs) |
| xLimbs := x.limbs[:size] |
| yLimbs := y.limbs[:size] |
| |
| equal := yes |
| for i := 0; i < size; i++ { |
| equal &= ctEq(xLimbs[i], yLimbs[i]) |
| } |
| return equal |
| } |
| |
| // IsZero returns 1 if x == 0, and 0 otherwise. |
| func (x *Nat) IsZero() choice { |
| // Eliminate bounds checks in the loop. |
| size := len(x.limbs) |
| xLimbs := x.limbs[:size] |
| |
| zero := yes |
| for i := 0; i < size; i++ { |
| zero &= ctEq(xLimbs[i], 0) |
| } |
| return zero |
| } |
| |
| // cmpGeq returns 1 if x >= y, and 0 otherwise. |
| // |
| // Both operands must have the same announced length. |
| func (x *Nat) cmpGeq(y *Nat) choice { |
| // Eliminate bounds checks in the loop. |
| size := len(x.limbs) |
| xLimbs := x.limbs[:size] |
| yLimbs := y.limbs[:size] |
| |
| var c uint |
| for i := 0; i < size; i++ { |
| c = (xLimbs[i] - yLimbs[i] - c) >> _W |
| } |
| // If there was a carry, then subtracting y underflowed, so |
| // x is not greater than or equal to y. |
| return not(choice(c)) |
| } |
| |
| // assign sets x <- y if on == 1, and does nothing otherwise. |
| // |
| // Both operands must have the same announced length. |
| func (x *Nat) assign(on choice, y *Nat) *Nat { |
| // Eliminate bounds checks in the loop. |
| size := len(x.limbs) |
| xLimbs := x.limbs[:size] |
| yLimbs := y.limbs[:size] |
| |
| for i := 0; i < size; i++ { |
| xLimbs[i] = ctSelect(on, yLimbs[i], xLimbs[i]) |
| } |
| return x |
| } |
| |
| // add computes x += y if on == 1, and does nothing otherwise. It returns the |
| // carry of the addition regardless of on. |
| // |
| // Both operands must have the same announced length. |
| func (x *Nat) add(on choice, y *Nat) (c uint) { |
| // Eliminate bounds checks in the loop. |
| size := len(x.limbs) |
| xLimbs := x.limbs[:size] |
| yLimbs := y.limbs[:size] |
| |
| for i := 0; i < size; i++ { |
| res := xLimbs[i] + yLimbs[i] + c |
| xLimbs[i] = ctSelect(on, res&_MASK, xLimbs[i]) |
| c = res >> _W |
| } |
| return |
| } |
| |
| // sub computes x -= y if on == 1, and does nothing otherwise. It returns the |
| // borrow of the subtraction regardless of on. |
| // |
| // Both operands must have the same announced length. |
| func (x *Nat) sub(on choice, y *Nat) (c uint) { |
| // Eliminate bounds checks in the loop. |
| size := len(x.limbs) |
| xLimbs := x.limbs[:size] |
| yLimbs := y.limbs[:size] |
| |
| for i := 0; i < size; i++ { |
| res := xLimbs[i] - yLimbs[i] - c |
| xLimbs[i] = ctSelect(on, res&_MASK, xLimbs[i]) |
| c = res >> _W |
| } |
| return |
| } |
| |
| // Modulus is used for modular arithmetic, precomputing relevant constants. |
| // |
| // Moduli are assumed to be odd numbers. Moduli can also leak the exact |
| // number of bits needed to store their value, and are stored without padding. |
| // |
| // Their actual value is still kept secret. |
| type Modulus struct { |
| // The underlying natural number for this modulus. |
| // |
| // This will be stored without any padding, and shouldn't alias with any |
| // other natural number being used. |
| nat *Nat |
| leading int // number of leading zeros in the modulus |
| m0inv uint // -nat.limbs[0]⁻¹ mod _W |
| rr *Nat // R*R for montgomeryRepresentation |
| } |
| |
| // rr returns R*R with R = 2^(_W * n) and n = len(m.nat.limbs). |
| func rr(m *Modulus) *Nat { |
| rr := NewNat().ExpandFor(m) |
| // R*R is 2^(2 * _W * n). We can safely get 2^(_W * (n - 1)) by setting the |
| // most significant limb to 1. We then get to R*R by shifting left by _W |
| // n + 1 times. |
| n := len(rr.limbs) |
| rr.limbs[n-1] = 1 |
| for i := n - 1; i < 2*n; i++ { |
| rr.shiftIn(0, m) // x = x * 2^_W mod m |
| } |
| return rr |
| } |
| |
| // minusInverseModW computes -x⁻¹ mod _W with x odd. |
| // |
| // This operation is used to precompute a constant involved in Montgomery |
| // multiplication. |
| func minusInverseModW(x uint) uint { |
| // Every iteration of this loop doubles the least-significant bits of |
| // correct inverse in y. The first three bits are already correct (1⁻¹ = 1, |
| // 3⁻¹ = 3, 5⁻¹ = 5, and 7⁻¹ = 7 mod 8), so doubling five times is enough |
| // for 61 bits (and wastes only one iteration for 31 bits). |
| // |
| // See https://crypto.stackexchange.com/a/47496. |
| y := x |
| for i := 0; i < 5; i++ { |
| y = y * (2 - x*y) |
| } |
| return (1 << _W) - (y & _MASK) |
| } |
| |
| // NewModulusFromBig creates a new Modulus from a [big.Int]. |
| // |
| // The Int must be odd. The number of significant bits must be leakable. |
| func NewModulusFromBig(n *big.Int) *Modulus { |
| m := &Modulus{} |
| m.nat = NewNat().setBig(n) |
| m.leading = _W - bitLen(m.nat.limbs[len(m.nat.limbs)-1]) |
| m.m0inv = minusInverseModW(m.nat.limbs[0]) |
| m.rr = rr(m) |
| return m |
| } |
| |
| // bitLen is a version of bits.Len that only leaks the bit length of n, but not |
| // its value. bits.Len and bits.LeadingZeros use a lookup table for the |
| // low-order bits on some architectures. |
| func bitLen(n uint) int { |
| var len int |
| // We assume, here and elsewhere, that comparison to zero is constant time |
| // with respect to different non-zero values. |
| for n != 0 { |
| len++ |
| n >>= 1 |
| } |
| return len |
| } |
| |
| // Size returns the size of m in bytes. |
| func (m *Modulus) Size() int { |
| return (m.BitLen() + 7) / 8 |
| } |
| |
| // BitLen returns the size of m in bits. |
| func (m *Modulus) BitLen() int { |
| return len(m.nat.limbs)*_W - int(m.leading) |
| } |
| |
| // Nat returns m as a Nat. The return value must not be written to. |
| func (m *Modulus) Nat() *Nat { |
| return m.nat |
| } |
| |
| // shiftIn calculates x = x << _W + y mod m. |
| // |
| // This assumes that x is already reduced mod m, and that y < 2^_W. |
| func (x *Nat) shiftIn(y uint, m *Modulus) *Nat { |
| d := NewNat().resetFor(m) |
| |
| // Eliminate bounds checks in the loop. |
| size := len(m.nat.limbs) |
| xLimbs := x.limbs[:size] |
| dLimbs := d.limbs[:size] |
| mLimbs := m.nat.limbs[:size] |
| |
| // Each iteration of this loop computes x = 2x + b mod m, where b is a bit |
| // from y. Effectively, it left-shifts x and adds y one bit at a time, |
| // reducing it every time. |
| // |
| // To do the reduction, each iteration computes both 2x + b and 2x + b - m. |
| // The next iteration (and finally the return line) will use either result |
| // based on whether the subtraction underflowed. |
| needSubtraction := no |
| for i := _W - 1; i >= 0; i-- { |
| carry := (y >> i) & 1 |
| var borrow uint |
| for i := 0; i < size; i++ { |
| l := ctSelect(needSubtraction, dLimbs[i], xLimbs[i]) |
| |
| res := l<<1 + carry |
| xLimbs[i] = res & _MASK |
| carry = res >> _W |
| |
| res = xLimbs[i] - mLimbs[i] - borrow |
| dLimbs[i] = res & _MASK |
| borrow = res >> _W |
| } |
| // See Add for how carry (aka overflow), borrow (aka underflow), and |
| // needSubtraction relate. |
| needSubtraction = ctEq(carry, borrow) |
| } |
| return x.assign(needSubtraction, d) |
| } |
| |
| // Mod calculates out = x mod m. |
| // |
| // This works regardless how large the value of x is. |
| // |
| // The output will be resized to the size of m and overwritten. |
| func (out *Nat) Mod(x *Nat, m *Modulus) *Nat { |
| out.resetFor(m) |
| // Working our way from the most significant to the least significant limb, |
| // we can insert each limb at the least significant position, shifting all |
| // previous limbs left by _W. This way each limb will get shifted by the |
| // correct number of bits. We can insert at least N - 1 limbs without |
| // overflowing m. After that, we need to reduce every time we shift. |
| i := len(x.limbs) - 1 |
| // For the first N - 1 limbs we can skip the actual shifting and position |
| // them at the shifted position, which starts at min(N - 2, i). |
| start := len(m.nat.limbs) - 2 |
| if i < start { |
| start = i |
| } |
| for j := start; j >= 0; j-- { |
| out.limbs[j] = x.limbs[i] |
| i-- |
| } |
| // We shift in the remaining limbs, reducing modulo m each time. |
| for i >= 0 { |
| out.shiftIn(x.limbs[i], m) |
| i-- |
| } |
| return out |
| } |
| |
| // ExpandFor ensures out has the right size to work with operations modulo m. |
| // |
| // The announced size of out must be smaller than or equal to that of m. |
| func (out *Nat) ExpandFor(m *Modulus) *Nat { |
| return out.expand(len(m.nat.limbs)) |
| } |
| |
| // resetFor ensures out has the right size to work with operations modulo m. |
| // |
| // out is zeroed and may start at any size. |
| func (out *Nat) resetFor(m *Modulus) *Nat { |
| return out.reset(len(m.nat.limbs)) |
| } |
| |
| // Sub computes x = x - y mod m. |
| // |
| // The length of both operands must be the same as the modulus. Both operands |
| // must already be reduced modulo m. |
| func (x *Nat) Sub(y *Nat, m *Modulus) *Nat { |
| underflow := x.sub(yes, y) |
| // If the subtraction underflowed, add m. |
| x.add(choice(underflow), m.nat) |
| return x |
| } |
| |
| // Add computes x = x + y mod m. |
| // |
| // The length of both operands must be the same as the modulus. Both operands |
| // must already be reduced modulo m. |
| func (x *Nat) Add(y *Nat, m *Modulus) *Nat { |
| overflow := x.add(yes, y) |
| underflow := not(x.cmpGeq(m.nat)) // x < m |
| |
| // Three cases are possible: |
| // |
| // - overflow = 0, underflow = 0 |
| // |
| // In this case, addition fits in our limbs, but we can still subtract away |
| // m without an underflow, so we need to perform the subtraction to reduce |
| // our result. |
| // |
| // - overflow = 0, underflow = 1 |
| // |
| // The addition fits in our limbs, but we can't subtract m without |
| // underflowing. The result is already reduced. |
| // |
| // - overflow = 1, underflow = 1 |
| // |
| // The addition does not fit in our limbs, and the subtraction's borrow |
| // would cancel out with the addition's carry. We need to subtract m to |
| // reduce our result. |
| // |
| // The overflow = 1, underflow = 0 case is not possible, because y is at |
| // most m - 1, and if adding m - 1 overflows, then subtracting m must |
| // necessarily underflow. |
| needSubtraction := ctEq(overflow, uint(underflow)) |
| |
| x.sub(needSubtraction, m.nat) |
| return x |
| } |
| |
| // montgomeryRepresentation calculates x = x * R mod m, with R = 2^(_W * n) and |
| // n = len(m.nat.limbs). |
| // |
| // Faster Montgomery multiplication replaces standard modular multiplication for |
| // numbers in this representation. |
| // |
| // This assumes that x is already reduced mod m. |
| func (x *Nat) montgomeryRepresentation(m *Modulus) *Nat { |
| // A Montgomery multiplication (which computes a * b / R) by R * R works out |
| // to a multiplication by R, which takes the value out of the Montgomery domain. |
| return x.montgomeryMul(NewNat().set(x), m.rr, m) |
| } |
| |
| // montgomeryReduction calculates x = x / R mod m, with R = 2^(_W * n) and |
| // n = len(m.nat.limbs). |
| // |
| // This assumes that x is already reduced mod m. |
| func (x *Nat) montgomeryReduction(m *Modulus) *Nat { |
| // By Montgomery multiplying with 1 not in Montgomery representation, we |
| // convert out back from Montgomery representation, because it works out to |
| // dividing by R. |
| t0 := NewNat().set(x) |
| t1 := NewNat().ExpandFor(m) |
| t1.limbs[0] = 1 |
| return x.montgomeryMul(t0, t1, m) |
| } |
| |
| // montgomeryMul calculates d = a * b / R mod m, with R = 2^(_W * n) and |
| // n = len(m.nat.limbs), using the Montgomery Multiplication technique. |
| // |
| // All inputs should be the same length, not aliasing d, and already |
| // reduced modulo m. d will be resized to the size of m and overwritten. |
| func (d *Nat) montgomeryMul(a *Nat, b *Nat, m *Modulus) *Nat { |
| d.resetFor(m) |
| if len(a.limbs) != len(m.nat.limbs) || len(b.limbs) != len(m.nat.limbs) { |
| panic("bigmod: invalid montgomeryMul input") |
| } |
| |
| // See https://bearssl.org/bigint.html#montgomery-reduction-and-multiplication |
| // for a description of the algorithm implemented mostly in montgomeryLoop. |
| // See Add for how overflow, underflow, and needSubtraction relate. |
| overflow := montgomeryLoop(d.limbs, a.limbs, b.limbs, m.nat.limbs, m.m0inv) |
| underflow := not(d.cmpGeq(m.nat)) // d < m |
| needSubtraction := ctEq(overflow, uint(underflow)) |
| d.sub(needSubtraction, m.nat) |
| |
| return d |
| } |
| |
| func montgomeryLoopGeneric(d, a, b, m []uint, m0inv uint) (overflow uint) { |
| // Eliminate bounds checks in the loop. |
| size := len(d) |
| a = a[:size] |
| b = b[:size] |
| m = m[:size] |
| |
| for _, ai := range a { |
| // This is an unrolled iteration of the loop below with j = 0. |
| hi, lo := bits.Mul(ai, b[0]) |
| z_lo, c := bits.Add(d[0], lo, 0) |
| f := (z_lo * m0inv) & _MASK // (d[0] + a[i] * b[0]) * m0inv |
| z_hi, _ := bits.Add(0, hi, c) |
| hi, lo = bits.Mul(f, m[0]) |
| z_lo, c = bits.Add(z_lo, lo, 0) |
| z_hi, _ = bits.Add(z_hi, hi, c) |
| carry := z_hi<<1 | z_lo>>_W |
| |
| for j := 1; j < size; j++ { |
| // z = d[j] + a[i] * b[j] + f * m[j] + carry <= 2^(2W+1) - 2^(W+1) + 2^W |
| hi, lo := bits.Mul(ai, b[j]) |
| z_lo, c := bits.Add(d[j], lo, 0) |
| z_hi, _ := bits.Add(0, hi, c) |
| hi, lo = bits.Mul(f, m[j]) |
| z_lo, c = bits.Add(z_lo, lo, 0) |
| z_hi, _ = bits.Add(z_hi, hi, c) |
| z_lo, c = bits.Add(z_lo, carry, 0) |
| z_hi, _ = bits.Add(z_hi, 0, c) |
| d[j-1] = z_lo & _MASK |
| carry = z_hi<<1 | z_lo>>_W // carry <= 2^(W+1) - 2 |
| } |
| |
| z := overflow + carry // z <= 2^(W+1) - 1 |
| d[size-1] = z & _MASK |
| overflow = z >> _W // overflow <= 1 |
| } |
| return |
| } |
| |
| // Mul calculates x *= y mod m. |
| // |
| // x and y must already be reduced modulo m, they must share its announced |
| // length, and they may not alias. |
| func (x *Nat) Mul(y *Nat, m *Modulus) *Nat { |
| // A Montgomery multiplication by a value out of the Montgomery domain |
| // takes the result out of Montgomery representation. |
| xR := NewNat().set(x).montgomeryRepresentation(m) // xR = x * R mod m |
| return x.montgomeryMul(xR, y, m) // x = xR * y / R mod m |
| } |
| |
| // Exp calculates out = x^e mod m. |
| // |
| // The exponent e is represented in big-endian order. The output will be resized |
| // to the size of m and overwritten. x must already be reduced modulo m. |
| func (out *Nat) Exp(x *Nat, e []byte, m *Modulus) *Nat { |
| // We use a 4 bit window. For our RSA workload, 4 bit windows are faster |
| // than 2 bit windows, but use an extra 12 nats worth of scratch space. |
| // Using bit sizes that don't divide 8 are more complex to implement. |
| |
| table := [(1 << 4) - 1]*Nat{ // table[i] = x ^ (i+1) |
| // newNat calls are unrolled so they are allocated on the stack. |
| NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), |
| NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), |
| NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), |
| } |
| table[0].set(x).montgomeryRepresentation(m) |
| for i := 1; i < len(table); i++ { |
| table[i].montgomeryMul(table[i-1], table[0], m) |
| } |
| |
| out.resetFor(m) |
| out.limbs[0] = 1 |
| out.montgomeryRepresentation(m) |
| t0 := NewNat().ExpandFor(m) |
| t1 := NewNat().ExpandFor(m) |
| for _, b := range e { |
| for _, j := range []int{4, 0} { |
| // Square four times. |
| t1.montgomeryMul(out, out, m) |
| out.montgomeryMul(t1, t1, m) |
| t1.montgomeryMul(out, out, m) |
| out.montgomeryMul(t1, t1, m) |
| |
| // Select x^k in constant time from the table. |
| k := uint((b >> j) & 0b1111) |
| for i := range table { |
| t0.assign(ctEq(k, uint(i+1)), table[i]) |
| } |
| |
| // Multiply by x^k, discarding the result if k = 0. |
| t1.montgomeryMul(out, t0, m) |
| out.assign(not(ctEq(k, 0)), t1) |
| } |
| } |
| |
| return out.montgomeryReduction(m) |
| } |